This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

L earning Network Architectures of Deep CNNs under Resource Constraints

Michael Chan, Daniel Scarafoni, Ronald Duarte, Jason Thornton and Luke Skelly

MIT Lincoln Laboratory, 244 Wood St, Lexington, MA 02421, USA

Abstract

Recent works in deep learning have been driven broadly
by the desire to attain high accuracy on certain challenge
problems. The network architecture and other hyper-
parameters of many published models are typically chosen
by trial-and-error experiments with little considerations
paid to resource constraints at deployment time. We
propose a fully automated model learning approach that (1)
treats architecture selection as part of the learning process,
(2) uses a blend of broad-based random sampling and
adaptive iterative refinement to explore the solution space,
(3) performs optimization subject to given memory and
computational constraints imposed by target deployment
scenarios, and (4) isscalableand can useonly a practically
small number of GPUs for training. We present results that
show graceful model degradation under strict resource
constraintsfor object classification problemsusing CIFAR-
10 in our experiments. We also discuss future work in
further extending the approach.

1. Introduction

Deep learning with convolutional neural network

stage. Often times, a higierforming model may only be
slightly inferior to other competitive models, but at the
expense of much higher computational cost or memory
consumption at runtime. Having to find good modelsnfro
the large space of possible models subject to additional
resource constraints make the problem doubly challenging.

This paper proposes a method to address the challenge of
network architecture design for applications that may be
subject tostrict deployment resource constraints. We are
not aware of any prior works that attempt to solve this
problem in an automated way. We seled®@BAR-10 to
assess the effectiveness of our approach.

2. Related Work

Various authors have explored different strategies for
optimizing hypefparameters of machine learning
algorithms, includinghe usesoftware tools to manage the
complexity of the procesat least in the case of fixexize
configuration spacel8]. Here,we highlight related works
that we think are most relevant.

The idea of using the framework of Bayesian
optimization for hypeparameters search was proposed in

s [24], in which a Gaussian process was used to model the

(CNN) has become the method of choice in recent yearsgeneralization performance of a learning algorithm. The

when it comes to solving image recognition peois[16].

The methodology has the ability to simultaneously learn a
hierarchical feature representation of the underlying dat
and an optimal classifier given kaled training data. Some

of the leading models published in the literature ha

a

fundamental idea was to model the objective function as a
Gaussian procesiefined over the parameter space and then
use the model to draw successive samples in order to
maximize the likelihood of expected improvement in the

dobjective function. However, the method was limited to

surpassed the performance of human, most notably in théXed-Size hypeparameter spaces.

ImageNet 100&lass image classification problgfr].

However, most prior works on deep learning were driven

Reinforcementearning(RL) is another class of methods
that has been employed to optimize deep network structure.
Zoph and Le[29] proposed a neural architecture search

primarily to achieve high accuracy on certain challenge . ;
problems [16][23p6][10]. The designer generally has to methodthat generated neural networks architectures with
experiment with many different network architectures as an°ther recurrent neural network (RNN). The RNN was

well as trying combinations of hypgarameters such as tained by REINFORCE, searching from scratch in a
learning rate, number of iterations, batch size for variablelength architecture space, to maximize the

normalization, and regularization paramstén order to ~ €XPected accuracy of the generated architectures on

arrive at gooeberforming models. The main fundamental validation set. In the RL formulation, a controller gextes
issue is that the model design process generally Sti“hypeppararr]neters fas a sequence of tokens, which ﬁre
requires a lot of human intervention. Furthermore, little @CtiONS chosen from hypearameters spaces; eac
considerations were paid to resource constraints fordradient update to the policy parameters corresponds to

subsequent deployment of those models during the desigif&iNing one generated network twonvergence; and

DISTRIBUTION STATEMENT A. Approved for public relea
distribution unlimitedThis material is based upon work supported b
Assistant Secretary of Defense for Research and Engineering un
Force Contract No. FA87205-C-0002 and/or FA87025-D-0001. Any
opinions, findings, conclusions or recommendations expressed

material are those of the author(s) and do not necessarily reflect the
of the Assistant Secretary of Defense for Research and Engineerin

1816

measured accuracy on a validation set is the reward signatargeted seardiased on policy gradiesthat typically need
The authors designed a parameter server approach to speéalbe estimated from many more coordinate dimensions to
up training. Compared with statd-the-art methods, this be effective. Second, our method takes into account
approach achieved competitive results for an imagedeployment resource constraints upfront and is
classificaton task. Bakeet al. [1] proposed a metiearning incorporated into the optimization framework in a more
approach, using @arning withe-greedy exploration and integral way. It is in contrast to other works that adslres
experience replay, to generate CNN architecturesresource constraints using a plestrning approximation
autormatically for a given learning task. strategy like model compression. Third, we demonstrated
Others recently attempted to use evolutionary algms the effectiveness of our approach in generating competitive
for the architecture learning problem. Redl. [22] used solutions on a welknown dataset that generally needs far
a variey of novel and intuitive mutation operators to fewer number of full backpropagation training runs than the
navigate the large search spaces, and was able to discovabove architecture learning techniques. The main goal of
competitive CNN models that rival stadéthe-art results the current paper is not tteliberatelymatch statef-the-
on CIFAR-10. The process was reported to require no art accuracy reported elsewhere, but to alestrate the
human participation once evolutionrgafrom trivial initial feasibility and practicalityof the overall constrained
conditions. However, the authors did note that there was anetwork architecture optimization methodology.
large computational cost involved requiring many hundreds
of GPU's to produce the model. In another case, it took3. M ethods
thousands ofCPU nodesfor two months to produce a

compettive model for the singiehannel MNIST is formulated as an optimization task, we begin with a
benchmark using an evolutidrased approads]. description of thenbjective function we seek to optimize

An adaptive structural learning method based on the idea .) X
of boosti%g was recently p?oposed with theoretical and describe the network architecture representation that

guarantees on generalization performance, but was appIie?ﬁ'e use. We then describe the pr.oposb&dﬁe Carlo
only to unconstrained binary classification problejdis approach that generates successively refined network

The applicability to constrained multlass problems architt_actures via a random sampling procedu_re before the
remainsto befuture work associated weights are learned. We also discuss a few
While none of the h&/peparameter learning methods implementatiorspecific variants of the overall approach.

above considered resource constraints of the end .. .
applications, Here are related works that address the 3-1- Objective Function

question of resource constraints separately from the | etAdenote the set of CNN architecture parameters (i.e.,
architecture learning problem. Existing methods include the architecture specificatiormndw, denote the collection
limiting numerical precisiorf7][21], network pruning or of \weights assigned to the model afteriterations of
slimming [8][9][17][20], using specialized network packpropagation using a training datagair objective is

componentg13], and implementing sparse convolutions tg select a model architectufesuch that, whemealized
[20], all of which either assurdehat a network architecture \yith a set of trained weights, minimizes an objective

had already been determined, or reqligignificanthuman fynctionin the following form

input to design onél.o control memory resources required)

by a CNN, the atiors in [6] incorporaté in their A=argminj(Awe) st A(GA) <7). (1)
optimization a penalty term formulated as a function of sum K

of bit-depths of all parameters. This work is similar in spirit ~ The objective function is essentially a weighted sira
to ou work in that hardware resource constraints wereloss term L given the labeled datax{ y} and a
considered upfront, but they assumed a fixed architecture (&€gularization ternik as shown below:

4-layer model in their experiments) and the penalty term _

canﬁot enforce a hard cor?straint.) penay JAw) = LA wl{xuyd) + B -RA), 2)

In our work, we address the constrained architectureandC; represents the cost of tjta resource of a particular
learning problem with variabldimension parameter model architecture, which together with threshoigs
spaces in a number of ways that we believe are novel. Firsepresent thehard resource constraint. The loss term
our method uses a sequential combination of broadmeasures therossentropy erroof the modelith respect
randomized searches and stochastic coordinate descef alabekd datssetwhile the regularization term measures
optimization that finds good solutionson a very large the complexity of the architecture in some way example
architecture space. This is in contrast to evolutionarythose that favor smaller number weights in the model. The
approaches, where they perform a large number of randongonstraint in Equation (1) essentially defines a resttict
adaptations and may not be the most efficient. It is also insglution space, for exampie meet certain requiremetn
contrast to RL approaches, where they perform morememory usage and computational budget. To directly

Since the overall problem of model architecture selection

1817

Algorithm I: Constrained Architecture Sampling

Algorithm II: Adaptive Architecture Learning

k «0
nodel Pool « {}
VWH LE k < NRANDOM
LOOP:
A« = CGet RandomAr ch(MODEL_SPAQE
I F Fail Val i dArch(A)
CONTI NUE LOOP
I F Fail Constraint (A, THRESH
CONTI NUE LOOP
ELSE
BREAK LOCP
nodel Pool <« Append(nodel Pool , A)
k « k +1

measure classification accuracy on validation datan be
formulated as suglwhich is what we used as stop criteria
for backpropagation trainingnd model selection.

3.2. Architecture Representation

While a variety of training frameworks exist, we use &
frameworkagnostic representation for generality. In such «
scheme, each CNN architectubewith C convolutional
layers and- fully-connected layers care represented by
an ntuple descriptor namely(size;n,y:, Paramscon,,
params., Sizeyyipyt), Where

params;. = (N, ... ,Nf), (3)
paramsgqn, = (vark,, ... ,varl), (4)
var}, = (N}ilt,filt,‘;,filti,poolfc,pooli,sub};,subé) (5)

HereNf, andN};,, represent the number of fultysonnected
(or hidden) layers and filtersshereasfilt’ , pool® ,and
sub’ represent the sizes (inandy directions) of the conv
filters, pooling neighborhood and subsampling factor in
particular layer i, respectively. The output of each
convolution layer is passed through a standard Rell!
activation function andfollowed bya batch normalization
step.

Even though we use this simplified template for CNN

k « 0
WH LE k < NADAPT
(Aopt, sScoreopt) « BestMdel (nodel Pool)
type « Sel Random({meta, layer })
| F type == meta
LOOP_M
Li « Sel RandomnlLayer (Aogpt)
action = Sel Random({add, remove})

| F action == remove
Ac < Removelayer (Aopt, Li)
| F action == add

A« < AddLayer (Aopt, Randomi ze(Li))
I F Fail Constraint (A, THRESH

CONTI NUE LOOP_M
scorex = Eval bj ective(A)
nmodel Pool <« Append(nodel Pool, Ay)

k « k +1
| F type == layer
LOOP_L:

Li < Sel RandomnlLayer (Aopt)
a « Sel Randon({inc , dec})
| F Layer Type(Li) == conv
key « Sel RandornPar an{{n_filt, ...
filt_sz, pool_sz, sub_sz 1)
| F Layer Type(Li) == fc
key < n_hidden
LOOP_DESCENT:
Val (Li, key) « o * Val (L, key)
A« < UpdateArch(Aopt, Li)
I F Fail Constraint (A, THRESH
BREAK LOOP_DESCENT
scorekx « Eval Ovjective(A)
nmodel Pool <« Append(nodel Pool, A)
I F scorex > scoreopt
SCOr €gpt « SCOr ek
k « k +1
CONTI NUE LOOP_DESCENT
ELSE
k « k +1
BREAK LOOP_DESCENT

a stochastic optimization method that defsean two main

architectures for the experiments in the current papercomponents: (1) random architecture sampliagd (2)
nothing in the optimization approach we describe later adaptive architecture sampling.

would prevent it frombeing applied to more complex

The random sampling step first selects all architecture

architecture types as well. Other architecture elements (e.gparameters from a uniform distributions over the possible
skips and braches) could be incorporated in future, but wevalues defined by an initial model spadhere is evidence
want to first understand what can be achieved without thosén the literature that random search actually performed

generalizations. Nonethelgesa very large architecture
space can be represented by the above.

3.3. Architecture Optimization Approach

Since there are no known closidm solutions for the
non-convex architecture optimization problem, we propose

1818

better than deterministic grid search strategies in machine
learning problems witha large search spacp]. Our
methodis a chained sampling process; first the meta
parameters determining layer composition are generated,
followed by the layespecific parameters for eatdyer. If

a resource constraint is optionally provided, the comgtrai

will be evaluated before proceeding (more on constraints

later). If the constraint is not satisfied, another randomaccuracy. There is a significant advantage to assessing early

sample is drawn and the process is repeatedly until thendicators during training, since it saves on the

constraint is satisfied. This step draws a total of computational load required to explore the model

NRANDOM sampla and evaluates each with respect to the architecture space. Empirically, we have seen good results

objective function as described by Algorithm I. even if we rmm the random sampling step and the initial
Once random sampling is complete, we proceed to thephase of the adaptive sampling step to only partial

adaptive sampling step, where information about previousconvergence.

samples and their objective function values are used to

determine where each new sample should be taken. It i35, Depth-first vs. Breath-first and N-Best

worth noting that since the existence of some (layer Variants
specific) parameters depends on the values of other meta]
parameters, sampling methods that work with fise The two algorithm components, namely random

parameter spacg24] are not applicable. Instead, we use a Sampling and adaptive sampling, are roughly analognus t
coordinate descefiormulation that is designed to work in breadtkfirst and deptHirst search. By altering the ratio of
variabledimension parameter spaces. ran.dolm and initial adaptive architectures, we can make the
The algorithm we apply during the adaptivengéing optimization process more degitst and less breadtfirst
phase is given by Algorithm I1. First we identify the optima O Vice versa.N-best, by contrast, uses the tdp
architecturediscoveredso far. Then it randomly decides architectures for geerating subsequent architectures. This
whether to modify metaarameters (by adding or removing IS in contrasto the b_asellne me_thod, which only looks at
layers from the architecture) or modify a lappecific the current top architecture. This serves as somewhat of a
parameter withira randomly selected layer. In the latter hybrid between depthand breadtiirst, in that multiple
case, we choose a coordinate direction for modifying the threads” of deptirst search are pused at the same time,
parameter value (either increasing or decreasing). If the@ducing the possibility of selecting an architecture tha
resulting modification leads to a performance improvement!eads taashallow local optimum.
we continue to sample in that direction until improvement
stops; this is analogous to performing coordinate descen8.6. Parallel and Asynchronous Operations
opimzaten 1], n fat I 1o 2 Jorn of SOSIC 1y o paralel aspvonous opimicaon poces,
) g . workers that finish optimizing an architecture are
dimension is randomly chosen and updated at a time [28].

algorithmically in the random sampling stage. However, in
the adaptive samplingtagge, the sequential version is
theoretically more optimal (given a fixed number of
Brehitecture evaluations) than the parallel asynchronous
variant because waiting for one architecture to finikina

the best architecture for the next round to be chiveema
tJarger pool.

parameter space todk for improvement and conducting
coordinate descentithin a fixeddimension parameter

evaluating a total oNADAPT adaptive samples in this
phase.

In contrast to evolutionary algorithms, oafgorithm
begins with what could be considered random mutations o
fit architectures, which is followed by a coordinate descent
procedure to focus our use of model architecture
evaluations where they are more likely to improve We choose to use intrinsinodel properties of CNNs

3.7. Sampling with Resour ce Constraints

performance. (e.g, number ofneights filter size, etc.) to estimate the size
and computational efficiency of the networks. Much of the
3.4. Early Assessment of Model Traction work in the literature use the number wéightsas the

standard for measuring the size of CNN models. Indeed, the
number ofweightsis the main contributoto both memory
nd number of floating point operations (FLOP) in CNNs.

A key insight for efficient optimization is that va® not
need to let backpropagation weight training run until

convergence to assess the fithess of a candidate mod e implemented a memory and FLOP estimatiorction

arclrtm_ltelcture. Typlc_ztilIy,t_errortrt])ackpr:(:r[:a%at]on V‘g” tmak?I that reflectsnore closely the runtime requirement of CNNs.
multiple pases (or iterations) through the training data unti We can constrain the architecture sampling routine, {a.g.

the accuracy measured on the training data or Va“dat'onAlgorithm 1) by specifying these metrics in order to find the

_(:atat_level_s ?{;f However, thebaccuraq()j/ m%asurgdd_at tea”)Eest performing architecture that meets a particular
|er(ejx |?n"st n " e Erocesl_skc;':_lQ de tconS| ered an tm |hc_ar(])r Ohardware constraintVe describe their derivations below.
modet “traction,” or likelihod to converge 1o hig First, ;e implicit assumption we make in practice is that

1819

all weights need to be stored iremory for the duration of Our algorithm is generalizable to handle various needs by
the classification process in order to minimize the numberconstraining the model search using apgetprmetrics to

of memory operations and thus achieve a higherset the desirelimits on hardware resourceand
throughput. The number @feightsfor each convolutional computational efficiency.

layer |6.ony| is @ function of the kernel siz& number of

inputx, and the number of output featufe@ncluding the 4. Experiments and Results

bias). For fullyconnected layers, the number wéights We conducted a number experiments and compared the
|| is the product of the number hidden no#leand the outcomes from different variants of our algorithm. We
number of inputse (including the bias)We estimate the assessed their relative effectivenessl the impacts of
total memory requirement for a particular model, based onresource constraints on our architecture optimization
the GEMM (General MatrMatrix Multiplication) results.
algorithm. By summing the number wkightsacross the As described in Section 3, each architecture learning
network, and multiplying the sum by the number of bytes experiment performed random sampling of the architecture
per elementk,,.), one can obtain a good approximation of space, followed by adaptive sampling to refine the
the total memory requirememlefurtherassume thatin an ~ selection. In particular, we randomly sampled 50
optimized implementation of a forwaphss, one would architectures, followed by 50+20 adaptively sampled
need at least two memory buffers to store the inputs andrchitectures: the initial 50 adaptive architecturesevoaly
outputs during computation. We consider a giogg trained on a predefined number of iterati@ our case)
buffering approach in which suéfient memory is allocated ~ while the last 20 were trained until fadbnvergence. In all
to store the largest input and output volumes (this memoryexperiments, the available annotated data were generally
is reused throughout the netwofky all layersl. A better divided into a set of heldut test data, and the rest were
overallmemoryestimationis therefore given hy further divided into training and validation data used during
R R individual architecture learning runs. In all experinsemte
mem = By, - (Z|9wm,| +X|6| + max(|x], [:])) (6) setp to 0.00005, learning rate to 0.0005, and batch size for
normalization to 128The coordinate descent scaling factor

The total F_LOP of the networ_k is also a function of the ., \yas set to either 1.5 or 0.66 dependinghe direction.
number ofweights In a convolutional layer, we convolve

weighted filters with the input volum@&he total FLOP for
convolutional layers, which is equivalent to the number of
weights times the height and width of the input (after = We start by assessing thefoemance of several variants

4.1. Unconstrained Optimization Experiments

scaling by 1 over the stridsdn both directions) of our proposed algorithm with no resource constraints in
) effect. We used th€IFAR-10 dataset composed of 60000
flopcony = (;'xw 'xh) g fw fat Dk (D) 32x32 color images with 10 object classes. It contains

50000 training images and 10000 test imafj&d. We
randomly selected 5000 images from the training set for
validation. We applied the same dataymentatiofprocess

as in[22], where images were flipped with probability of

In the fully-connected layers, we perform one fused
multiply-add (FMA) for everyweight thus, the total FLOP
is equivaént to the number of weights

flopse = b+ (x +1). (8) 0.5, padded, cropped into 32x32 sections, and then color
enhanced.
Finally, the estimated FLOP for the entire network is Without support for Sk|p connections and branching
obtained by summing the FLOP for all the layers layers at this time, a reasable benchmark to compare

_ against isVGG [23]. Their work advocated the use of 3x3
floPnet = 2 flopeons (D) + 21 flopse(D © convolutions, which is also what we restrict our search
The current state of our framework provides estimationsspace to in this padilar experiment. More specifically, we
both the memory and FLOP of CNN moddtls.practice, allowed up to 26 convolutional layers and up to 128 filters
metrics such as power consumption of models for a givenin each layer, while limiting the size of convolutional
hardware platformandthe speed of executing a forward kernels up to 3x3 and maxpools up to 2x2 with a stride of
pass of the resulting CNN model asaired in number of 2. For the fully connected layers, we alled up to 2048
inferences per second (IP$)ay be desirableThese hidden nodes.

measurablemetrics could be formulated(empirical or We tested the following algorithm variants:

otherwise)as a functiorof the intrinsicmodel properties i. Synchronous: This is our baseline algorithm where
such as memory and FLOP. By doing so, we diagctly we use 50 random architectures and 50 initial adaptive
specifyhigherlevelresource constraints power and IPS, architectures (with earlgrminatior), followed by 20

as well ascomputeand memory, for embedded platforms fully-trained adaptive architectures. The best
andfor applicationghatrequire a minimum number of IPS. architecture so far is used as seed for subsequent

1820

to match or exceed that with our ensemble classifier derived

Test Set Resultin . .
Method Accuracy Model R&mgrce from the best 4 performers (final and interim) of the 120
Variants | Mode!: Model: | Param |Mem | Flop produced bysingle run of our overall procedure. This was
Train | Train+val | Count [(MB) |(GOP) an interesting result on its own because our optinozati
(Slyvr;gfrllig?)ous 88.5% 89.0% |3.9x16 |17.6 | .72 process seemed to be produ_cing cor_nplementary classifiers
along its way. Thetheralgoithm variantsturned out to
Async 88.7% | 90.2% |2.6x10 | 119 | .65 have similar performanceaveragingin the high eighty
(4 workers) . . .
percentincluding theN-best variant.
Aoyne hile keeping the total f |
Ensemble 913% | 926% | 1.1x1d |510 | 2.7 ~ While keeping the total number of random samples and
(Best4) initial adaptive samplethe sameadjusting the percent mix
N-Best of random samplessv initial adaptive samples was found
88.6% 88.8% |2.7x10 [12.8 | 1.4 : | , X
(4 workers) ’ ’ to produce models with different sizd&dut only minor
. X . o
VGG-19* 89.9% | 900%* |21x10 827 | 40 difference inaccuracy &ll within abou_t +1%in a separate
assessmentPverall, these observations suggested that the

Table 1: Comparing different variants of our architecture —asynchronous baseline version of our algoritisna
learning method onCIFAR-10. *VGG-19 based on our reasonablechoice as it leverages parallel computing
implementation and is reachable using our architect resource effectively, and using a 50/50 mix for random
description. sampling and initial adaptive sampling stagesvigles a
good balance between accuracy amatielsize.
adaptive sampleShere is no parallelization and only ~ Qur resultscurrently had noteacted the 95% level of
one worker thread is used after the first 50 random accuracy of the model produced by Retal. [22]. This is
_ samples. o o becausewe are currentlylimiting the “space of all
ii. Asynchronous: Similar tovarianti except that there architectures” reachable by our model representation in this
are multiple worker threads allowing multiple first attempt. We expetd reach higher accuragyhenwe
architectures to be trained in parallel (4 in our CaSE).Support branching |ayerer Sklp connectiondike those
An adaptive sample is generated based the currenfoundin architecturs defined byGoogLeNet or ResNet.
best model without waiting for other training runs to However, it is worth noting that the authdrs [22]
_ finish. o o trained thousands of architectures for tens of thousands of
iii. Asynchronous Ensemble: Similar tovariantii except stepswhereasve only trained 120 architectures, all he
that topN models are fused at the very end (4 in our |ast 20 for less than 3000 iterations. Our results thus
case) using a majority voting scheme when jncurred drasically less time and computationOur
~ performing classification. _ learning algorithms involving stochscoordinate descent
iv. N-Best: Similar tovarianti except thaN architectures a5 found to beractical (compared to the more expensive
are trained at a time (4 in our case), with the next setform of gradient descent in RL methods) and can produce
of N architectures not being decided until &l competitive models with 4 TitaX class GPW in about 12
architectures finish training. It also entails some hourS, as Opposed mquiring hundreds to thousands of
coordination overhead and idle cycles for some gpys
GPUs. We currently used a firstvailable computeode
)) allocation strategy for the parallel version of our attaon,
All CNN models af-yet describedveretrained on the athough we mayvant toconsider other strategies in future

training data. Validation data was used for evéiga a5 we sale up our experiments in heterogeneous (mixed
model generalizationduring architecture optimization. cpy/GPU) cluster environmerits4].

However, once a finahrchitecturehas been decidedn

additiqnal model_car_1 be trained .using all training data 4 5 congrained Optimization Experiments

including the validation data which tends to boost

performance oindependentestdata. The goal othis experimenis to assess ¢hperformance
The results for these experiments can be se&abifel. of our networkarchitecture learning algorithm @i FAR-

The best norensemble metho@\sync 4 workersichieved 10 datawhen subject teesource constraints. We dsthe

an accuracy of 90%vhich matched the performance of the asynchronous version of the algorithm, but rejdct

VGG-19 model [23], which we implemented and trained randomly sampledarchitectures which id not meet

using our architecture generation framewdFke result ~ resource constraints and contidue generate new ones

was 2% lower than the best published results of 92% foruntil constraintswere met. In the adaptive stage, we

VGG-19, which was probably due to the fact that we did not similarly generated architectures until a sufficiently

employ weight inhgtance, a technique that was found to constrained architecture was created, but we also chose a

boost results by over 2§22]. Nonetheless, we were able different coordinate dnension to alter the model whenever

1821

Table 2: Performance results on CIFAR subject to varying
target resource constraints as % of the unconstrained migeel.
did not include validation data in the final model training as we
only wanted to understand relative trends here.

an architecture was rejected.

We were able to automate the design of CNN models®, : .
gdifference in the number of memory operations between the

subject to a resource constraint and arriving at optimize
models with little loss of accuracy while respecting the
constraints. Table 2 shows the relationship between
network size reduction anils impact onaccuracy and
optimized networks withvarying target constraintgfor
both memory and FLOkh our experiments given as a
percent of theunconstrainedbaseline For instance, we
produced a CNN model with no less than 2%
accuracy when both constraints were 50%

Target| TestSet Resulting Test Set Resulting Performance

9

Congt- | Accuracy Model Resource Target | Accuracy Model Resource (Infer/sec)

raints| Mode: | Param | Mem | Flop |%Mem |% Flop Model | Modd: Param Mem | Flop | Titan | Tegra
(%) Train Count | (MB) |(GOP) |(actual) |(actual) Train+Val| Count (MB) | (GOP) | Xp | TX1

100 88.7% 2.6x1¢| 11.36 | 0.65 100 100 CF100| 90.2%6 2.6x10 11.36 0.65 | 1246 | 354
90 88.3% 2.1x16 | 8.52 0.2 75.0 30.8 CF50 878% 0.8x16 4.57 0.12 | 1745 | 452
70 87.4% 1.5x16 | 7.78 0.2 68.5 30.8 VGG-19| 90.0% 21x16¢ 78.91 0.4 328 | 183
50 | 87.0% |80x10| 457 | 012 | 402 | 185 Table3: Comparative results of architecture learning on CIFAR
30 855% | 3.6x10| 237 | 0.04 20.9 6.2 10 §quect to varying resource constralrﬁur. quel met .

explicit constraints and actually ran faster with little loss in

10 84.4% | 1.4x1G| 1.02 | 0.04 9.0 6.2 accuracy. For reference, the accuracy of our best unconstrained

ensemble model (with.1x10 parameters) is at 92.6%.

model at a target cotmaint of 50% (labele€F50) is 2.5X
more efficient with only abou% loss in accuracy

It is also worth noting that as compared\GG-19,
CF100 measured higher in IPS despiteeing more
demanding based oRLOP. This is due to thesizeable

two networks (seeTable 3). Typically, GPU memory
operations (Global Memory access in particular) are more
expensive than ALU (arithmetic logic unit) operati¢h3)].

In addition, memory operations consume much more power
than ALU[12]. This has let us to place more emphasis on
reducing memory operations in CNNs irder to increase

loss of |PS and reduce power consumption.
of the

unconstrained model, and a model with only 5% loss of - Conclusions

accuracy when the conaint was only at one tenth.

It is important to mention that the target constraint only
provides an upper bound and tHa tesulting model from
the constrained optimization generally will not hit thrgé
constraint exactly. In fact, this is the case for allst@ined
optimizationruns as one can only define upgand lowef
bounds, which are sufficient to get the ided results.

The memory constraint satisfaction is actually nonativ
and reflects realistic memory allocation in optimized
runtime software as opposed to just model si¥e.also
experimented with alternative constraint satisfaction
strategiedy allowing the constraint to be more relaxed in
the random sampling stage (e.@X constaint), and

linearly reduced to the target constraint through the

adaptive sampling stage until the last iteratior. Wbught
we could arrive at a better local minimum solution (higher

We demonstrated the efficacy of a novel network
architecture learning algorithm that has the abilityetrm
competitivedeep CNNmodels subject toptional buthard
resource constraints aeployment time. We found that a
combination of random sampling and adaptive sampling of
the constrained architecture space can be effeatide
practicalin finding good solutions for the corresponding
largescale variablelimension parameter optimization
problem; it allows us to automate the design of deep CNN
with resource constraints. We plan to build on thigahit
success and further extend our framework to allow richer
network representations.

6. Acknowledgement
We like to thank Jennifer Sloboda and N&iih Pughe for

accuracy), but turned out there was little accuracy impacttheir help with data preparation, parallel and embedded

That informed the choice of our simpleronstraint
satisfaction strategy.

computing assistance.

The runtime performance of two selected models alongRefer ences

with the VGG-19 model are also reported Trable3. The
unconstrained model learned fro@IFAR-10 (labeled
CF100) is 1.9X more efficient on Tegra TX1 compared to
VGG-19 with similar or bettemccuracy, and the resultant

1822

[1] B. Baker, O. Gupta, N. Naik, and R. Raskar.
Designing neural network architectures using

reinforcement learning. IICLR, 2017

[2] J.Bergstra and Y. Beitg Random search for hyper [20] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen,

parameter optimizatiodournal of Machine Learning and P. Dubey. Faster CNNs with direct sparse
Research, 13:281305, 2012. convolutons and guided pruning. I€LR, 2017
[3] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and [21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
D. Cox. Hyperopt: A Python library for model XNOR-Net: ImageNet classification using binary
selection and hyperparameter optimization. convolutional neural networks. ECCV, 2016
Computational Science & Discovery, 2015 [22] E. Real, S. Moore, A. Selle, S. Saxena, Y. L.
[4] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, Suematsu, J. Tan, Q. LeydhA. Kurakin. Largescale
and S. Yang. AdaNet: Adaptive structural learning of evolution of image classifiers. IEML, 2017
artificial neural networks. IhCML, 2017 [23] K. Simonyan and A. Zisserman. Very deep
[5] T. Desell Large scale evolution of convolutional convolutional networks for largecale image
neural networks using volunteer computi@gnetic recognition. INCVPR, 2015
and Evolutionary Computation Conference, 2017 [24] J. Snoek, H. Larochelle, and R. Adams. Practical
[6] R. Doshi, kW Hung, L. Liang, and KH Chiu. Deep Bayesian optimization of machine learning
learning neural networks optimization using hardware algorithms. InNIPS, 2012
cost penalty. InEEE International Symposium on [25] S. Srinivas and R. V. Babu. Learning neural network
Circuits and Systems (ISCAS), 2016 architectures using backpropagatitnBMVC, 2016
[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. [26] Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Narayanan. Deep learning with limited numerical Anguelov, D. Erhan, V. Vanhouce, and A.
precision. INCML, 2015 Rabinovich. Goingdeeper with onvolutions, In
[8] S.Han, H. Mao, and W. J. Dally. Deep compression: CVPR, 2015
compressing deep nel networks with pruning, [27] Q. Tao, K. Kong, D. Chu, and G. Wu. Stochastic
trained quantization and Huffman coding. IELR, coordinate descent methods for regularized smooth
2016 and nonsmooth losses. European conference of
[9] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning Machine Learning and Knowledge Discovery in
both weights and connections for efficient neural Databases, 2012
networks. INNIPS, 2015 [28] L. Yang, P. Luo, C. Loy, and X. Tang. A largeale
[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep redidu car dataset for fingrained categorization and
learning for image recognition. VPR, 2016 verification. INCVPR, 2015
[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep[29] Zoph and Q. V. Le. Neural architecture search with
into rectifiers: surpassing humdevel performance reinforcement learning. IFCLR, 2017

on ImageNet classification, I€CV, 2015

[12] M. Horowitz. Energy table for 45nm process.
Stanford VLSI wiki

[13] F. N. landola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer. SqueezeNet: AlexNet
level accuracy with 50x fewer parameters and <
0.5MB model size. 2016

[14] J. Kinnison, N. KremeHerman, D. Thain, and W.
Scheirer. SHADHO: Massively scalablarbdware
aware distributed hyperparameter optimization. arXiv
preprint arXiv:1707.014282, 2017

[15] Krizhevsky and G. Hinton. Learning multiple layers
of features from tiny images. Technical Report, Univ.
of Toronto, 2009

[16] Krizhevsky. I. Sutskever, and G. E. kbin. ImageNet
Classification with Deep Convolutional Neural
Networks. InNIPS, 2012

[17] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C.
Zhang. Learning efficient convolutional networks
through network slimming. IRCCV, 2017

[18] NVIDIA. CUDA C Programming Guide 9.0, 2017

[19] Y. Nesterov. Efficiency of coordinate descent
methods on hugscale optimization problemSIAM
Journal on Optimization, 22: 343362, 2010

1823

