

Abstract

Recent works in deep learning have been driven broadly
by the desire to attain high accuracy on certain challenge
problems. The network architecture and other hyper-
parameters of many published models are typically chosen
by trial-and-error experiments with little considerations
paid to resource constraints at deployment time. We
propose a fully automated model learning approach that (1)
treats architecture selection as part of the learning process,
(2) uses a blend of broad-based random sampling and
adaptive iterative refinement to explore the solution space,
(3) performs optimization subject to given memory and
computational constraints imposed by target deployment
scenarios, and (4) is scalable and can use only a practically
small number of GPUs for training. We present results that
show graceful model degradation under strict resource
constraints for object classification problems using CIFAR-
10 in our experiments. We also discuss future work in
further extending the approach.

1. Introduction
Deep learning with convolutional neural networks

(CNN) has become the method of choice in recent years
when it comes to solving image recognition problems [16].
The methodology has the ability to simultaneously learn a
hierarchical feature representation of the underlying data
and an optimal classifier given labeled training data. Some
of the leading models published in the literature had
surpassed the performance of human, most notably in the
ImageNet 1000-class image classification problem [11].

However, most prior works on deep learning were driven
primarily to achieve high accuracy on certain challenge
problems [16][23][26][10]. The designer generally has to
experiment with many different network architectures as
well as trying combinations of hyper-parameters such as
learning rate, number of iterations, batch size for
normalization, and regularization parameters in order to
arrive at good-performing models. The main fundamental
issue is that the model design process generally still
requires a lot of human intervention. Furthermore, little
considerations were paid to resource constraints for
subsequent deployment of those models during the design

stage. Often times, a high-performing model may only be
slightly inferior to other competitive models, but at the
expense of much higher computational cost or memory
consumption at runtime. Having to find good models from
the large space of possible models subject to additional
resource constraints make the problem doubly challenging.

This paper proposes a method to address the challenge of
network architecture design for applications that may be
subject to strict deployment resource constraints. We are
not aware of any prior works that attempt to solve this
problem in an automated way. We selected CIFAR-10 to
assess the effectiveness of our approach.

2. Related Work
Various authors have explored different strategies for

optimizing hyper-parameters of machine learning
algorithms, including the use software tools to manage the
complexity of the process at least in the case of fixed-size
configuration spaces [3]. Here, we highlight related works
that we think are most relevant.

The idea of using the framework of Bayesian
optimization for hyper-parameters search was proposed in
[24], in which a Gaussian process was used to model the
generalization performance of a learning algorithm. The
fundamental idea was to model the objective function as a
Gaussian process defined over the parameter space and then
use the model to draw successive samples in order to
maximize the likelihood of expected improvement in the
objective function. However, the method was limited to
fixed-size hyper-parameter spaces.

Reinforcement learning (RL) is another class of methods
that has been employed to optimize deep network structure.
Zoph and Le [29] proposed a neural architecture search
method that generated neural networks architectures with
another recurrent neural network (RNN). The RNN was
trained by REINFORCE, searching from scratch in a
variable-length architecture space, to maximize the
expected accuracy of the generated architectures on a
validation set. In the RL formulation, a controller generates
hyper-parameters as a sequence of tokens, which are
actions chosen from hyper-parameters spaces; each
gradient update to the policy parameters corresponds to
training one generated network to convergence; and

DISTRIBUTION STATEMENT A. Approved for public release:
distribution unlimited. This material is based upon work supported by the
Assistant Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the Assistant Secretary of Defense for Research and Engineering.

Learning Network Architectures of Deep CNNs under Resource Constraints

Michael Chan, Daniel Scarafoni, Ronald Duarte, Jason Thornton and Luke Skelly

MIT Lincoln Laboratory, 244 Wood St, Lexington, MA 02421, USA

1816

measured accuracy on a validation set is the reward signal.
The authors designed a parameter server approach to speed
up training. Compared with state-of-the-art methods, this
approach achieved competitive results for an image
classification task. Baker et al. [1] proposed a meta-learning
approach, using Q-learning with �-greedy exploration and
experience replay, to generate CNN architectures
automatically for a given learning task.

Others recently attempted to use evolutionary algorithms
for the architecture learning problem. Real et al. [22] used
a variety of novel and intuitive mutation operators to
navigate the large search spaces, and was able to discover
competitive CNN models that rival state-of-the-art results
on CIFAR-10. The process was reported to require no
human participation once evolution starts from trivial initial
conditions. However, the authors did note that there was a
large computational cost involved requiring many hundreds
of GPU's to produce the model. In another case, it took
thousands of CPU nodes for two months to produce a
competitive model for the single-channel MNIST
benchmark using an evolution-based approach [5].

An adaptive structural learning method based on the idea
of boosting was recently proposed with theoretical
guarantees on generalization performance, but was applied
only to unconstrained binary classification problems [4].
The applicability to constrained multi-class problems
remains to be future work.

While none of the hyper-parameter learning methods
above considered resource constraints of the end
applications, there are related works that address the
question of resource constraints separately from the
architecture learning problem. Existing methods include
limiting numerical precision [7][21], network pruning or
slimming [8][9] [17][20], using specialized network
components [13], and implementing sparse convolutions
[20], all of which either assumed that a network architecture
had already been determined, or required significant human
input to design one. To control memory resources required
by a CNN, the authors in [6] incorporated in their
optimization a penalty term formulated as a function of sum
of bit-depths of all parameters. This work is similar in spirit
to our work in that hardware resource constraints were
considered upfront, but they assumed a fixed architecture (a
4-layer model in their experiments) and the penalty term
cannot enforce a hard constraint.

In our work, we address the constrained architecture
learning problem with variable-dimension parameter
spaces in a number of ways that we believe are novel. First,
our method uses a sequential combination of broad
randomized searches and stochastic coordinate descent
optimization that finds good solutions from a very large
architecture space. This is in contrast to evolutionary
approaches, where they perform a large number of random
adaptations and may not be the most efficient. It is also in
contrast to RL approaches, where they perform more

targeted search based on policy gradients that typically need
to be estimated from many more coordinate dimensions to
be effective. Second, our method takes into account
deployment resource constraints upfront and is
incorporated into the optimization framework in a more
integral way. It is in contrast to other works that address
resource constraints using a post-learning approximation
strategy like model compression. Third, we demonstrated
the effectiveness of our approach in generating competitive
solutions on a well-known dataset that generally needs far
fewer number of full backpropagation training runs than the
above architecture learning techniques. The main goal of
the current paper is not to deliberately match state-of-the-
art accuracy reported elsewhere, but to demonstrate the
feasibility and practicality of the overall constrained
network architecture optimization methodology.

3. Methods
Since the overall problem of model architecture selection

is formulated as an optimization task, we begin with a
description of the objective function we seek to optimize
and describe the network architecture representation that
we use. We then describe the proposed Monte Carlo
approach that generates successively refined network
architectures via a random sampling procedure before the
associated weights are learned. We also discuss a few
implementation-specific variants of the overall approach.

3.1. Objective Function

Let A denote the set of CNN architecture parameters (i.e.,
the architecture specification), and �� denote the collection
of weights assigned to the model after k iterations of
backpropagation using a training dataset. Our objective is
to select a model architecture A such that, when realized
with a set of trained weights, minimizes an objective
function in the following form:

 �̂ = arg min�, �� �(�,��) �. �. ⋀ (��(�) < ��)� . (1)

The objective function is essentially a weighted sum of a
loss term L given the labeled data {xi, yi} and a
regularization term R as shown below:

 �(�,��) = �(�,��|{�� ,��}) + � ⋅ �(�), (2)

and �� represents the cost of the jth resource of a particular
model architecture, which together with thresholds ��
represent the hard resource constraint. The loss term
measures the cross-entropy error of the model with respect
to a labeled data set while the regularization term measures
the complexity of the architecture in some way; for example
those that favor smaller number weights in the model. The
constraint in Equation (1) essentially defines a restricted
solution space, for example to meet certain requirements on
memory usage and computational budget. To directly

1817

measure classification accuracy on validation data, L can be
formulated as such, which is what we used as stop criteria
for backpropagation training and model selection.

3.2. Architecture Representation

While a variety of training frameworks exist, we use a
framework-agnostic representation for generality. In such a
scheme, each CNN architecture A with C convolutional
layers and F fully-connected layers can be represented by
an n-tuple descriptor namely: (��������� , ���������� ,�������� , ����������), where

 �������� = ����
1 , … ,���� �, (3)

 ���������� = (�����
1 , … , ������), (4) ������ = ������� , ������ ,������ ,������ ,������ , ����

� , ����� � (5)

Here ���
� and ������ represent the number of fully-connected

(or hidden) layers and filters, whereas ����� , ����� ,��� ���� represent the sizes (in x and y directions) of the conv
filters, pooling neighborhood and subsampling factor in a
particular layer i, respectively. The output of each
convolution layer is passed through a standard ReLU
activation function and followed by a batch normalization
step.

Even though we use this simplified template for CNN
architectures for the experiments in the current paper,
nothing in the optimization approach we describe later
would prevent it from being applied to more complex
architecture types as well. Other architecture elements (e.g.,
skips and braches) could be incorporated in future, but we
want to first understand what can be achieved without those
generalizations. Nonetheless, a very large architecture
space can be represented by the above.

3.3. Architecture Optimization Approach

Since there are no known closed-form solutions for the
non-convex architecture optimization problem, we propose

a stochastic optimization method that depends on two main
components: (1) random architecture sampling, and (2)
adaptive architecture sampling.

The random sampling step first selects all architecture
parameters from a uniform distributions over the possible
values defined by an initial model space. There is evidence
in the literature that random search actually performed
better than deterministic grid search strategies in machine
learning problems with a large search space [2]. Our
method is a chained sampling process; first the meta-
parameters determining layer composition are generated,
followed by the layer-specific parameters for each layer. If
a resource constraint is optionally provided, the constraint
will be evaluated before proceeding (more on constraints

Algorithm II: Adaptive Architecture Learning

k ← 0
WHILE k < NADAPT
 (Aopt, scoreopt) ← BestModel(modelPool)
 type ← SelRandom({meta, layer })
 IF type == meta
 LOOP_M:
 Li ← SelRandomLayer(Aopt)
 action = SelRandom({add, remove })
 IF action == remove
 Ak ← RemoveLayer(Aopt, Li)
 IF action == add
 Ak ← AddLayer(Aopt, Randomize(Li))
 IF FailConstraint(Ak, THRESH)
 CONTINUE LOOP_M
 scorek = EvalObjective(Ak)
 modelPool ← Append(modelPool, Ak)
 k ← k + 1
 IF type == layer
 LOOP_L:
 Li ← SelRandomLayer(Aopt)
 α ← SelRandom({inc , dec })
 IF LayerType(Li) == conv
 key ← SelRandomParam({n_filt, …
 filt_sz, pool_sz, sub_sz })
 IF LayerType(Li) == fc
 key ← n_hidden
 LOOP_DESCENT:

 Val(Li, key) ← α * Val(Li, key)
 Ak ← UpdateArch(Aopt, Li)
 IF FailConstraint(Ak, THRESH)
 BREAK LOOP_DESCENT
 scorek ← EvalObjective(Ak)
 modelPool ← Append(modelPool, Ak)
 IF scorek > scoreopt
 scoreopt ← scorek
 k ← k + 1
 CONTINUE LOOP_DESCENT
 ELSE
 k ← k + 1
 BREAK LOOP_DESCENT

Algorithm I: Constrained Architecture Sampling

k ← 0
modelPool ← {}
WHILE k < NRANDOM
 LOOP:
 Ak = GetRandomArch(MODEL_SPACE)
 IF FailValidArch(Ak)
 CONTINUE LOOP
 IF FailConstraint(Ak, THRESH)
 CONTINUE LOOP
 ELSE
 BREAK LOOP
 modelPool ← Append(modelPool, Ak)
 k ← k + 1

1818

later). If the constraint is not satisfied, another random
sample is drawn and the process is repeatedly until the
constraint is satisfied. This step draws a total of
NRANDOM samples and evaluates each with respect to the
objective function as described by Algorithm I.

Once random sampling is complete, we proceed to the
adaptive sampling step, where information about previous
samples and their objective function values are used to
determine where each new sample should be taken. It is
worth noting that since the existence of some (layer-
specific) parameters depends on the values of other meta-
parameters, sampling methods that work with fixed-size
parameter spaces [24] are not applicable. Instead, we use a
coordinate descent formulation that is designed to work in
variable-dimension parameter spaces.

The algorithm we apply during the adaptive sampling
phase is given by Algorithm II. First we identify the optimal
architecture discovered so far. Then it randomly decides
whether to modify meta-parameters (by adding or removing
layers from the architecture) or modify a layer-specific
parameter within a randomly selected layer. In the latter
case, we choose a coordinate direction for modifying the
parameter value (either increasing or decreasing). If the
resulting modification leads to a performance improvement
we continue to sample in that direction until improvement
stops; this is analogous to performing coordinate descent
optimization [19]. In fact, it is a form of stochastic
coordinate descent method where only one coordinate
dimension is randomly chosen and updated at a time [28].
The adaptive samples can be drawn outside of the initial
model space at this stage. The process of alternating
between randomly modifying the dimensions of the
parameter space to look for improvement and conducting
coordinate descent within a fixed-dimension parameter
space is repeated multiple times. The routine finishes after
evaluating a total of NADAPT adaptive samples in this
phase.

In contrast to evolutionary algorithms, our algorithm
begins with what could be considered random mutations of
fit architectures, which is followed by a coordinate descent
procedure to focus our use of model architecture
evaluations where they are more likely to improve
performance.

3.4. Early Assessment of Model Traction

A key insight for efficient optimization is that we do not
need to let backpropagation weight training run until
convergence to assess the fitness of a candidate model
architecture. Typically, error backpropagation will make
multiple passes (or iterations) through the training data until
the accuracy measured on the training data or validation
data levels off. However, the accuracy measured at early
iterations in the process can be considered an indicator of
model "traction," or likelihood to converge to high

accuracy. There is a significant advantage to assessing early
indicators during training, since it saves on the
computational load required to explore the model
architecture space. Empirically, we have seen good results
even if we run the random sampling step and the initial
phase of the adaptive sampling step to only partial
convergence.

3.5. Depth-first vs. Breath-first and N-Best
Variants

The two algorithm components, namely random
sampling and adaptive sampling, are roughly analogous to
breadth-first and depth-first search. By altering the ratio of
random and initial adaptive architectures, we can make the
optimization process more depth-first and less breadth-first
or vice versa. N-best, by contrast, uses the top N
architectures for generating subsequent architectures. This
is in contrast to the baseline method, which only looks at
the current top architecture. This serves as somewhat of a
hybrid between depth- and breadth-first, in that multiple
“threads” of depth-first search are pursued at the same time,
reducing the possibility of selecting an architecture that
leads to a shallow local optimum.

3.6. Parallel and Asynchronous Operations

In a parallel asynchronous optimization process, all
workers that finish optimizing an architecture are
immediately given a new one to optimize. This is in contrast
to the sequential version, in which architectures are trained
and evaluated one at a time. There is no difference
algorithmically in the random sampling stage. However, in
the adaptive sampling stage, the sequential version is
theoretically more optimal (given a fixed number of
architecture evaluations) than the parallel asynchronous
variant because waiting for one architecture to finish allows
the best architecture for the next round to be chosen from a
larger pool.

3.7. Sampling with Resource Constraints

We choose to use intrinsic model properties of CNNs
(e.g., number of weights, filter size, etc.) to estimate the size
and computational efficiency of the networks. Much of the
work in the literature use the number of weights as the
standard for measuring the size of CNN models. Indeed, the
number of weights is the main contributor to both memory
and number of floating point operations (FLOP) in CNNs.
We implemented a memory and FLOP estimation function
that reflects more closely the runtime requirement of CNNs.
We can constrain the architecture sampling routine (e.g., in
Algorithm I) by specifying these metrics in order to find the
best performing architecture that meets a particular
hardware constraint. We describe their derivations below.

First, one implicit assumption we make in practice is that

1819

all weights need to be stored in memory for the duration of
the classification process in order to minimize the number
of memory operations and thus achieve a higher
throughput. The number of weights for each convolutional
layer ��⃑����� is a function of the kernel size �, number of
input �, and the number of output features � (including the
bias). For fully-connected layers, the number of weights ��⃑��� is the product of the number hidden nodes ℎ, and the
number of inputs � (including the bias). We estimate the
total memory requirement for a particular model, based on
the GEMM (General Matrix-Matrix Multiplication)
algorithm. By summing the number of weights across the
network, and multiplying the sum by the number of bytes
per element (���), one can obtain a good approximation of
the total memory requirement. We further assume that in an
optimized implementation of a forward-pass, one would
need at least two memory buffers to store the inputs and
outputs during computation. We consider a ping-pong
buffering approach in which sufficient memory is allocated
to store the largest input and output volumes (this memory
is reused throughout the network) for all layers l. A better
overall memory estimation is therefore given by: ��� = ��� ⋅ � ∑��⃑�����+ ∑��⃑���+ max� (|�����⃑ |, |�����⃑ |) � (6)

The total FLOP of the network is also a function of the
number of weights. In a convolutional layer, we convolve
weighted filters with the input volume. The total FLOP for
convolutional layers, which is equivalent to the number of
weights times the height and width of the input (after
scaling by 1 over the stride s in both directions):

 �������� = �1� ∙ �� ∙ �ℎ� ∙ (�� ∙ �� ∙ �ℎ + 1) ∙ � (7).

In the fully-connected layers, we perform one fused
multiply-add (FMA) for every weight; thus, the total FLOP
is equivalent to the number of weights:

 ������ = ℎ ∙ (� + 1). (8)

Finally, the estimated FLOP for the entire network is
obtained by summing the FLOP for all the layers:

 ������� = ∑ ��������(�)� + ∑ ������(�)� (9)

The current state of our framework provides estimations
both the memory and FLOP of CNN models. In practice,
metrics such as power consumption of models for a given
hardware platform, and the speed of executing a forward
pass of the resulting CNN model measured in number of
inferences per second (IPS) may be desirable. These
measurable metrics could be formulated (empirical or
otherwise) as a function of the intrinsic model properties
such as memory and FLOP. By doing so, we can directly
specify higher-level resource constraints on power and IPS,
as well as compute and memory, for embedded platforms
and for applications that require a minimum number of IPS.

Our algorithm is generalizable to handle various needs by
constraining the model search using appropriate metrics to
set the desire limits on hardware resource and
computational efficiency.

4. Experiments and Results
We conducted a number experiments and compared the

outcomes from different variants of our algorithm. We
assessed their relative effectiveness and the impacts of
resource constraints on our architecture optimization
results.

As described in Section 3, each architecture learning
experiment performed random sampling of the architecture
space, followed by adaptive sampling to refine the
selection. In particular, we randomly sampled 50
architectures, followed by 50+20 adaptively sampled
architectures: the initial 50 adaptive architectures were only
trained on a predefined number of iterations (8 in our case),
while the last 20 were trained until full convergence. In all
experiments, the available annotated data were generally
divided into a set of held-out test data, and the rest were
further divided into training and validation data used during
individual architecture learning runs. In all experiments, we
set � to 0.00005, learning rate to 0.0005, and batch size for
normalization to 128. The coordinate descent scaling factor
α was set to either 1.5 or 0.66 depending on the direction.

4.1. Unconstrained Optimization Experiments

We start by assessing the performance of several variants
of our proposed algorithm with no resource constraints in
effect. We used the CIFAR-10 dataset composed of 60000
32x32 color images with 10 object classes. It contains
50000 training images and 10000 test images [15]. We
randomly selected 5000 images from the training set for
validation. We applied the same data augmentation process
as in [22], where images were flipped with probability of
0.5, padded, cropped into 32x32 sections, and then color
enhanced.

Without support for skip connections and branching
layers at this time, a reasonable benchmark to compare
against is VGG [23]. Their work advocated the use of 3x3
convolutions, which is also what we restrict our search
space to in this particular experiment. More specifically, we
allowed up to 26 convolutional layers and up to 128 filters
in each layer, while limiting the size of convolutional
kernels up to 3x3 and maxpools up to 2x2 with a stride of
2. For the fully connected layers, we allowed up to 2048
hidden nodes.

We tested the following algorithm variants:
i. Synchronous: This is our baseline algorithm where

we use 50 random architectures and 50 initial adaptive
architectures (with early termination), followed by 20
fully-trained adaptive architectures. The best
architecture so far is used as seed for subsequent

1820

adaptive samples. There is no parallelization and only
one worker thread is used after the first 50 random
samples.

ii. Asynchronous: Similar to variant i except that there
are multiple worker threads allowing multiple
architectures to be trained in parallel (4 in our case).
An adaptive sample is generated based the current
best model without waiting for other training runs to
finish.

iii. Asynchronous Ensemble: Similar to variant ii except
that top N models are fused at the very end (4 in our
case) using a majority voting scheme when
performing classification.

iv. N-Best: Similar to variant i except that N architectures
are trained at a time (4 in our case), with the next set
of N architectures not being decided until all N
architectures finish training. It also entails some
coordination overhead and idle cycles for some
GPUs.

All CNN models as-of-yet described were trained on the

training data. Validation data was used for evaluating
model generalization during architecture optimization.
However, once a final architecture has been decided, an
additional model can be trained using all training data
including the validation data, which tends to boost
performance on independent test data.

The results for these experiments can be seen in Table 1.
The best non-ensemble method (Async 4 workers) achieved
an accuracy of 90%, which matched the performance of the
VGG-19 model [23], which we implemented and trained
using our architecture generation framework. The result
was 2% lower than the best published results of 92% for
VGG-19, which was probably due to the fact that we did not
employ weight inheritance, a technique that was found to
boost results by over 2% [22]. Nonetheless, we were able

to match or exceed that with our ensemble classifier derived
from the best 4 performers (final and interim) of the 120
produced by a single run of our overall procedure. This was
an interesting result on its own because our optimization
process seemed to be producing complementary classifiers
along its way. The other algorithm variants turned out to
have similar performance, averaging in the high eighty-
percent, including the N-best variant.

While keeping the total number of random samples and
initial adaptive samples the same, adjusting the percent mix
of random samples vs. initial adaptive samples was found
to produce models with different sizes but only minor
difference in accuracy (all within about +/-1% in a separate
assessment). Overall, these observations suggested that the
asynchronous baseline version of our algorithm is a
reasonable choice as it leverages parallel computing
resource effectively, and using a 50/50 mix for random
sampling and initial adaptive sampling stages provides a
good balance between accuracy and model size.

Our results currently had not reached the 95% level of
accuracy of the model produced by Real et al. [22]. This is
because we are currently limit ing the “space of all
architectures” reachable by our model representation in this
first attempt. We expect to reach higher accuracy when we
support branching layers or skip connections like those
found in architectures defined by GoogLeNet or ResNet.

However, it is worth noting that the authors in [22]
trained thousands of architectures for tens of thousands of
steps, whereas we only trained 120 architectures, all but the
last 20 for less than 3000 iterations. Our results thus
incurred drastically less time and computation. Our
learning algorithms involving stochastic coordinate descent
was found to be practical (compared to the more expensive
form of gradient descent in RL methods) and can produce
competitive models with 4 Titan-X class GPUs in about 12
hours, as opposed to requiring hundreds to thousands of
GPUs.

We currently used a first-available compute-node
allocation strategy for the parallel version of our algorithm,
although we may want to consider other strategies in future
as we scale up our experiments in heterogeneous (mixed
CPU/GPU) cluster environments [14].

4.2. Constrained Optimization Experiments

The goal of this experiment is to assess the performance
of our network architecture learning algorithm on CIFAR-
10 data when subject to resource constraints. We used the
asynchronous version of the algorithm, but rejected
randomly sampled architectures which did not meet
resource constraints and continued to generate new ones
until constraints were met. In the adaptive stage, we
similarly generated architectures until a sufficiently
constrained architecture was created, but we also chose a
different coordinate dimension to alter the model whenever

Method
Variants

Test Set
Accuracy

Resulting
Model Resource

Model:
Train

Model:
Train+Val

Param
Count

Mem
(MB)

Flop
(GOP)

Synchronous
(1 worker)

88.5% 89.0% 3.9x106 17.6 .72

Async
(4 workers)

88.7% 90.2% 2.6x106 11.9 .65

Async
Ensemble
(Best 4)

91.3% 92.6% 1.1x107 51.0 2.7

N-Best
(4 workers)

88.6% 88.8% 2.7x106 12.8 1.4

VGG-19* 89.9% 90.0%* 2.1x107 82.7 .40

Table 1: Comparing different variants of our architecture
learning method on CIFAR-10. *VGG-19 based on our
implementation and is reachable using our architecture
description.

1821

an architecture was rejected.
We were able to automate the design of CNN models

subject to a resource constraint and arriving at optimized
models with little loss of accuracy while respecting the
constraints. Table 2 shows the relationship between
network size reduction and its impact on accuracy, and
optimized networks with varying target constraints (for
both memory and FLOP in our experiments) given as a
percent of the unconstrained baseline. For instance, we
produced a CNN model with no less than 2% loss of
accuracy when both constraints were 50% of the
unconstrained model, and a model with only 5% loss of
accuracy when the constraint was only at one tenth.

It is important to mention that the target constraint only
provides an upper bound and that the resulting model from
the constrained optimization generally will not hit the target
constraint exactly. In fact, this is the case for all constrained
optimization runs, as one can only define upper (and lower)
bounds, which are sufficient to get the desired results.

The memory constraint satisfaction is actually non trivial
and reflects realistic memory allocation in optimized
runtime software as opposed to just model size. We also
experimented with alternative constraint satisfaction
strategies by allowing the constraint to be more relaxed in
the random sampling stage (e.g., 2X constraint), and
linearly reduced to the target constraint through the
adaptive sampling stage until the last iteration. We thought
we could arrive at a better local minimum solution (higher
accuracy), but turned out there was little accuracy impact.
That informed the choice of our simpler constraint
satisfaction strategy.

The runtime performance of two selected models along
with the VGG-19 model are also reported in Table 3. The
unconstrained model learned from CIFAR-10 (labeled
CF100) is 1.9X more efficient on Tegra TX1 compared to
VGG-19 with similar or better accuracy, and the resultant

model at a target constraint of 50% (labeled CF50) is 2.5X
more efficient with only about 2% loss in accuracy.

It is also worth noting that as compared to VGG-19,
CF100 measured higher in IPS despite being more
demanding based on FLOP. This is due to the sizeable
difference in the number of memory operations between the
two networks (see Table 3). Typically, GPU memory
operations (Global Memory access in particular) are more
expensive than ALU (arithmetic logic unit) operations [18].
In addition, memory operations consume much more power
than ALU [12]. This has let us to place more emphasis on
reducing memory operations in CNNs in order to increase
IPS and reduce power consumption.

5. Conclusions
We demonstrated the efficacy of a novel network

architecture learning algorithm that has the ability to learn
competitive deep CNN models subject to optional but hard
resource constraints at deployment time. We found that a
combination of random sampling and adaptive sampling of
the constrained architecture space can be effective and
practical in finding good solutions for the corresponding
large-scale variable-dimension parameter optimization
problem; it allows us to automate the design of deep CNN
with resource constraints. We plan to build on this initial
success and further extend our framework to allow richer
network representations.

6. Acknowledgement
We like to thank Jennifer Sloboda and William Pughe for

their help with data preparation, parallel and embedded
computing assistance.

References

[1] B. Baker, O. Gupta, N. Naik, and R. Raskar.
Designing neural network architectures using
reinforcement learning. In ICLR, 2017

Target
Const-
raints
(%)

Test Set
Accuracy

Resulting
Model Resource

Model:
Train

Param
Count

Mem
(MB)

Flop
(GOP)

%Mem
(actual)

% Flop
(actual)

100 88.7% 2.6x106 11.36 0.65 100 100

90 88.3% 2.1x106 8.52 0.2 75.0 30.8

70 87.4% 1.5x106 7.78 0.2 68.5 30.8

50 87.0% 8.0x105 4.57 0.12 40.2 18.5

30 85.5% 3.6x105 2.37 0.04 20.9 6.2

10 84.4% 1.4x105 1.02 0.04 9.0 6.2

Table 2: Performance results on CIFAR-10 subject to varying
target resource constraints as % of the unconstrained model. We
did not include validation data in the final model training as we
only wanted to understand relative trends here.

Target
Model

Test Set
Accuracy

Resulting
Model Resource

Performance
(Infer/sec)

Model:
Train+Val

Param
Count

Mem
(MB)

Flop
(GOP)

Titan
Xp

Tegra
TX1

CF100 90.2% 2.6x106 11.36 0.65 1246 354

CF50 87.8% 0.8x106 4.57 0.12 1745 452

VGG-19 90.0% 21x106 78.91 0.4 328 183

Table 3: Comparative results of architecture learning on CIFAR-
10 subject to varying resource constraints. Our model met
explicit constraints and actually ran faster with little loss in
accuracy. For reference, the accuracy of our best unconstrained
ensemble model (with 1.1x107 parameters) is at 92.6%.

1822

[2] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13:281–305, 2012.

[3] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and
D. Cox. Hyperopt: A Python library for model
selection and hyperparameter optimization.
Computational Science & Discovery, 2015

[4] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri,
and S. Yang. AdaNet: Adaptive structural learning of
artificial neural networks. In ICML, 2017

[5] T. Desell. Large scale evolution of convolutional
neural networks using volunteer computing. Genetic
and Evolutionary Computation Conference, 2017

[6] R. Doshi, K-W Hung, L. Liang, and K-H Chiu. Deep
learning neural networks optimization using hardware
cost penalty. In IEEE International Symposium on
Circuits and Systems (ISCAS), 2016

[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, P.
Narayanan. Deep learning with limited numerical
precision. In ICML, 2015

[8] S. Han, H. Mao, and W. J. Dally. Deep compression:
compressing deep neural networks with pruning,
trained quantization and Huffman coding. In ICLR,
2016

[9] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning
both weights and connections for efficient neural
networks. In NIPS, 2015

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: surpassing human-level performance
on ImageNet classification, In ICCV, 2015

[12] M. Horowitz. Energy table for 45nm process.
Stanford VLSI wiki

[13] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer. SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters and <
0.5MB model size. 2016

[14] J. Kinnison, N. Kremer-Herman, D. Thain, and W.
Scheirer. SHADHO: Massively scalable hardware-
aware distributed hyperparameter optimization. arXiv
preprint arXiv:1707.014282, 2017

[15] Krizhevsky and G. Hinton. Learning multiple layers
of features from tiny images. Technical Report, Univ.
of Toronto, 2009

[16] Krizhevsky. I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural
Networks. In NIPS, 2012

[17] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C.
Zhang. Learning efficient convolutional networks
through network slimming. In ICCV, 2017

[18] NVIDIA. CUDA C Programming Guide 9.0, 2017
[19] Y. Nesterov. Efficiency of coordinate descent

methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22: 341–362, 2010

[20] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen,
and P. Dubey. Faster CNNs with direct sparse
convolutions and guided pruning. In ICLR, 2017

[21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: ImageNet classification using binary
convolutional neural networks. In ECCV, 2016

[22] E. Real, S. Moore, A. Selle, S. Saxena, Y. L.
Suematsu, J. Tan, Q. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In ICML, 2017

[23] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. In CVPR, 2015

[24] J. Snoek, H. Larochelle, and R. Adams. Practical
Bayesian optimization of machine learning
algorithms. In NIPS, 2012

[25] S. Srinivas and R. V. Babu. Learning neural network
architectures using backpropagation. In BMVC, 2016.

[26] Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhouce, and A.
Rabinovich. Going deeper with convolutions, In
CVPR, 2015

[27] Q. Tao, K. Kong, D. Chu, and G. Wu. Stochastic
coordinate descent methods for regularized smooth
and nonsmooth losses. In European conference of
Machine Learning and Knowledge Discovery in
Databases, 2012

[28] L. Yang, P. Luo, C. Loy, and X. Tang. A large-scale
car dataset for fine-grained categorization and
verification. In CVPR, 2015

[29] Zoph and Q. V. Le. Neural architecture search with
reinforcement learning. In ICLR, 2017

1823

