
 
 

 
 

 
 

Abstract 
 

Recent works in deep learning have been driven broadly 
by the desire to attain high accuracy on certain challenge 
problems. The network architecture and other hyper-
parameters of many published models are typically chosen 
by trial-and-error experiments with little considerations 
paid to resource constraints at deployment time. We 
propose a fully automated model learning approach that (1) 
treats architecture selection as part of the learning process, 
(2) uses a blend of broad-based random sampling and 
adaptive iterative refinement to explore the solution space, 
(3) performs optimization subject to given memory and 
computational constraints imposed by target deployment 
scenarios, and (4) is scalable and can use only a practically 
small number of GPUs for training. We present results that 
show graceful model degradation under strict resource 
constraints for object classification problems using CIFAR-
10 in our experiments. We also discuss future work in 
further extending the approach.  

1. Introduction 
Deep learning with convolutional neural networks 

(CNN) has become the method of choice in recent years 
when it comes to solving image recognition problems [16]. 
The methodology has the ability to simultaneously learn a 
hierarchical feature representation of the underlying data 
and an optimal classifier given labeled training data. Some 
of the leading models published in the literature had 
surpassed the performance of human, most notably in the 
ImageNet 1000-class image classification problem [11]. 

However, most prior works on deep learning were driven 
primarily to achieve high accuracy on certain challenge 
problems [16][23][26][10]. The designer generally has to 
experiment with many different network architectures as 
well as trying combinations of hyper-parameters such as 
learning rate, number of iterations, batch size for 
normalization, and regularization parameters in order to 
arrive at good-performing models. The main fundamental 
issue is that the model design process generally still 
requires a lot of human intervention. Furthermore, little 
considerations were paid to resource constraints for 
subsequent deployment of those models during the design 

stage. Often times, a high-performing model may only be 
slightly inferior to other competitive models, but at the 
expense of much higher computational cost or memory 
consumption at runtime. Having to find good models from 
the large space of possible models subject to additional 
resource constraints make the problem doubly challenging.  

This paper proposes a method to address the challenge of 
network architecture design for applications that may be 
subject to strict deployment resource constraints. We are 
not aware of any prior works that attempt to solve this 
problem in an automated way. We selected CIFAR-10 to 
assess the effectiveness of our approach. 

2. Related Work 
Various authors have explored different strategies for 

optimizing hyper-parameters of machine learning 
algorithms, including the use software tools to manage the 
complexity of the process at least in the case of fixed-size 
configuration spaces [3]. Here, we highlight related works 
that we think are most relevant. 

The idea of using the framework of Bayesian 
optimization for hyper-parameters search was proposed in 
[24], in which a Gaussian process was used to model the 
generalization performance of a learning algorithm. The 
fundamental idea was to model the objective function as a 
Gaussian process defined over the parameter space and then 
use the model to draw successive samples in order to 
maximize the likelihood of expected improvement in the 
objective function. However, the method was limited to 
fixed-size hyper-parameter spaces.  

Reinforcement learning (RL) is another class of methods 
that has been employed to optimize deep network structure. 
Zoph and Le [29] proposed a neural architecture search 
method that generated neural networks architectures with 
another recurrent neural network (RNN). The RNN was 
trained by REINFORCE, searching from scratch in a 
variable-length architecture space, to maximize the 
expected accuracy of the generated architectures on a 
validation set. In the RL formulation, a controller generates 
hyper-parameters as a sequence of tokens, which are 
actions chosen from hyper-parameters spaces; each 
gradient update to the policy parameters corresponds to 
training one generated network to convergence; and 
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measured accuracy on a validation set is the reward signal. 
The authors designed a parameter server approach to speed 
up training. Compared with state-of-the-art methods, this 
approach achieved competitive results for an image 
classification task. Baker et al. [1] proposed a meta-learning 
approach, using Q-learning with �-greedy exploration and 
experience replay, to generate CNN architectures 
automatically for a given learning task.  

Others recently attempted to use evolutionary algorithms 
for the architecture learning problem. Real et al. [22] used 
a variety of novel and intuitive mutation operators to 
navigate the large search spaces, and was able to discover 
competitive CNN models that rival state-of-the-art results 
on CIFAR-10.  The process was reported to require no 
human participation once evolution starts from trivial initial 
conditions. However, the authors did note that there was a 
large computational cost involved requiring many hundreds 
of GPU's to produce the model. In another case, it took 
thousands of CPU nodes for two months to produce a 
competitive model for the single-channel MNIST 
benchmark using an evolution-based approach [5]. 

An adaptive structural learning method based on the idea 
of boosting was recently proposed with theoretical 
guarantees on generalization performance, but was applied 
only to unconstrained binary classification problems [4]. 
The applicability to constrained multi-class problems 
remains to be future work.   

While none of the hyper-parameter learning methods 
above considered resource constraints of the end 
applications, there are related works that address the 
question of resource constraints separately from the 
architecture learning problem. Existing methods include 
limiting numerical precision [7][21], network pruning or 
slimming [8][9] [17][20], using specialized network 
components [13], and implementing sparse convolutions 
[20], all of which either assumed that a network architecture 
had already been determined, or required significant human 
input to design one. To control memory resources required 
by a CNN, the authors in [6] incorporated in their 
optimization a penalty term formulated as a function of sum 
of bit-depths of all parameters. This work is similar in spirit 
to our work in that hardware resource constraints were 
considered upfront, but they assumed a fixed architecture (a 
4-layer model in their experiments) and the penalty term 
cannot enforce a hard constraint. 

In our work, we address the constrained architecture 
learning problem with variable-dimension parameter 
spaces in a number of ways that we believe are novel. First, 
our method uses a sequential combination of broad 
randomized searches and stochastic coordinate descent 
optimization that finds good solutions from a very large 
architecture space. This is in contrast to evolutionary 
approaches, where they perform a large number of random 
adaptations and may not be the most efficient. It is also in 
contrast to RL approaches, where they perform more 

targeted search based on policy gradients that typically need 
to be estimated from many more coordinate dimensions to 
be effective. Second, our method takes into account 
deployment resource constraints upfront and is 
incorporated into the optimization framework in a more 
integral way. It is in contrast to other works that address 
resource constraints using a post-learning approximation 
strategy like model compression. Third, we demonstrated 
the effectiveness of our approach in generating competitive 
solutions on a well-known dataset that generally needs far 
fewer number of full backpropagation training runs than the 
above architecture learning techniques. The main goal of 
the current paper is not to deliberately match state-of-the-
art accuracy reported elsewhere, but to demonstrate the 
feasibility and practicality of the overall constrained 
network architecture optimization methodology. 

3. Methods 
Since the overall problem of model architecture selection 

is formulated as an optimization task, we begin with a 
description of the objective function we seek to optimize 
and describe the network architecture representation that 
we use. We then describe the proposed Monte Carlo 
approach that generates successively refined network 
architectures via a random sampling procedure before the 
associated weights are learned. We also discuss a few 
implementation-specific variants of the overall approach. 

3.1. Objective Function 

Let A denote the set of CNN architecture parameters (i.e., 
the architecture specification), and ��  denote the collection 
of weights assigned to the model after k iterations of 
backpropagation using a training dataset. Our objective is 
to select a model architecture A such that, when realized 
with a set of trained weights, minimizes an objective 
function in the following form: 

 �̂ = arg min�, �� �(�,��)      �. �.     ⋀ ( ��(�) < ��)� . (1) 

The objective function is essentially a weighted sum of a 
loss term L given the labeled data {xi, yi}  and a 
regularization term R as shown below: 

 �(�,��) = �(�,��|{�� ,��})   +   � ⋅ �(�), (2) 

and �� represents the cost of the jth resource of a particular 
model architecture, which together with thresholds �� 
represent the hard resource constraint. The loss term 
measures the cross-entropy error of the model with respect 
to a labeled data set while the regularization term measures 
the complexity of the architecture in some way; for example 
those that favor smaller number weights in the model. The 
constraint in Equation (1) essentially defines a restricted 
solution space, for example to meet certain requirements on 
memory usage and computational budget. To directly 
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measure classification accuracy on validation data, L can be 
formulated as such, which is what we used as stop criteria 
for backpropagation training and model selection. 

3.2. Architecture Representation 

While a variety of training frameworks exist, we use a 
framework-agnostic representation for generality. In such a 
scheme, each CNN architecture A with C convolutional 
layers and F fully-connected layers can be represented by 
an n-tuple descriptor namely: (��������� , ���������� ,�������� , ����������), where 

 �������� = ���� 
1 , … ,���� �,                   (3) 

 ���������� = (����� 
1 , … , ������ ),              (4) ������ = ������� , ������ ,������ ,������ ,������ , ���� 

� , ����� �  (5) 

Here ��� 
� and ������  represent the number of fully-connected 

(or hidden) layers and filters, whereas  ����� , ����� ,���  ���� represent the sizes (in x and y directions) of the conv 
filters, pooling neighborhood and subsampling factor in a 
particular layer i, respectively. The output of each 
convolution layer is passed through a standard ReLU 
activation function and followed by a batch normalization 
step. 

Even though we use this simplified template for CNN 
architectures for the experiments in the current paper, 
nothing in the optimization approach we describe later 
would prevent it from being applied to more complex 
architecture types as well. Other architecture elements (e.g., 
skips and braches) could be incorporated in future, but we 
want to first understand what can be achieved without those 
generalizations. Nonetheless, a very large architecture 
space can be represented by the above. 

3.3. Architecture Optimization Approach 

Since there are no known closed-form solutions for the 
non-convex architecture optimization problem, we propose 

a stochastic optimization method that depends on two main 
components: (1) random architecture sampling, and (2) 
adaptive architecture sampling.   

The random sampling step first selects all architecture 
parameters from a uniform distributions over the possible 
values defined by an initial model space. There is evidence 
in the literature that random search actually performed 
better than deterministic grid search strategies in machine 
learning problems with a large search space [2]. Our 
method is a chained sampling process; first the meta-
parameters determining layer composition are generated, 
followed by the layer-specific parameters for each layer. If 
a resource constraint is optionally provided, the constraint 
will be evaluated before proceeding (more on constraints 

Algorithm II: Adaptive Architecture Learning  

k ← 0 
WHILE k < NADAPT 
  (Aopt, scoreopt) ← BestModel(modelPool) 
  type ← SelRandom({meta, layer }) 
  IF type == meta 
    LOOP_M: 
      Li ← SelRandomLayer(Aopt) 
      action = SelRandom({add, remove }) 
      IF action == remove  
        Ak ← RemoveLayer(Aopt, Li) 
      IF action == add 
        Ak ← AddLayer(Aopt, Randomize(Li)) 
      IF FailConstraint(Ak, THRESH) 
        CONTINUE LOOP_M 
      scorek = EvalObjective(Ak) 
      modelPool ← Append(modelPool, Ak) 
      k ← k + 1 
  IF type == layer 
    LOOP_L: 
      Li ← SelRandomLayer(Aopt) 
      α ← SelRandom({inc , dec }) 
      IF LayerType(Li) == conv  
        key ← SelRandomParam({n_filt, … 
              filt_sz, pool_sz, sub_sz } ) 
      IF LayerType(Li) == fc  
        key ← n_hidden        
      LOOP_DESCENT: 

        Val(Li, key)  ← α * Val(Li, key)  
        Ak ← UpdateArch(Aopt, Li) 
        IF FailConstraint(Ak, THRESH) 
          BREAK LOOP_DESCENT 
        scorek ←  EvalObjective(Ak) 
        modelPool ← Append(modelPool, Ak) 
        IF scorek > scoreopt 
          scoreopt ←  scorek          
          k ← k + 1 
          CONTINUE LOOP_DESCENT 
        ELSE 
          k ← k + 1 
          BREAK LOOP_DESCENT 

 

Algorithm I: Constrained Architecture Sampling 

k ← 0 
modelPool ← {}  
WHILE k < NRANDOM 
  LOOP: 
    Ak = GetRandomArch(MODEL_SPACE) 
    IF FailValidArch(Ak) 
      CONTINUE LOOP 
    IF FailConstraint(Ak, THRESH) 
      CONTINUE LOOP 
    ELSE 
      BREAK LOOP 
  modelPool ← Append(modelPool, Ak) 
  k ← k + 1 
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later). If the constraint is not satisfied, another random 
sample is drawn and the process is repeatedly until the 
constraint is satisfied.  This step draws a total of 
NRANDOM samples and evaluates each with respect to the 
objective function as described by Algorithm I. 

Once random sampling is complete, we proceed to the 
adaptive sampling step, where information about previous 
samples and their objective function values are used to 
determine where each new sample should be taken. It is 
worth noting that since the existence of some (layer-
specific) parameters depends on the values of other meta-
parameters, sampling methods that work with fixed-size 
parameter spaces [24] are not applicable. Instead, we use a 
coordinate descent formulation that is designed to work in 
variable-dimension parameter spaces. 

The algorithm we apply during the adaptive sampling 
phase is given by Algorithm II. First we identify the optimal 
architecture discovered so far. Then it randomly decides 
whether to modify meta-parameters (by adding or removing 
layers from the architecture) or modify a layer-specific 
parameter within a randomly selected layer. In the latter 
case, we choose a coordinate direction for modifying the 
parameter value (either increasing or decreasing). If the 
resulting modification leads to a performance improvement 
we continue to sample in that direction until improvement 
stops; this is analogous to performing coordinate descent 
optimization [19]. In fact, it is a form of stochastic 
coordinate descent method where only one coordinate 
dimension is randomly chosen and updated at a time [28]. 
The adaptive samples can be drawn outside of the initial 
model space at this stage. The process of alternating 
between randomly modifying the dimensions of the 
parameter space to look for improvement and conducting 
coordinate descent within a fixed-dimension parameter 
space is repeated multiple times.  The routine finishes after 
evaluating a total of NADAPT adaptive samples in this 
phase.  

In contrast to evolutionary algorithms, our algorithm 
begins with what could be considered random mutations of 
fit architectures, which is followed by a coordinate descent 
procedure to focus our use of model architecture 
evaluations where they are more likely to improve 
performance.  

3.4. Early Assessment of Model Traction 

A key insight for efficient optimization is that we do not 
need to let backpropagation weight training run until 
convergence to assess the fitness of a candidate model 
architecture. Typically, error backpropagation will make 
multiple passes (or iterations) through the training data until 
the accuracy measured on the training data or validation 
data levels off. However, the accuracy measured at early 
iterations in the process can be considered an indicator of 
model "traction," or likelihood to converge to high 

accuracy. There is a significant advantage to assessing early 
indicators during training, since it saves on the 
computational load required to explore the model 
architecture space. Empirically, we have seen good results 
even if we run the random sampling step and the initial 
phase of the adaptive sampling step to only partial 
convergence. 

3.5. Depth-first vs. Breath-first and N-Best 
Variants 

The two algorithm components, namely random 
sampling and adaptive sampling, are roughly analogous to 
breadth-first and depth-first search. By altering the ratio of 
random and initial adaptive architectures, we can make the 
optimization process more depth-first and less breadth-first 
or vice versa. N-best, by contrast, uses the top N 
architectures for generating subsequent architectures. This 
is in contrast to the baseline method, which only looks at 
the current top architecture. This serves as somewhat of a 
hybrid between depth- and breadth-first, in that multiple 
“threads” of depth-first search are pursued at the same time, 
reducing the possibility of selecting an architecture that 
leads to a shallow local optimum. 

3.6. Parallel and Asynchronous Operations 

In a parallel asynchronous optimization process, all 
workers that finish optimizing an architecture are 
immediately given a new one to optimize. This is in contrast 
to the sequential version, in which architectures are trained 
and evaluated one at a time. There is no difference 
algorithmically in the random sampling stage. However, in 
the adaptive sampling stage, the sequential version is 
theoretically more optimal (given a fixed number of 
architecture evaluations) than the parallel asynchronous 
variant because waiting for one architecture to finish allows 
the best architecture for the next round to be chosen from a 
larger pool.  

3.7. Sampling with Resource Constraints 

We choose to use intrinsic model properties of CNNs 
(e.g., number of weights, filter size, etc.) to estimate the size 
and computational efficiency of the networks. Much of the 
work in the literature use the number of weights as the 
standard for measuring the size of CNN models. Indeed, the 
number of weights is the main contributor to both memory 
and number of floating point operations (FLOP) in CNNs. 
We implemented a memory and FLOP estimation function 
that reflects more closely the runtime requirement of CNNs. 
We can constrain the architecture sampling routine (e.g., in 
Algorithm I) by specifying these metrics in order to find the 
best performing architecture that meets a particular 
hardware constraint. We describe their derivations below. 

First, one implicit assumption we make in practice is that 
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all weights need to be stored in memory for the duration of 
the classification process in order to minimize the number 
of memory operations and thus achieve a higher 
throughput. The number of weights for each convolutional 
layer  ��⃑����� is a function of the kernel size �, number of 
input �, and the number of output features � (including the 
bias). For fully-connected layers, the number of weights ��⃑��� is the product of the number hidden nodes ℎ, and the 
number of inputs � (including the bias). We estimate the 
total memory requirement for a particular model, based on 
the GEMM (General Matrix-Matrix Multiplication) 
algorithm. By summing the number of weights across the 
network, and multiplying the sum by the number of bytes 
per element (���), one can obtain a good approximation of 
the total memory requirement. We further assume that in an 
optimized implementation of a forward-pass, one would 
need at least two memory buffers to store the inputs and 
outputs during computation. We consider a ping-pong 
buffering approach in which sufficient memory is allocated 
to store the largest input and output volumes (this memory 
is reused throughout the network) for all layers l. A better 
overall memory estimation is therefore given by: ��� = ��� ⋅ � ∑��⃑�����+ ∑��⃑���+ max� (|�����⃑ |, |�����⃑ |) �  (6) 

The total FLOP of the network is also a function of the 
number of weights. In a convolutional layer, we convolve 
weighted filters with the input volume. The total FLOP for 
convolutional layers, which is equivalent to the number of 
weights times the height and width of the input (after 
scaling by 1 over the stride s in both directions): 

 �������� = �1� ∙ �� ∙ �ℎ� ∙ (�� ∙ �� ∙ �ℎ + 1) ∙ � (7). 

In the fully-connected layers, we perform one fused 
multiply-add (FMA) for every weight; thus, the total FLOP 
is equivalent to the number of weights: 

 ������ = ℎ ∙ (� + 1). (8) 

Finally, the estimated FLOP for the entire network is 
obtained by summing the FLOP for all the layers:  

 ������� = ∑ ��������(�)�  +  ∑ ������(�)�  (9) 

The current state of our framework provides estimations 
both the memory and FLOP of CNN models. In practice,  
metrics such as power consumption of models for a given 
hardware platform, and the speed of executing a forward 
pass of the resulting CNN model measured in number of 
inferences per second (IPS) may be desirable. These 
measurable metrics could be formulated (empirical or 
otherwise) as a function of the intrinsic model properties 
such as memory and FLOP. By doing so, we can directly 
specify higher-level resource constraints on power and IPS, 
as well as compute and memory, for embedded platforms 
and for applications that require a minimum number of IPS. 

Our algorithm is generalizable to handle various needs by 
constraining the model search using appropriate metrics to 
set the desire limits on hardware resource and 
computational efficiency.  

4. Experiments and Results 
We conducted a number experiments and compared the 

outcomes from different variants of our algorithm. We 
assessed their relative effectiveness and the impacts of 
resource constraints on our architecture optimization 
results. 

As described in Section 3, each architecture learning 
experiment performed random sampling of the architecture 
space, followed by adaptive sampling to refine the 
selection. In particular, we randomly sampled 50 
architectures, followed by 50+20 adaptively sampled 
architectures: the initial 50 adaptive architectures were only 
trained on a predefined number of iterations (8 in our case), 
while the last 20 were trained until full convergence. In all 
experiments, the available annotated data were generally 
divided into a set of held-out test data, and the rest were 
further divided into training and validation data used during 
individual architecture learning runs. In all experiments, we 
set � to 0.00005, learning rate to 0.0005, and batch size for 
normalization to 128. The coordinate descent scaling factor 
α was set to either 1.5 or 0.66 depending on the direction. 

4.1. Unconstrained Optimization Experiments 

We start by assessing the performance of several variants 
of our proposed algorithm with no resource constraints in 
effect. We used the CIFAR-10 dataset composed of 60000 
32x32 color images with 10 object classes. It contains 
50000 training images and 10000 test images [15]. We 
randomly selected 5000 images from the training set for 
validation. We applied the same data augmentation process 
as in [22], where images were flipped with probability of 
0.5, padded, cropped into 32x32 sections, and then color 
enhanced.  

Without support for skip connections and branching 
layers at this time, a reasonable benchmark to compare 
against is VGG [23]. Their work advocated the use of 3x3 
convolutions, which is also what we restrict our search 
space to in this particular experiment. More specifically, we 
allowed up to 26 convolutional layers and up to 128 filters 
in each layer, while limiting the size of convolutional 
kernels up to 3x3 and maxpools up to 2x2 with a stride of 
2. For the fully connected layers, we allowed up to 2048 
hidden nodes. 

We tested the following algorithm variants: 
i. Synchronous: This is our baseline algorithm where 

we use 50 random architectures and 50 initial adaptive 
architectures (with early termination), followed by 20 
fully-trained adaptive architectures. The best 
architecture so far is used as seed for subsequent 
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adaptive samples. There is no parallelization and only 
one worker thread is used after the first 50 random 
samples. 

ii. Asynchronous: Similar to variant i except that there 
are multiple worker threads allowing multiple 
architectures to be trained in parallel (4 in our case). 
An adaptive sample is generated based the current 
best model without waiting for other training runs to 
finish.  

iii.  Asynchronous Ensemble: Similar to variant ii except 
that top N models are fused at the very end (4 in our 
case) using a majority voting scheme when 
performing classification. 

iv. N-Best: Similar to variant i except that N architectures 
are trained at a time (4 in our case), with the next set 
of N architectures not being decided until all N 
architectures finish training. It also entails some 
coordination overhead and idle cycles for some 
GPUs. 

 
All CNN models as-of-yet described were trained on the 

training data. Validation data was used for evaluating 
model generalization during architecture optimization. 
However, once a final architecture has been decided, an 
additional model can be trained using all training data 
including the validation data, which tends to boost 
performance on independent test data. 

The results for these experiments can be seen in Table 1. 
The best non-ensemble method (Async 4 workers) achieved 
an accuracy of 90%, which matched the performance of the 
VGG-19 model [23], which we implemented and trained 
using our architecture generation framework. The result 
was 2% lower than the best published results of 92% for 
VGG-19, which was probably due to the fact that we did not 
employ weight inheritance, a technique that was found to 
boost results by over 2% [22]. Nonetheless, we were able 

to match or exceed that with our ensemble classifier derived 
from the best 4 performers (final and interim) of the 120 
produced by a single run of our overall procedure. This was 
an interesting result on its own because our optimization 
process seemed to be producing complementary classifiers 
along its way. The other algorithm variants turned out to 
have similar performance, averaging in the high eighty-
percent, including the N-best variant.  

While keeping the total number of random samples and 
initial adaptive samples the same, adjusting the percent mix 
of random samples vs. initial adaptive samples was found 
to produce models with different sizes but only minor 
difference in accuracy (all within about +/-1% in a separate 
assessment). Overall, these observations suggested that the 
asynchronous baseline version of our algorithm is a 
reasonable choice as it leverages parallel computing 
resource effectively, and using a 50/50 mix for random 
sampling and initial adaptive sampling stages provides a 
good balance between accuracy and model size. 

Our results currently had not reached the 95% level of 
accuracy of the model produced by Real et al. [22]. This is 
because we are currently limit ing the “space of all 
architectures” reachable by our model representation in this 
first attempt. We expect to reach higher accuracy when we 
support branching layers or skip connections like those 
found in architectures defined by GoogLeNet or ResNet. 

However, it is worth noting that the authors in [22] 
trained thousands of architectures for tens of thousands of 
steps, whereas we only trained 120 architectures, all but the 
last 20 for less than 3000 iterations. Our results thus 
incurred drastically less time and computation. Our 
learning algorithms involving stochastic coordinate descent 
was found to be practical (compared to the more expensive 
form of gradient descent in RL methods) and can produce 
competitive models with 4 Titan-X class GPUs in about 12 
hours, as opposed to requiring hundreds to thousands of 
GPUs. 

We currently used a first-available compute-node 
allocation strategy for the parallel version of our algorithm, 
although we may want to consider other strategies in future 
as we scale up our experiments in heterogeneous (mixed 
CPU/GPU) cluster environments [14]. 

4.2. Constrained Optimization Experiments 

The goal of this experiment is to assess the performance 
of our network architecture learning algorithm on CIFAR-
10 data when subject to resource constraints. We used the 
asynchronous version of the algorithm, but rejected 
randomly sampled architectures which did not meet 
resource constraints and continued to generate new ones 
until constraints were met. In the adaptive stage, we 
similarly generated architectures until a sufficiently 
constrained architecture was created, but we also chose a 
different coordinate dimension to alter the model whenever 

Method 
Variants 

Test Set 
Accuracy 

Resulting 
Model Resource 

Model: 
Train 

Model: 
Train+Val 

Param 
Count 

Mem 
(MB) 

Flop 
(GOP) 

Synchronous 
(1 worker) 

88.5% 89.0% 3.9x106 17.6 .72 

Async 
(4 workers) 

88.7% 90.2% 2.6x106 11.9 .65 

Async 
Ensemble 
(Best 4) 

91.3% 92.6% 1.1x107 51.0 2.7 

N-Best 
(4 workers) 

88.6% 88.8% 2.7x106 12.8 1.4 

VGG-19* 89.9% 90.0%* 2.1x107 82.7 .40 

 

Table 1: Comparing different variants of our architecture 
learning method on CIFAR-10. *VGG-19 based on our 
implementation and is reachable using our architecture 
description. 
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an architecture was rejected.  
We were able to automate the design of CNN models 

subject to a resource constraint and arriving at optimized 
models with little loss of accuracy while respecting the 
constraints. Table 2 shows the relationship between 
network size reduction and its impact on accuracy, and 
optimized networks with varying target constraints (for 
both memory and FLOP in our experiments) given as a 
percent of the unconstrained baseline. For instance, we 
produced a CNN model with no less than 2% loss of 
accuracy when both constraints were 50% of the 
unconstrained model, and a model with only 5% loss of 
accuracy when the constraint was only at one tenth.  

It is important to mention that the target constraint only 
provides an upper bound and that the resulting model from 
the constrained optimization generally will not hit the target 
constraint exactly. In fact, this is the case for all constrained 
optimization runs, as one can only define upper (and lower) 
bounds, which are sufficient to get the desired results.  

The memory constraint satisfaction is actually non trivial 
and reflects realistic memory allocation in optimized 
runtime software as opposed to just model size. We also 
experimented with alternative constraint satisfaction 
strategies by allowing the constraint to be more relaxed in 
the random sampling stage (e.g., 2X constraint), and 
linearly reduced to the target constraint through the 
adaptive sampling stage until the last iteration. We thought 
we could arrive at a better local minimum solution (higher 
accuracy), but turned out there was little accuracy impact. 
That informed the choice of our simpler constraint 
satisfaction strategy.  

The runtime performance of two selected models along 
with the VGG-19 model are also reported in Table 3. The 
unconstrained model learned from CIFAR-10 (labeled 
CF100) is 1.9X more efficient on Tegra TX1 compared to 
VGG-19 with similar or better accuracy, and the resultant 

model at a target constraint of 50% (labeled CF50) is 2.5X 
more efficient with only about 2% loss in accuracy. 

It is also worth noting that as compared to VGG-19, 
CF100 measured higher in IPS despite being more 
demanding based on FLOP. This is due to the sizeable 
difference in the number of memory operations between the 
two networks (see Table 3). Typically, GPU memory 
operations (Global Memory access in particular) are more 
expensive than ALU (arithmetic logic unit) operations [18]. 
In addition, memory operations consume much more power 
than ALU [12]. This has let us to place more emphasis on 
reducing memory operations in CNNs in order to increase 
IPS and reduce power consumption.   

5. Conclusions 
We demonstrated the efficacy of a novel network 

architecture learning algorithm that has the ability to learn 
competitive deep CNN models subject to optional but hard 
resource constraints at deployment time. We found that a 
combination of random sampling and adaptive sampling of 
the constrained architecture space can be effective and 
practical in finding good solutions for the corresponding 
large-scale variable-dimension parameter optimization 
problem; it allows us to automate the design of deep CNN 
with resource constraints. We plan to build on this initial 
success and further extend our framework to allow richer 
network representations. 
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