
Merging Deep Neural Networks for Mobile Devices

Yi-Min Chou1,2, Yi-Ming Chan1,2, Jia-Hong Lee1,2, Chih-Yi Chiu3, and Chu-Song Chen1,2

1Institute of Information Science, Academia Sinica, Taipei, Taiwan,

Email: {chou, yiming, honghenry.lee, song}@iis.sinica.edu.tw
2MOST Joint Research Center for AI Technology and All Vista Healthcare

3National Chiayi University, No.300 Syuefu Rd., Chiayi City, Taiwan,

Email: chihyi.chiu@gmail.com

Abstract

In this paper, a novel method to merge convolutional

neural networks for the inference stage is introduced. When

two feed-forward networks already trained for handling dif-

ferent tasks are given, our method can align the layers of

these networks and merge them into a unified model by

sharing the representative weights. The performance of the

merged model can be restored or improved via re-training.

Without needing high-performance hardware, the proposed

method effectively produces a compact model to run the

original tasks simultaneously on resource-limited devices.

The system development time, as well as training overhead,

is substantially reduced because our method leverages the

co-used weights and preserves the general architectures of

the well-trained networks. The merged model is jointly

compressed and can be implemented faster than the orig-

inal models with a comparable accuracy. When combining

VGG-Avg and ZF-Net models, our approach can achieve

higher than 12 and 2.5 times of compression and speedup

ratios compared to the original whole models, respectively,

while the accuracy remains approximately the same.

1. Introduction

Deep neural networks are successfully applied to a wide

range of applications, including computer vision, medical

imaging, and multimedia processing. We usually design

different network models and train them with particular

datasets separately to handle various tasks, and thus they

can behave well for specific purposes. In practical artifi-

cial intelligence (AI) applications, however, it is common

to handle multiple tasks simultaneously, resulting in a high

demand for the computation resource in both training and

inference stages. Consequently, how to effectively integrate

multiple network models in a system is a fundamental prob-

lem towards thriving AI applications.

This paper undertakes the issues of merging multiple

existing feed-forward networks into a unified but compact

one. The original networks, whose architectures may not be

identical, can be of either single or multiple input sources.

After unification, the merged network should be capable of

managing the original tasks but is more condensed than the

whole original models.

Topologies of existing deep neural network models may

be very different. For example, a feed-forward network con-

tains only the layers in a cascade, whereas a recurrent neu-

ral network (RNN) has loops among the layers. Currently,

this study focuses on merging feed-forward networks, while

merging networks with loops remains a future work. A

modern feed-forward network consists of several kinds of

layers, including convolution, pooling, and full-connection,

referred to as a convolutional network (CNN) in general.

When merging two CNNs, our approach aligns the same-

type layers (convolution; full-connection) into pairs. The

layers in a pair are merged into a single layer that shares

a common weight codebook through an encoding scheme.

The merged single model can be further trained via back-

propagation algorithm; it thus can be fine-tuned to seek for

performance improvement.

We introduce a method, NeuralMerger, to merge neural-

nets for inference. It consists of two stages.

Alignment and encoding phase: First, we align the archi-

tectures of neural network models and encode the weights

such that they are shared among the networks. The common

parts of the network weights are found so that the filters and

weights of different neural networks are able to be co-used.

Fine-tuning phase: Second, we fine-tune the merged

model with few or all labeled data. Following the concept

of distilling dark knowledge of neural networks in [8], our

11799

method employs the original models outputs to guide the

training of the merged model in this phase.

1.1. Motivation of Our Study

Merging existing neural networks has various applica-

tions to real-world problems. For instance, in intelligent

agents or robots, numerous recognition tasks based on same

or different signal sources (eg., image, sound) are often re-

quired. Even when using a single source only (eg. image),

visual classification tasks of different types such as object

recognition, face identification, hand gesture prediction and

scene-text classification could also be involved in an intel-

ligent system. When many models of individual function-

alities are available, merging them on the inference stage is

helpful to build a system toward strong AI.

To tackle multiple recognition tasks in a single system

based on either unique or various signal sources, a typical

approach is to design a new model and train the model on

the union datasets of these tasks, eg., [12, 3]. Such “learn-

them-all” approaches train a single complex model to han-

dle multiple tasks simultaneously. Nevertheless, two issues

may arise. First, it is hard to choose a suitable architecture

for learning all the tasks well in advance; hence, a trial-

and-error process is required to conduct suitable neural-net

architectures. Second, learning from a random initial with a

large set of training data of different types or sources could

be demanding. To tackle these issues, the network models

with bridging layers among them is combined to conduct

the architecture in [19]. Notwithstanding, increased com-

plexity and size of the joint model hinder their availability

on edge devices.

As many models trained for various tasks are available

nowadays, a practical way to integrate different functional-

ities in a system would be leveraging on these individual-

task models. In this paper, we introduce an approach

that merges different neural networks by removing the co-

redundancy among their filters or weights. The proposed

NeuralMerger can take advantage of existing well trained

models. Our approach merges them via finding and sharing

the representative codes of weights; the shared codes can

still be refined by learning. To our knowledge, this is the

first study on merging known-weights neural networks into

a more compact model. Because our approach compresses

the networks for weight sharing and redundancy removal,

it is useful for a deep-learning embedded system or edge

computing for the inference stage.

1.2. Overview of Our Approach

When merging two different feed-forward CNN mod-

els CA and CB , the output is a CNN model consisting of

jointly encoded convolution (E-Conv) and fully-connected

(E-FC) layers. An overview of our approach is illustrated

in Fig. 1. An example of merging two models via our ap-

proach is given in Fig. 2.

Contributions of this paper are summarized as follows:

• Given well-trained CNN models, the introduced Neu-

ralMerger can merge them for multi-tasks. The merg-

ing process preserves the general architectures of the

well-trained networks and removes their redundancy.

It avoids the cumbersome re-design and trial-and-error

process raised by the learn-them-all approaches.

• The proposed method produces a more compact model

to handle the original tasks simultaneously. The com-

pact model consumes less computational time and stor-

age than the compound model of the original networks.

It has a great potential to be fitted in low-end systems.

• The experiments evaluate diferent CNN models and

datasets, and the result demonstrates a satisfactory per-

formance. In overall, the proposed method can achieve

higher than 2.5x speedup and 12x compression ra-

tios, while the accuracy remains nearly the same when

merging the VGG-Avg and ZF-Net models.

2. Related Work

In this section, we briefly review multi-task deep learn-

ing, network compression, and model calibration.

Multi-task Deep Models

To simultaneously achieve various tasks via a single

neural-net model, a typical way is to increase the output

nodes (for multi-tasks) of a pre-chosen neural-net structure,

and train it from an initialization. In [14], a joint facial

age estimation and expression classification model is pro-

posed. Learn-them-all approaches have been proposed to

solve multi-tasks across various domains. In [12], Multi-

Model architecture is introduced to allow input data to be

images, sound waves, and text of different dimensions, and

then converts them into a unified representation. The con-

volution, attention, and sparsely-gated mixture-of-experts

layers are incorporated to get good performance on vari-

ous problems. In [3], a deep CNN leverages massive syn-

chronized data (sound and sentences paired with images) to

learn an aligned representation. The aligned representation

can be shared across modalities for multi-modal tasks such

as cross-modal retrieval and classification. Nevertheless, as

mentioned earlier, applying the learn-them-all approaches

has to pay cumbersome training effort and intensive infer-

ence computation.

Neural-Net Compression

Compressing a neural-net is an active direction to de-

ploy the compact model on resource-limited embedded sys-

tems. To reduce the representation, binary weights and bit-

wise operations are used in [9] and [18]. Han et al. [6]

introduce a three-stage pipeline: pruning redundant net-

work connections, quantizing weights with a codebook, and

1800

Task A
output

Conv layer

Conv layer

Conv layer

…
…
…

Conv layer

Conv layer

FC layer

FC layer

Conv layer

FC layer

Align &

merge

Align &

merge

Conv layer

E-Conv layer

E-Conv layer

…
…
…

Conv layer

E-Conv layer

FC layer

E-FC layer

Task B
output

Conv layer

Conv layer

Conv layer

…
…
…

Conv layer

Conv layer

FC layer

FC layer

Conv layer

Conv layer

…
…
…
…

Conv layer

FC layer

Task B output

Task A output

(a)
(b)

NeuralMerger
unified model

�஺ Conv layers

�஻ Conv layers

�஻ FC layers�஺ FC layers

Conv layer

Conv layer

…
…
…
…

…

Figure 1. (a) Two tasks accomplished by feed-forward networks, where model A (or B) consists of cA (or cB) convolution and fA (or

fB) fully-connected layers, respectively. (b) Our NeuralMerger unifies the two models into a single model composed by max(cA, cB)
convolution and max(fA, fB) fully-connected layers for the model inference; E-Conv and E-FC are referred to as the Jointly-Encoded

convolution and fully-connected layers, respectively.

E
-C

o
n

v
1

E
-F

C
1

VGG

output layer

ZF

output layer

C
o

n
v

2

C
o

n
v
3

E
-C

o
n

v
4

C
o

n
v
5

C
o

n
v

6

E
-C

o
n

v
7

C
o

n
v

8

C
o

n
v

9

E
-C

o
n

v
1

0

C
o

n
v
1

1

C
o

n
v

1
2

E
-C

o
n

v
1

3

E
-F

C
2

Figure 2. Example of merging tw models, ZF and VGG-Avg into

a single one for the inference stage via our approach.

Huffman encoding weights and index, to reduce the stor-

age required by CNN. However, it induces irregular spar-

sity in the pruned networks and requires special libraries

or hardware for speedup. Quantized CNN (Q-CNN) [22]

is proposed to address both the speed and compression is-

sues, which splits the input layer space and applies vector

quantization to each subspace. For each subspace, the in-

ner products between the input and codewords can be pre-

computed and stored in a lookup table; it effectively reduces

the computation and storage for the layer. Researchers also

try to prune filters and feature maps to directly reduce the

computational cost [17][15][7]. In [17], it models the prun-

ing problem as a filter combinatorial problem and solves

through a greedy approach that removes the least important

neuron from the network. Similarly, [15] prunes the filters

with small L1-norm values.

Network Distilling and Small-model Retraining

Transferring the learned knowledge from a large network

to a small network is another important direction towards

effective network compression. In [8], distilling the knowl-

edge of an ensemble model into a smaller model is intro-

duced, where 3% data is enough to train a small model in

some cases. The class probabilities of the ensemble model

are distilled with a high temperature of the final softmax as

soft targets for training. Since the soft targets provide more

information and less gradient variance, the small model can

be trained with less data. In [7], only 1/10 iterations in fine-

tune stage is enough to recover the performance of pruned

models.

Instead of compressing a single network, the goal of this

study is to merge multiple networks simultaneously. Be-

sides, our method can restore the performance of the jointly

compressed models by fine-tuning it with training samples

via the giudances of the outputs of every layer of the origi-

nal models.

3. Deep Model Integration

Assume that model A (or B) consists of cA (or cB)

convolution (Conv) followed by fA (or fB) fully con-

nected (FC) layers, with their weights already trained. Let

cmin = min(cA, cB). In our approach, a correspondence

(cA(i), cB(i)) is established between the Conv layers for the

alignment of the two models, i ∈ {1 : cmin}; A(·) is a

strictly increasing mapping from {1 : cmin} to {1 : cA},

and B(·) is a strictly increasing mappings from {1 : cmin}
to {1 : cB}. Likewise, a correspondence (fA(i), fB(i)) is

also established between the FC layers for i ∈ {1 : fmin}.

In our method, the merged layers have to be of the same

type (Conv or FC). Given two layers, one in model A and

the other in model B, the principle of merging them is to

find a set of (fewer) exemplar codewords that represent the

weights of the layers with small quantization errors. The

1801

layers are thus jointly compressed for redundancy removal.

Below, we first consider unifying the Conv layers, and then

the FC layers.

3.1. Merging Convolution Layers

Assume that some Conv layer in model A and some other

Conv layer in model B are to be merged. The layer of

model A has the input volume size NA ×MA × dA, where

NA×MA is the spatial size and dA is the depth (number of

channels). The input volume is convolved with pA convolu-

tion kernels, where the size of each kernel is nA×mA×dA.

Without loss of generality, assume that padded (with

zero) convolutions are used. The output of the Conv layer

in model A is thus a volume of NA ×MA × pA. Likewise,

similar notations apply to the respective layer in model B.

An input volume of the size NB ×MB × dB are convolved

by pB convolution kernels of the size nB ×mB × dB . The

output volume of that layer is of the size NB ×MB × pB .

We aim to jointly encode the convolution coefficients.

As there are pA (or pB) convolution kernels in the layers of

A (or B), we hope to find a new set of fewer (than pA+ pB)

exemplars to express the original ones so that the models are

fused and the redundancy between them is removed. To this

end, a viable way is to perform vector quantization (such as

k-means clustering) on the convolution kernels, and find a

smaller number of codewords (p < pA + pB) to jointly

represent the kernels compactly. However, it is demanding

to make this method practicable because the kernel dimen-

sions could be inconsistent (i.e., nA 6= mA or nB 6= mB).

To address this issue, we unify the different convolution

kernels by using spatially 1× 1 convolutions, so that merg-

ing CNNs with different convolution kernel sizes is achiev-

able. In the following, we review the operations in a Conv

layer at first, and then show how to separate the dimensions

so that different layers are unified and jointly encoded.

3.1.1 Operations in Convolution Layer

The operations in a Conv layer of CNNs are reviewed as fol-

lows. Suppose x ∈ RN×M×d is the input volume (a.k.a. 3D

tensor) to a Conv layer and y ∈ RN×M×p is the output vol-

ume. Assume that p convolution kernels of size n×m× d
are applied to the layer, denoted as

{g(t) ∈ Rn×m×d|t = 1 · · · p}. (1)

Then, the t-th channel output is obtained as yt = x ⋆ g(t),
the volume convolution of x and g(t), and the output y is the

concatenation of yt,

y = [y1 y2 · · · yp]. (2)

Let xu ∈ RN×M and g
(t)
u ∈ Rn×m repectively be the u-th

channel of x and g(t). The volume convolution is formed

by summing the 2D-convolution results of the d channels:

x ⋆ g(t) =

d∑

u=1

xu ∗ g(t)u , (3)

where ∗ denotes the 2D convolution operator.

In CNNs, various n and m (eg., n = m = 3, 5, 7 · · ·) are

used in existing networks. Particularly, when n = m = 1,

the volume convolution of size 1×1×d is often referred to

as a 1× 1 convolution in CNNs for all d.

3.1.2 Kernel Decomposition in Spatial Directions

In the above, the volume convolution is computed as a

spatially sliding operation (2D convolution) followed by a

channel-wise summation along the depth direction. In this

section, we show that, no matter what n and m are, it can be

equivalently represented by 1 × 1 convolutions via decom-

posing the kernel along the spatial directions as follows.

Given the kernel g(t), let g
(t)
[i0,j0],u

specify its entry at the

spatial location (i0, j0) of the u-th channel. In particular,

g
(t)
[i0,j0]

∈ Rd stands for the 1 × 1 × d volume convolution

associated with the (i0, j0)-th spatial site of the kernel g(t);
e.g., a kernel of spatial size 5 × 5 consists of 25 kernels of

spatial size 1× 1, (i0, j0) ∈ {1 : 5} × {1 : 5}, ∀d.

Following the notation, we decompose an n×m×d vol-

ume convolution into multiple 1 × 1 × d convolutions and

combine them with shift operators: Without loss of gener-

ality, we assume that the spatial sizes n,m of the kernel are

odd numbers and replace them with w = (n − 1)/2 and

h = (m − 1)/2. The t-th channel output yt can be equiva-

lently represented as

yt =
w∑

i0=−w

h∑

j0=−h

S−i0,−j0 [x ⋆ g
(t)
[i0,j0]

], (4)

where g
(t)
[i0,j0]

(−w ≤ i0 ≤ w,−h ≤ j0 ≤ h) are the 1 ×

1× d convolutions depicted above; in Eq.(4), S is the shift

operator satisfying that

Si0,j0 [x](i, j, u) = x(i− i0, j − j0, u), ∀i, j, u, (5)

with i, j the spatial location and u (1 ≤ u ≤ d) the channel

index. Hence, for all n,m, the t-th channel output of the

volume convolution can be decomposed as the shifted sum

of nm 1× 1 convolutions via Eq. (4). Then, the output y is

obtained via the concatenation in Eq. (2).

To address the issue caused by dimension mismatch in

merging two convolution layers, we then propose to take the

representation of 1×1 convolutions for both layers. Hence,

a kernel in model A is decomposed into CA = nAmA con-

volutions of size 1× 1× dA and that in model B is decom-

posed into CB = nBmB convolutions of size 1 × 1 × dB .

The kernel is then unified into 1 × 1 in the spatial domain

no matter whether nA (or mA) equals to nB (or mB).

1802

3.1.3 Kernel Separation along Depth Direction

Then, we seek to jointly express the CAB 1 × 1 convolu-

tions by a compact representation so that the two layers are

co-compressed, where CAB = pACA + pBCB and pA, pB
are the numbers of kernels of the layers in A and B, re-

spectively. Though the subspace dimensions in the spatial

domain are consistent (1 × 1) now, they are still inconsis-

tent in the depth direction (dA vs. dB) and thus crucial to

be jointly clustered. To address this problem, we simply

separate the 1 × 1 × d kernel g
(t)
[i0,j0]

into non-overlapping

1 × 1 × r kernels along the depth direction (r < d). As

the convolution in CNNs are summation-based in the depth

direction, we divide the kernel g
(t)
[i0,j0]

∈ Rd into ⌈d/r⌉ vec-

tors of dimension r,

g
(t)
[i0,j0];〈v〉

∈ Rr, v = 1, · · · , ⌈d/r⌉, (6)

where g
(t)
[i0,j0];〈v〉

(of size 1 × 1 × r) is the v-th segment of

the original kernel. The output yt in Eq. (4) then becomes

yt =

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

S−i0,−j0 [x〈v〉 ⋆ g
(t)
[i0,j0];〈v〉

], (7)

where x〈v〉 ∈ RN×M×r is the v-th sub-volume of the in-

put x for d = dA or dB . Specifically, a spatially 1 × 1
kernel is respectively segmented into ρA = ⌈dA/r⌉ (or

ρB = ⌈dB/r⌉) kernels of dimension r in model A (or B),

where the last segment is padded with zero if necessary.

Let ρ = min(ρA, ρB). There are then CAB kernels of

size 1×1×r for the segment 1 ≤ v ≤ ρ. To jointly represent

the kernels of both layers, we use C codewords (C < CAB)
in the dim-r space to encode the convolution coefficients

compactly. We run the k-means algorithm with various ini-

tials for the CAB vectors and then select the results yielding

the least representation error to produce the C codewords

(i.e., cluster centers of k-means), for v ∈ {1, · · · , ρ}. 1

3.1.4 E-Conv Layer and Weights Co-use

The merged convolution layer (called the E-Conv layer), is

a newly-formed layer where the weights are co-used among

the convolution kernels: Denote the C codewords in the v-

th subspace to be {bc,v ∈ Rr|c = 1 : C}. We then replace

each dim-r kernel at the spatial site (i0, j0) in the subspace

v (namely, g
(t)
[i0,j0];〈v〉

∈ Rr) with bπ(i0,j0,v,t);v , the closest

codeword in the dim-r space, where π(i0, j0, v, t) ∈ {1 :
C} is the code-assignment mapping. Eq. (7) is then simpli-

1For those remaining segments, ρ+ 1 ≤ v ≤ max(ρA, ρB), we also

use C codewords to encode the pACA (or pBCB) dim-r vectors in the

respective subspaces if dA > dB (or dA < dB).

1
st

 s
e

g
m

e
n

t

Kernel separation

k-means

clustering 1
st

 c
o

d
e

b
o

o
k

Lookup

tableindexing

Convolution

pre-computation

2
n

d
 s

e
g
m

e
n

t

2
n

d
 c

o
d

e
b

o
o

kZero padding

Figure 3. Illustration of merging two models’ Conv layers having

the kernels of spatial size 3× 3 and 2× 2, respectively; each layer

is divided into 2 segments. They are decomposed into spatially

1 × 1 kernels and the kernels in every segment is clustered via

k-means clustering to build a coodbook. The convolutions are pre-

computed on the codebook at runtime, and a lookup table is built

for indexing the results.

fied as

yt =

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

S−i0,−j0 [x〈v〉 ⋆ bπ(i0,j0,v,t);v]. (8)

Because the number of codewords C is fewer than that of

the total kernel vectors CAB , Eq. (8) can be executed more

efficiently via computing the 1 × 1 convolutions of the C
codewords at first:

x〈v〉 ⋆ bc,v (∀c = 1 · · ·C, v = 1 · · · ρ), (9)

and then storing the results in a lookup table. The run-time

operation of 1× 1 convolution is thus replaced by table in-

dexing. Hence, the convolution kernels of the two models A

and B are representationally shared in a compact codebook,

{bc,v|v = 1 : C}, and the computation time is saved. An

illustration of the E-Conv layer is given in Fig. 3.

When choosing the coderwords C fewer, the amount of

convolution coefficients is reduced to C/CAB . The merged

model is thus co-compressed as it consumes less storage

than the total required for the two convolution layers. As

for the computational speed, each xi,j;〈v〉 ∈ Rr is replaced

with an index and there are NMd/r entries for indexing in

x〈v〉, where i, j are the spatial location. Let τx and be the

time unit for a table-indexing operation and τr be the time

unit for a 1 × 1 × r convolution. The speedup ratio is then

(Cτr + NMdτx/r)/(CABτr) in terms of the complexity.

Hence, when the codewords C is fewer or the subspace di-

mension r is larger, the speedup is getting higher.

1803

3.1.5 Derivatives of the Merged Layer

Besides condensing and unifying the convolution opera-

tions, the E-Conv layer is also differentiable and thus end-

to-end back-propagation learning still remains realizable.

However, evaluating the derivatives would be hard based

on the table-lookup structure as the indices are uncontinu-

ous. Hence, the table is used only for the inference stage

in our approach. While for learning, we slightly change the

form of Eq. (8) to conduct the derivatives of yi,j;t (the out-

put at the spatial location i, j of channel t) to {bc,v} (the

codewords). From Eq. (8), yi,j;t can be written as

yi,j;t =

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

〈xi+i0,j+j0,〈v〉, bπ(i0,j0,v,t);v〉,

(10)

where 〈·, ·〉 is the inner product. Let Φ = [bc,v] ∈ Rr×C

be the matrix whose columns are the dim-r codewords of

the v-th segment. Let βi0,j0,v,t ∈ RC be the one-hot vector

where the c-th entry in βi0,j0,v,t is 1 if c = π(i0, j0, v, t);
otherwise the entry is 0. Then, the codeword mapping

bπ(i0,j0,v,t);v in Eq. (8) can be replaced by bπ(i0,j0,v,t);v =
Φβi0,j0,v,t. Hence, the derivative of the E-Conv layer is

conducted as

∂yi,j;t
∂Φ

=

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

xi+i0,j+j0,〈v〉β
T
i0,j0,v,t. (11)

As Φ is the matrix consisting of the codewords {bc,v}, they

can then be fine-tuned via the gradients for learning.

3.2. Merging Fully­connected Layers

The volume input to a FC layer is re-shaped to a vector

in general. Let xF ∈ RNI be the input vector of a FC layer

and yF ∈ RNO be its output. Then yF = WxF , where

W ∈ RNO×NI are the weights of the FC layer.

Unlike Conv layers that have sliding operations, all the

operations in FC are summation-based. Thus, given the two

weight matrices of models A and B, namely, WA and WB ,

we simply divide them into length-r segment along the row

direction. The dim-r weight vectors in the same segment

are then clustered via k-means algorithm and C codewords

are found. In this way an E-FC layer is built as well, and It

is easy to show that the E-FC layer is also differentiable.

3.3. End­to­end Fine Tuning

As both E-Conv and E-FC layers are differentiable, once

their codebooks are constructed, we can then fine-tune the

entire model from some training data through end-to-end

back-propagation learning.

Two error terms are combined for the minimization in

calibration training. One is the classification (or regression)

error employed in the original models A and B. The other

is the layer-wise output mismatch error defined as follows:

When applying the input xI to the model A (or B), the out-

put of every layer in the merged model should be close to

the output of the associated layer in A (or B), and L1-norm

is used to measure this error.

The training data employed to fine-tune the merged

model are called calibration data and the fine-tuning pro-

cess is referred to as the calibration training in our ap-

proach. In the experiments, two settings about the size of

training data are studied. As our method is used for the

inference stage, sometimes we do not want to re-train the

merged model through all the training data. Inspired by the

network-distilling work [8], we only use a very limited set

of data to fine-tune the model in this setting (1000 random

samples per class in the experiments), and show that satis-

factory results can be obtained. In the second setting, all the

training data are used in our calibration training. Although

it takes a longer time for training since the data amount is

larger, but the accuracy is further improved.

In the calibration training, we use a framework (Ten-

sorFlow [1]) for the implementation. In the inference, to

make the approach generalizable to mobile devices that

may not contain GPUs, we utilize the C++ codes from [22]

(which is based on Caffe’s[10] CPU implementation) to re-

alize the merged model on CPUs, with the OpenBLAS li-

brary [26, 21] used for matrix operations. Note that the

codebooks are end-to-end trainable in our method, which

is unlike [22] that only a single layer is tunable at one time,

and thus our calibration training can be more efficiently re-

alized via existing deep learning frameworks (such as Ten-

sorFlow). To make fair comparisons when inference, the

Conv layers of the individual models compared with ours

are realized via the unrolling convolution [4, 2] that con-

verts the volume convolution into a single matrix product,

which is commonly used as an efficient implementation for

the Conv layer (eg., Caffe’s CPU mode). In the experi-

ments, we report the computation speed via the C++ codes,

and show the test accuracy via Tensorflow. The accuracies

of the same model could be different on the C++ (based on

Caffe’s CPU mode) and Tensorflow due to their framework

details. The mismatch can be resolved by fine-tuning the

model in the CPU mode in the future. Our codes will be

availabe at https://github.com/ivclab/NeuralMerger.

4. Experiments

Merging Sound and Image Recognition CNNs

In the first experiment, we merge two CNNs of hetero-

geneous sources: image and sound. Though the sources are

different, the same network (LeNet [13]) is used, which is

applied to the following datasets of two tasks:

Sound dataset [11]: This dataset contains 13 classes of

sounds recorded from drum kit and guitar. The 1D raw sig-

1804

nals of sound are converted to 2D spectrograms and then

resized to 32 × 32 images. There are more than 480 ex-

amples per class in the dataset, which are split into 70%

training, 20% validation and 10% testing sets.

Fashion-MNIST [23]: This dataset contains a collection

of gray-level images of dressing style of 10 classes. It has

60,000 training images and 10,000 testing images.

LeNet is a simple CNN consisting of 2 Conv layers with

32 and 64 kernels of size 5× 5× 1 and 5× 5× 32, respec-

tively, each followed by a 2 × 2 max-pooling, and then a

FC layer of 1024 units and a γ-way output (γ is the num-

ber of classes). Before merged, LeNet can achieve 95.4%

and 91.6% accuracy on the above sound and image recog-

nition tasks, respectively. The models are simply aligned

and merged layer by layer since they are identical. As the

input layer’s depth of LeNet is 1, we set r = 1 for the

first Conv layer of both models and choose C = 64 for

it. Then, we alter the parameters of r ∈ {8, 16, 32} and

C ∈ {64, 128, 256} for the remaining Conv- and FC-layers

(except for the classification layer).

The overall performance and the average accuracy drop

of Sound and Fashion-MNIST datasets are shown in Ta-

ble 1. We select two sets of parameters. One is the ‘ACCU’

setting that prefers accuracy, and the other is the ‘LIGHT’

setting that prefers speedup. First, we use 1000 images per

class for the calibration training in the fine-tuning phase.

With the setting of ACCU, over 10 times compression of

the joint model size and 4.17 times speedup per task are

achieved with only a small accuracy drop (i.e., 1.25%).

If the computation resource is limited, our approach can

achieve over 15 times of joint model-size compression and

6.18 times speedup under LIGHT setting with 3.14% ac-

curacy drop. Later, to further boost the performance, we

employ all training samples for calibration training, and re-

fer the two settings to as ACCU+ and LIGHT+. As can be

seen, both the ACCU+ and LIGHT+ yield the merged mod-

els with only negligible accuracy drops, 0.34% and 0.59%,

respectively, when leveraging on all the training data. The

results suggest that our approach is effective for model

merging for the inference stage. Note that the speedup ratio

may vary under different hardware; here we use the CPU of

NVIDIA Jetson TX1 in the single thread mode.

In the following, we detail the parameter settings of dif-

ferent layers for performance analysis. First, we fix the FC

weights and jointly encode only the Conv layers. With the

1st Conv layer’s r/C chosen as above, the 2nd layer’s are

varying and three settings (under C = 128) are selected

as shown in Table 2(a) (with the FC weights fixed). As

expected, the speedup is increased with r because the ta-

ble indexing time is reduced; the accuracy is higher when

r is lower because a finer subspace is divided. The best

r/C, 8/128 for the accuracy and 32/128 for the compres-

sion and speedup, are chosen as the Conv-layer settings of

Table 1. Overall Performance of the merged model. ACCU is the

setting of r/C = 8/128 for both the 2nd Conv and 1st FC lay-

ers. LIGHT is the setting of r/C = 32/128 for the 2nd Conv

and 8/64 for the 1st FC layers of LeNet. The 1-st Conv layer is

1/64 for both settings, while the classification layers are not co-

compressed. 1000 training samples are used in the ACCU and

LIGHT sttings, and all training samples are used in the ACCU+

and LIGHT+ settings for the calibration training, respectively.

Para. Compres. Speedup Acc. Drop

ACCU 10.39 × 4.17 × 1.25%

ACCU+ 0.34%

LIGHT 15.34 × 6.18 × 3.14%

LIGHT+ 0.59%

Table 2. Performance of (a) varying the parameters of the 2nd

Conv layer with the FC layers fixed and (b) varying the param-

eters of the 1st FC layer with the Conv layers fixed in the LeNet

models. Note that the compression and speedup ratios are respec-

tively evaluated for the Conv and FC layers only.

(a) Convolution Layer Settings

r/C Compres. Speedup Acc. Drop

32/128 20.41 × 7.2 × 5.96%

16/128 17.60 × 5.00 × 3.86%

8/128 13.81 × 3.00 × 1.81%

(b) FC Layer Settings

r/C Compres. Speedup Acc. Drop

8/64 15.94 × 12.01 × 0.47%

8/128 10.64 × 10.63 × 0.19%

8/256 6.39 × 7.69 × 0.43%

‘ACCU’ and ‘LIGHT’ in Table 1. Likewise, we also vary

the parameters of the 1st FC layer with the Conv coefficients

fixed, and select r/C = 8/128 and 8/64 for the ACCU and

LIGHT settings of the FC layer. To save the parameter set-

ting times, only 1000 calibration data are used in the fine-

tuning phase. Note that the speedup and compression in this

table are evaluated based on the Conv or FC layers only.

As our approach finds several codewords per layer and

then performs end-to-end calibration training to refine the

codewords, it is also applicable to an individual model. One

may wonder how the individual models perform when they

are compressed via our approach. For an even compari-

son, we use the same r/C settings to encode the single

sound (or image) model and also fine-tune it using 1000

calibration samples. Hence, the compressed single model

consumes the same resource as our merged one (i.e., they

have exactly the same model size and execution time). As

shown in Table 3, when the sound-only model is encoded

via our approach, the accuracy drop remains to be 0.44%;

that is, our merged model can achieve the same accu-

racy while an additional functionality (image recognition)

is added. On the other hand, when the image-only model

is encoded, the accuracy-drop only changes 0.25% (from

1805

Table 3. Comparison of the merged model (ACCU parameter) with

the individual sound and image models compressed via our ap-

proach. The individual models and the merged model use the same

parameters of r/C and have identical model size and execution

time, but more tasks can be done in the merged model.

Para. Image Drop Sound Drop Avg. Drop

ACCU 2.06% 0.44% 1.25%

Sound only N/A 0.44% N/A

Image only 1.81% N/A N/A

Table 4. The parameters of r/C for ’ACCU’ and ’LIGHT’ settings

in the clothing and gender merged model. Each group is a stack of

two or three 3 × 3 Conv layers defined in VGG-16 model.

Para. Group1,2 Group3 Group 4,5 Fc1 Fc2

ACCU 32/256 16/256 8/256 4/128 4/64

LIGHT 32/128 32/128 16/128 8/128 8/64

1.81% to 2.06%) with an extra functionality (sound recog-

nition) supplemented. We owe that the two models have co-

redundancy in between, and thus jointly encoding the mod-

els can take advantage of the additional inter-redundancy to

achieve a better representation.

Merging Clothing and Gender CNN Classifiers

In the second experiment, we merge two image classi-

fiers (one for clothing and the other for gender recogni-

tion) into a single model holding double functionalities. The

clothing classifier adopted is [24] which substitutes the first

FC layer in the VGG-16 model [20] with average-pooling;

it has been shown that VGG-Avg achieves similar perfor-

mance to VGG-16 while consuming far less storage. The

gender classifier adopted is ZF-Net [25] that has fewer lay-

ers than VGG-Avg. The overall structures and alignment

between them can be found in Fig. 2.

The clothing and gender datasets employed are depicted

as follows. The Adience Dataset [5] contains face pictures

of different genders and ages, where 11,136 images (each

resized to 227 × 227) are used for training and the other

3,000 are for testing. The Multi-View-Clothing dataset [16]

contains clothing images of different views with over 250

attributes organized in a tree, where the frontal images

(37,485 for training and 3,000 for testing) and the 13 at-

tributes of the first two layers are used to construct a clas-

sifier of 13 classes. Before merged, ZF-Net and VGG-Avg

achieve 83.4% and 89.8% accuracy on the gender and cloth-

ing classification tasks, respectively. Because the kernel

sizes in the two models are not always consistent, they are

merged via the decomposition into 1 × 1 × r convolutions

as described in Section 3.1.4. Similar to the process in the

first experiment, we choose the parameters r/C and con-

duct two settings ‘ACCU’ and ‘LIGHT’, where the former

stresses accuracy and the later enforces compression/speed.

The detailed parameter settings are reported in Table 4.

Table 5. Overall Performance of the merged model for image clas-

sification of clothing and gender. (ACCU+ and LIGHT+ represent

the calibration training using all samples)

Para. Compres.
Clothing Gender

Speedup Acc. ↓ Speedup Acc. ↓

ACCU 12.10× 2.58× 0.53% 1.87× 1.17%

ACCU+ -0.83% 0.27%

LIGHT 20.10× 5.16× 2.80% 2.50× 3.27%

LIGHT+ 0.50% 1.58%

As the model sizes of both VGG-Avg and ZF-Net are

larger than that of LeNet, there are more redundancies be-

tween the models. Hence, an even better performance is

achieved than that of experiment 1. The overall perfor-

mance is reported in Table 5. In the ACCU setting, the

compression ratio exceeds 12 times with merely a slight ac-

curacy drop 0.53% in the clothing task when 1000 calibra-

tion data are used. When calibration with all training data

(ACCU+ setting), the performance can be even better than

that of the original model (with negative accuracy drop). In

LIGHT/LIGHT+ settings, the compression ratio is further

enhanced with an acceptable accuracy drop.

Besides, when compressing the individual model (VGG-

Avg for Clothing) by using our approach under the same

setting, the accuracy drop is 0.58%, which is nearly the

same as that achieved in our merged model (0.53%), but

the merged model holds an extra capability: gender recogni-

tion. The results show that our approach can exploit both the

intra- and inter-models redundancy and demonstrates satis-

factory performance on merging deep learning models.

5. Conclusions

In this paper, we present a method that can unify mul-

tiple feed-forward models into a single but more compact

one. To our best knowledge, this is the first study on merg-

ing deep models for the inference stage. The unified model

is still differentiable and can be fine-tuned to restore or en-

hance the performance. Experimental results show that the

merged model can be extensively compressed under negli-

gible accuracy drops, which makes our method suitable for

deep model inference on low-end devices.

A characteristic of our method is that the overall archi-

tectures of the original models are preserved when merg-

ing. The merged model may serve as a base model. For

the cases when the resource in the inference stage is not an

issue, a possible way to boost the multi-task performance

is to extend the base model to a more complex architecture

(eg., with a larger codebook and/or bridging layers added),

which remains a future work. Besides, we also plan to in-

crementally merge more than two models in the future.

Acknowledgement: This work was supported in part by the

MOST under the grant MOST 107-2634-F-001-004.

1806

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv, 2016.

[2] S. Anwar, K. Hwang, and W. Sung. Structured prun-

ing of deep convolutional neural networks. ACM Journal

on Emerging Technologies in Computing Systems (JETC),

13(3):32, 2017.

[3] Y. Aytar, C. Vondrick, and A. Torralba. See, hear, and read:

Deep aligned representations. CoRR, abs/1706.00932, 2017.

[4] K. Chellapilla, S. Puri, and P. Simard. High performance

convolutional neural networks for document processing. In

Tenth International Workshop on Frontiers in Handwriting

Recognition. Suvisoft, 2006.

[5] E. Eidinger, R. Enbar, and T. Hassner. Age and gender es-

timation of unfiltered faces. IEEE TIFS, 9(12):2170–2179,

2014.

[6] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. ICLR, 2016.

[7] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-

ing very deep neural networks. In International Conference

on Computer Vision (ICCV), volume 2, page 6, 2017.

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. NIPS Workshops, 2014.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In Advances in neural

information processing systems, pages 4107–4115, 2016.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[11] A. Juliani. Recognizing sounds (a deep learning case study),

2016.

[12] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar,

L. Jones, and J. Uszkoreit. One model to learn them all.

CoRR, abs/1706.05137, 2017.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[14] G. Levi and T. Hassner. Age and gender classification using

convolutional neural networks. In CVPR Workshops, 2015.

[15] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. ICLR, 2017.

[16] K. Liu, T. Chen, and C. Chen. Mvc: A dataset for view-

invariant clothing retrieval and attribute prediction. In Pro-

ceedings of ACM on International Conference on Multime-

dia Retrieval, pages 313–316, 2016.

[17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. ICLR, 2017.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016.

[19] S. Ruder. An overview of multi-task learning in deep neural

networks. arXiv preprint arXiv:1706.05098, 2017.

[20] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[21] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi. Augem: automati-

cally generate high performance dense linear algebra kernels

on x86 cpus. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and

Analysis, page 25. ACM, 2013.

[22] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4820–4828, 2016.

[23] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a

novel image dataset for benchmarking machine learning al-

gorithms, 2017.

[24] H.-F. Yang, K. Lin, and C.-S. Chen. Supervised learning of

semantics-preserving hash via deep convolutional neural net-

works. IEEE transactions on pattern analysis and machine

intelligence, 40(2):437–451, 2018.

[25] M. D. Zeiler and R. Fergus. Visualizing and understand-

ing convolutional networks. In Proceedings of the European

Conference on Computer Vision, pages 818–833, 2014.

[26] X. Zhang, Q. Wang, and Y. Zhang. Model-driven level 3

blas performance optimization on loongson 3a processor. In

IEEE International Conference on Parallel and Distributed

Systems, pages 684–691. IEEE, 2012.

1807

