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Abstract

One of the main barriers for deploying neural networks
on embedded systems has been large memory and power
consumption of existing neural networks. In this work, we
introduce SqueezeNext, a new family of neural network ar-
chitectures whose design was guided by considering previ-
ous architectures such as SqueezeNet, as well as by sim-
ulation results on a neural network accelerator. This new
network is able to match AlexNet’s accuracy on the Im-
ageNet benchmark with 112X fewer parameters, and one
of its deeper variants is able to achieve VGG-19 accuracy
with only 4.4 Million parameters, (31x smaller than VGG-
19). SqueezeNext also achieves better top-5 classification
accuracy with 1.3x fewer parameters as compared to Mo-
bileNet, but avoids using depthwise-separable convolutions
that are inefficient on some mobile processor platforms.
This wide range of accuracy gives the user the ability to
make speed-accuracy tradeoffs, depending on the available
resources on the target hardware. Using hardware simula-
tion results for power and inference speed on an embedded
system has guided us to design variations of the baseline
model that are 2.59%x/8.26x faster and 2.25x/7.5X more
energy efficient as compared to SqueezeNet/AlexNet with-
out any accuracy degradation.

1. Introduction

Deep Neural Networks have transformed a wide range
of applications in computer vision. This has been made
possible in part by novel neural net architectures, the avail-
ability of more training data, and faster hardware for both
training and inference. The transition to Deep Neural Net-
work based solutions started with AlexNet [19], which won
the ImageNet challenge by a large margin. The ImageNet
classification challenge started in 2010 with the first win-
ning method achieving an error rate of 28.2%, followed by
26.2% in 2011. However, a clear improvement in accuracy
was achieved by AlexNet with an error rate of 16.4%, a 10%
margin with the runner up. AlexNet consists of five con-
volutional, and three fully connected layers. The network
contains a total of 61 million parameters. Due to this large

size of the network, the original model had to be trained on
two GPUs with a model parallel approach, where the filters
were distributed to these GPUs. Moreover, dropout was re-
quired to avoid overfitting using such a large model size.
The next major milestone in ImageNet classification was
made by VGG-Net family [23], which exclusively uses 3 x 3
convolutions. The main ideas here were usage of 3 x 3 con-
volutions to approximate 7 x 7 filter’s receptive field, along
with a deeper network. However, the model size of VGG-
19 with 138 million parameters is even larger than AlexNet
and not suitable for real-time applications. Another step
forward in architecture design was the ResNet family [10],
which incorporates a repetitive structure of 1 X 1 and 3 x 3
convolutions along with a skip connection. By changing
the depth of the networks, the authors showed competitive
performance for multiple learning tasks.

As one can see, a general trend of neural network design
has been to find larger and deeper models to get better ac-
curacy without considering the memory or power budget.
One widely held belief has been that new hardware is going
to provide adequate computational power and memory to
allow these networks to run with real-time performance in
embedded systems. However, increase in transistor speed
due to semiconductor process improvements has slowed
dramatically, and it seems unlikely that mobile processors
will meet computational requirements on a limited power
budget. This has opened several new directions to reduce
the memory footprint of existing neural network architec-
tures using compression [8], or designing new smaller mod-
els from scratch. SqueezeNet is a successful example for
the latter approach [1], which achieves AlexNet’s accuracy
with 50x fewer parameters without compression, and 500 x
smaller with deep compression. Models for other applica-
tions such as detection and segmentation have been devel-
oped based on SqueezeNet [25, 26]. Another notable work
in this direction is the DarkNet Reference network [22],
which achieves AlexNet’s accuracy with 10x fewer param-
eters (28MB), but requires 2.8 x smaller FLOPs per infer-
ence image. They also proposed a smaller network called
TinyDarkNet, which matches AlexNet’s performance with
only 4.0MB parameters. Another notable work is Mo-
bileNet [12] which used depth wise convolution for spa-
tial convolutions, and was able to exceed AlexNet’s perfor-
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Figure 1: lllustration of a ResNet block on the left, a SqueezeNet block in the middle, and a SqueezeNext (SqNxt) block on the
right. SqueezeNext uses a two-stage bottleneck module to reduce the number of input channels to the 3 x 3 convolution. The
latter is further decomposed into separable convolutions to further reduce the number of parameters (orange parts), followed

by a1l x 1 expansion module.

mance with only 1.32 million parameters. A later work is
ShuffleNet [11] which extends this idea to pointwise group
convolution along with channel shuffling [11]. More com-
pact versions of Residual Networks have also been pro-
posed. Notable works here include DenseNet [14] and its
follow up CondenseNet [13].

Contributions Aiming to design a family of deep neu-
ral networks for embedded applications with limited power
and memory budgets we present SqueezeNext. With the
smallest version, we can achieve AlexNet’s accuracy with
only 0.5 Million model parameters, 112X less than AlexNet
(and more than 2x smaller than SqueezeNet). Furthermore,
we show how variations of the network, in terms of width
and depth, can span a wide of range of accuracy levels.
For instance, a deeper variation of SqueezeNext can reach
VGG-19’s baseline accuracy with only 4.4 Million model
parameters. SqueezeNext uses SqueezeNet architecture as
a baseline, however we make the following changes. (i) We
use a more aggressive channel reduction by incorporating
a two-stage squeeze module. This significantly reduces the
total number of parameters used with the 3 x 3 convolutions.
(i) We use separable 3 x 3 convolutions to further reduce
the model size, and remove the additional 1 x 1 branch after
the squeeze module. (iii) We use an element-wise addition
skip connection similar to that of ResNet architecture [10],
which allows us to train much deeper network without the
vanishing gradient problem. In particular, we avoid using
DenseNet [14] type connections as it increases the number
of channels and requires concatenating activations which is
costly both in terms of execution time and power consump-
tion. (iv) We optimize the baseline SqueezeNext architec-
ture by simulating its performance on a multi-processor em-
bedded system. The simulation results gives very interest-
ing insight into where the bottlenecks for performance are.
Based on these observations, one can then perform varia-
tions on the baseline model and achieve higher performance

both in term of inference speed and power consumption,
and sometimes even better classification accuracy.

Table 1: Performance of the baseline SqueezeNext on Im-
ageNet. We report the top-1/top-5 accuracy, the num-
ber of parameters (# Params), and compression relative to
AlexNet (Comp). The 23 module architecture (1.0-SqNxt-
23), exceeds AlexNet’s top-5 by 2% margin. A more aggres-
sive parameter reduction on this network with group convo-
lutions for the 1 X 1 filters, is able to match AlexNet’s top-
5 with 112x fewer parameters. We also show the perfor-
mance of deeper variations of the base model with/without
Iterative Deep Aggregation (IDA) [28]. The 1.0-SqNxt-44
model has the same number of parameters as SqueezeNet
but achieves 5% better top-5.

Model | Top-1 | Top-5 | #Params | Comp.
AlexNet 57.10 | 80.30 | 60.9M 1x
SqueezeNet 57.50 | 80.30 1.2M 51x
1.0-SqNxt-23 5898 | 82.33 | 0.72M 84 x
1.0-G-SqNxt-23 56.88 | 80.83 | 0.54M | 112x
1.0-SqNxt-23-IDA | 60.35 | 83.56 0.9M 68
1.0-SqNxt-34 61.39 | 84.31 1.0M 61x
1.0-SqNxt-34-IDA | 62.56 | 84.93 1.3 47x
1.0-SqNxt-44 62.64 | 85.15 1.2M 51x
1.0-SgNxt-44-IDA | 63.75 | 85.97 1.5M 41x
2. SqueezeNext Design

It has been found that many of the filters in the network
contain redundant parameters, in the sense that compress-
ing them would not hurt accuracy. Based on this observa-
tion, there has been many successful attempts to compress
a trained network [17, 8, 21, 29]. However, some of these
compression methods require variable bit-width ALUs for
efficient execution. To avoid this, we aim to design a small
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Figure 2: [llustration of a SqueezeNext block. An input with C channels is passed through a two stage bottleneck module.
Each bottleneck module consists of 1 x 1 convolutions reducing the input channel size by a factor of 2. The output is then
passed through a separable 3 x 3 convolution. The order of 1 x 3 and 3 X 1 convolutions is changed throughout the network.
The output from the separable convolution is finally passed through an expansion module to match the skip connection’s

channels (the skip connection is not shown here).

network which can be trained from scratch with few model
parameters to start with. To this end, we use the following
strategies:

Low Rank Filters We assume that the input to the
i layer of the network with K x K convolution filters
to be x € RTXWXC:i producing an output activation of
y € RIXWxCo (for ease of notation, we assume that the in-
put and output activations have the same spatial size). Here,
C; and C,, are the input and output channel sizes. The total
number of parameters in this layer will then be K2C;C,.
Essentially, the filters would consist of C,, tensors of size
K x K x C;.

In the case of post-training compression, one seeks to
shrink the parameters, W, using a low rank basis, W. Pos-
sible candidates for W can be CP or Tucker decomposi-
tion. The amount of reduction that can be achieved with
these methods is proportional to the rank of the original
weight, W. However, examining the trained weights for
most of the networks, one finds that they do not have a
low rank structure. Therefore, most works in this area
have to perform some form of retraining to recover accu-
racy [8, 9, 20, 15, 21]. This includes pruning to reduce the
number of non-zero weights, and reduced precision for ele-
ments of W. An alternative to this approach is to re-design
a network using the low rank decomposition T to force the
network to learn the low rank structure from the beginning,
which is the approach that we follow. The first change that
we make, is to decompose the K convolutions into two sep-
arable convolutions of size 1 x K and K x 1, as shown
in Fig. 1. This effectively reduces the number of param-
eters from K2 to 2K, and also increases the depth of the
network. These two convolutions both contain a ReLu acti-
vation as well as a batch norm layer [16].

Bottleneck Module Other than a low rank structure,
the multiplicative factor of C; and C), significantly increases
the number of parameters in each convolution layer. There-
fore, reducing the number of input channels would reduce

network size. One idea would be to use depth-wise sep-
arable convolution to reduce this multiplicative factor, but
this approach does not good performance on some embed-
ded systems due to its low arithmetic intensity (ratio of
compute to bandwidth). Another ideas is the one used in
the SqueezeNet architecture [1], where the authors used a
squeeze layer before the 3 x 3 convolution to reduce the
number of input channels to it. Here, we use a variation
of the latter approach by using a two stage squeeze layer,
as shown in Fig. 1. In each SqueezeNext block, we use two
bottleneck modules each reducing the channel size by a fac-
tor of 2, which is followed by two separable convolutions.
We also incorporate a final 1 x 1 expansion module, which
further reduces the number of output channels for the sepa-
rable convolutions.

Fully Connected Layers In the case of AlexNet, the
majority of the network parameters are in Fully Connected
layers, accounting for 96% of the total model size. Follow-
up networks such as ResNet or SqueezeNet consist of only
one fully connected layer. Assuming that the input has a
size of H x W x C;, then a fully connected layer for the last
layer will contain H x W x C; x L parameters, where L is
the number of labels (1000 for ImageNet). SqueezeNext in-
corporates a final bottleneck layer to reduce the input chan-
nel size to the last fully connected layer, which consider-
ably reduces the total number of model parameters. This
idea was also used in Tiny DarkNet to reduce the number
parameters [22].

3. Hardware Performance Simulation

Up to now, hardware architectures have been designed
to be optimal for a fixed neural network, for instance
SqueezeNet. However, as we later discuss there is impor-
tant insights that can be gained from hardware simulation
results. This in turn can be used to modify the neural net-
work architecture, to get better performance in terms of in-
ference and power consumption possibly without incurring
generalization loss. In this section, we first explain how we
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Figure 3: Illlustration of block arrangement in 1.0-SqNxt-23. Each color change corresponds to a change in input feature
map'’s resolution. The number of blocks after the first convolution/pooling layer is Depth = [6,6, 8, 1], where the last number
refers to the yellow box. This block is followed by a bottleneck module with average pooling to reduce the channel size and
spatial resolution (green box), followed by a fully connected layer (black box). In optimized variations of the baseline, we
change this depth distribution by decreasing the number of blocks in early stages (dark blue), and instead assign more blocks
to later stages (Fig. 9). This increases hardware performance as early layers have poor compute efficiency.

simulate the performance of the network on a hypothetical
neural network accelerator for mobile/embedded systems,
and then discuss how the baseline model can be varied to
get considerably better hardware performance.

The neural network accelerator is a domain specific pro-
cessor which is designed to accelerate neural network in-
ference and/or training tasks. It usually has a large number
of computation units called processing element (PE) and a
hierarchical structure of memories and interconnections to
exploit the massive parallelism and data reusability inherent
in the convolutional layers.

Algorithm 1: Execution flow for computing a K,, X
K, convolution kernel

input : Input feature map, I, convolution parameters W
output: Output feature map, O

for k < O to Co do ; // Output Channels
fory < Oto H do; // H: Height
for z < Oto W do; // w: Width
OLkIlyllx] = 0;
for c < 0 to Cz do ; // Input Channels

for j < Oto K} do; // Filter Size
for i < 0 to K, do

O[K][y][x] += I[c][y+jl[x+i] * W(k][c][j][i]

Eyeriss [3] introduced a taxonomy for classifying neural
network accelerators based on the spatial architecture ac-
cording to the type of the data to be reused at the lowest
level of the memory hierarchy. This is related to the order
of the six loops of the convolutional layer as shown in Al-
gorithm 1.! In our simulator, we consider two options to
execute a convolution: Weight Stationary (WS) and Output
Stationary (OS).

Because the typical size of the batch in the inference task is one, the
batch loop is omitted here.

— PEO|PE1 —

Input feature map Output feature map

Figure 4: Conceptual diagram of two data flows used in the
experiment: Output Stationary (top) and Weight Stationary
(bottom). A 2 x 2 PE array performs a 1 x 1 convolution
on a 5x4x2 input (left) generating a 5x4x2 output (right).
Here Tt denotes the ith cycle. (Top) In T0, and T1 cycles of
OS data flow, the shaded area on left is read and convolved
with different filter weights and the results are stored in the
corresponding output pixels. Then in T2 and T3 cycles the
data from the second input channel are read and similar op-
eration is performed to accumulate partial sums. (bottom)
in WS the input pixel is first broadcast to the PEs. In the
first cycle, PEO and PEI apply different convolutions to the
first pixel of first input channel and accumulate the results
from PE2 and PE3, respectively, and store the results to the
corresponding output pixel. In next cycles other input pixels
are read and the same operation is performed.

Weight Stationary WS is the most common method
used in many notable neural network accelerators [5, 4, 7,
18, 2]. For WS method, each PE loads a convolution filter
and executes the convolution at all spatial locations of the
input. Once all the spatial positions are iterated, the PE will
load the next convolution filter. In this method, the filter
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weights are stored in the PE register. Fora H x W x C; in-
put feature map, and C, K x K xC; convolutions (where C,,
is the number of filters), the execution process is as follows.
The PE loads a single element from the convolution param-
eters to its local register and applies that to the whole input
activation. Afterwards, it moves to the next element and so
forth. For multiple PEs, we decompose it to a 2D grid of
P, x P, processors, where the P, dimension decomposes
the channels and the P, dimension decomposes the output
feature maps, C,, as shown in Figure 4. In summary, in the
WS mode the whole PE array keeps a P, x P, sub-matrix
of the weight tensor, and it performs matrix-vector multipli-
cations on a series of input activation vectors.

Output Stationary In the OS method, each PE exclu-
sively works on one pixel of the output activation map at a
time. In each cycle, it applies parts of the convolution that
will contribute to that output pixel, and accumulates the re-
sults. Once all the computations for that pixel are finished,
the PE moves to work on a new pixel. In case of multiple
PEs, each processor simply works on different pixels from
multiple channels. In summary, in the OS mode the whole
array computes a P. x P, block of an output feature map
over time. In each cycle, new inputs and weights needed
to compute the corresponding pixel are provided to each
PE. There are multiple ways that OS method could be exe-
cuted. These include Single Output Channel-Multiple Out-
put Pixel (SOC-MOP), Multiple Output Channels-Single
Output Pixel (MOC-SOP), and Multiple Output Channels-
Multiple Output Pixels (MOC-MOP) [3]. Here we use
SOC-MOP format.

Accelerators that adopt the weight stationary (WS) data
flow are designed to minimize the memory accesses for the
convolution parameters by reusing the weights of the con-
volution filter over several activations. On the other hand,
accelerators that use the output stationary (OS) data flow are
designed to minimize the memory access for the output ac-
tivations by accumulating the partial sums corresponding to
the same output activation over time. Therefore, the x and y
loops form the innermost loop in the WS data flow, whereas
the ¢, 7, and j loops form the innermost loop in the OS data
flow. Both data flows show good performance for convolu-
tional layers with 3 x 3 or larger filters. However, recent
trend on the mobile and embedded neural network architec-
ture is the wide adoption of lightweight building blocks, e.g.
1 x 1 convolutions, which have limited parallelism and data
reusability.

Hardware Simulation Setup Figure 5 shows the
block diagram of the neural network accelerator used as the
reference hardware for the inference speed and energy es-
timation. It consists of a 16 x 16 or 8 x 8 array of PEs,
a 128KB or 32KB global buffer, and a DMA controller to
transfer data between the DRAM and the buffer. A PE has
a 16-bit integer multiply-and-accumulate (MAC) unit and
a local register file. In order for the efficient acceleration

' from adjacent PE’s

Ctrl. MAC Unit File

I
to adjacent PE'’s

_ B8 es
O

Global Buffer

Figure 5: Block diagram of the neural network accelera-
tor used as the reference hardware for inference speed and
energy estimation of various neural networks.

of various configurations of the convolutional layer, the ac-
celerator supports the two WS and OS operating modes, as
explained before. To reduce the execution time and the en-
ergy consumption, the accelerator is designed to exploit the
sparsity of the filter weights [8, 27] in the OS mode as well.
In this experiment, we conservatively assume 40% of the
weight sparsity.

The accelerator processes the neural network one layer at
a time, and the operating mode which gives better inference
speed is used for each layer. The memory footprint of layers
ranges from tens of kilobytes to a few megabytes. If the
memory capacity requirement for a layer is larger than the
size of the global buffer, the tiling is applied to the z, y, c,
and k loops of the convolution in Algorithm 1. The order
and the size of the tiled loops are selected by using a cost
function which takes account of the inference speed and the
number of the DRAM accesses.

The performance estimator computes the number of
clock cycles required to process each layer and sums all the
results. The cycles consumed by the PE array and the global
buffer are calculated by modeling the timings of the internal
data paths and the control logic, and the DRAM access time
is approximated by using two numbers, the latency and the
effective bandwidth, which are assumed to be 100 cycles
and 16GB/s, respectively. For the energy estimation, we
use a similar methodology to [3], but the normalized energy
cost of components is slightly modified considering the ar-
chitecture of the reference accelerator.

4. Results

Embedded applications have a variety of constraints with
regard to accuracy, power, energy, and speed. To meet these
constraints we explore a variety of trade-offs. Results of
these explorations are reported in this section.

Training Procedure For training, we use a 227 x 227
center crop of the input image and subtract the ImageNet
mean from each input channel. We do not use any further
data augmentation and use the same hyper-parameters for
all the experiments. Tuning hyper-parameter can increase
the performance of some of the SqueezeNext variants, but
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Figure 6: Per-layer inference time (lower is better) is shown along the left y-axis for variants (vi-v5) of 1.0-SqNxt-23
architecture. Acceleration efficiency (number of MAC operations divided by total cycle counts) is shown by the dotted line
and the right y-axis. The top graph shows the results for an 16 x 16 array and the bottom a 8 X 8 PE array. Note the relatively
poor efficiency in early layers for the 16 x 16 PE array due to the small number of filter channels.

Table 2:  Performance of wider variations of the
SqueezeNext architecture. The first three rows use 1.5x
wider, and the last three rows shows 2Xx wider channels
as compared to the respective baseline models. The 2.0-
SqNxt-44 network is able to match VGG-19’s performance
with 31X less parameters. Furthermore, comparison with
MobileNet-1.0-224 shows comparable performance with
1.3% fewer parameters (2.0-SqNxt23v5).

Model |  Top-1 | Top-5 | Params
1.5-SqNxt-23 63.52 85.15 1.4M
1.5-SqNxt-34 65.99 87.40 2.1M
1.5-SgNxt-44 67.27 88.15 2.6M

VGG-19 68.50 88.50 138M
2.0-SgNxt-23 67.18 88.17 2.4M
2.0-SqNxt-34 68.46 88.78 3.8M
2.0-SqNxt-44 69.08 89.36 4.4M

MobileNet 67.50 (70.9) | 86.59 (89.9) | 4.2M
2.0-SqNxt-23v5 67.44 88.20 32M

it is not expected to change the general trend of our re-
sults. To accelerate training, we use a data parallel method,
where the input batch size is distributed among P proces-
sors (hereforth referred to as PE). Unless otherwise noted,
we use P = 32 Intel KNightsLanding (KNL), each con-
sisting of 68 1.4GHz Cores with a single precision peak of
6TFLOPS. All experiments were performed on VLAB sys-
tem which consists of 256 KNLs, with an Intel Omni-Path
100 series interconnect. We perform a 120 epoch training
using Intel Caffe with a batch size of B = 1024. In the data
parallel approach, the model is replicated to all workers and
each KNL gets an input batch size of B/P, randomly se-
lected from the training data and independently performs a
forward and backwards pass [6]. This is followed by a col-
lective all-reduce operation, where the sum of the gradients
computed through backward pass in each worker is com-
puted. This information is then broadcasted to each worker
and the model is updated.

Classification Performance Results We report the
performance of the SqueezeNext architecture in Table 1.
The network name is appended by the number of modules.
The schematic of each module is shown in Fig. 1. Sim-
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Table 3: Simulated hardware performance results in terms of inference time and energy for the 8 X 8 and 16 x 16 PE
array configurations. The time for each configuration is normalized by the number of cycles of the fastest network for each
configuration (smaller is better). Note how the variations of the baseline SqueezeNext model are able to achieve better
inference and power consumption. For instance, the 1.0-SqNxt-23v5 model is 12% faster and 17% more energy efficient than
the baseline model for 16 x 16 configuration. This is achieved by an efficient redistribution of depth at each stage (see Fig. 3).
Also note that the 2.0-SqNxt23-v5 has better energy efficiency as compared to MobileNet.

Model Params | MAC Top-1 Top-5 Depth 8x8, 32KB 16x16, 128KB
(x 1E+6) Time Energy | Time ‘ Energy
AlexNet 60.9 | 725M 57.10 80.30 — x5.46 | 1.6E+10 | x8.26 | 1.5E+10
SqueezeNet v1.0 1.2 | 837M 57.50 80.30 — x3.42 | 6.7TE+09 | x2.59 | 4.5E+09
SqueezeNet v1.1 1.2 | 352M 57.10 80.30 — x1.60 | 3.3E+09 | x1.31 | 2.4E+09
Tiny Darknet 1.0 | 495M 58.70 81.70 — x1.92 | 3.8E+09 | x1.50 | 2.5E+09
1.0-SgNxt-23 0.72 | 282M 58.98 82.33 | [6,6,8,1] | x1.17 | 3.2E+09 | x1.22 | 2.5E+09
1.0-SgNxt-23v2 0.74 | 228M 58.55 82.09 | [6,6,8,1] | x1.00 | 2.8E+09 | x1.13 | 2.4E+09
1.0-SgNxt-23v3 0.74 | 228M 58.18 81.96 | [4.8,8,1] | x1.00 | 2.7E+09 | x1.08 | 2.3E+09
1.0-SqNxt-23v4 0.77 | 228M 59.09 82.41 | [2,10,8,1] | x1.00 | 2.6E+09 | x1.02 | 2.2E+09
1.0-SqNxt-23v5 0.94 | 228M 59.24 82.41 | [2,4,14,1] | x1.00 | 2.6E+09 | x1.00 | 2.0E+09
MobileNet 4.2 | 574M | 67.50(70.9) | 86.59(89.9) — x2.94 | 9.1E+09 | x2.60 | 5.8E+09
2.0-SqNxt-23 24 | 749M 67.18 88.17 | [6,6,8,1] | x3.24 | 8.1E+09 | x2.72 | 5.9E+09
2.0-SqNxt-23v4 2.56 | 708M 66.95 87.89 | [2,10,8,1] | x3.17 | 7.5E+09 | x2.55 | 5.4E+09
2.0-SgNxt-23v5 3.23 | 708M 67.44 88.20 | [2,4,14,1] | x3.17 | T4E+09 | x2.55 | 54E+09

ply because AlexNet has been widely used as a reference
architecture in the literature, we begin with a comparison
to AlexNet. Our 23 module architecture exceeds AlexNet’s
performance with a 2% margin with 87 x smaller number of
parameters. Note that in the SqueezeNext architecture, the
majority of the parameters are in the 1 x 1 convolutions. To
explore how much further we can reduce the size of the net-
work, we use group convolution for the 1 x 1 filters with a
group size of two. Using this approach we are able to match
AlexNet’s top-5 performance with a 112X smaller model.

Deeper variations of SqueezeNext can actually cover a
wide range of accuracies as reported in Table 1. The deep-
est model we tested consists of 44 modules: 1.0-SqNxt-
44. This model achieves 5% better top-5 accuracy as com-
pared to AlexNet. SqueezeNext modules can also be used
as building blocks for other types of network designs. One
such possibility is to use a tree structure instead of the typi-
cal feed forward architecture as proposed in [28]. Using the
Iterative Deep Aggregation (IDA) structure, we can achieve
better accuracy, although it increases the model size. An-
other variation for getting better performance is to increase
the network width. We increase the baseline width by a mul-
tiplier factor of 1.5 and 2 and report the results in Table 2.
The version with twice the width and 44 modules (2.0-
SqNxt-44) is able to match VGG-19’s performance with
31x smaller number of parameters.

A novel family of neural networks particularly designed
for mobile/embedded applications is MobileNet, which
uses depth-wise convolution. Depth-wise convolutions re-
duce the parameter count, but also have poor arithmetic in-
tensity. MobileNet’s best reported accuracy results have
benefited from data augmentation and extensive experimen-

tation with training regimen and hyper-parameter tuning
(these results are reported in parentheses in Table 2). Aim-
ing to perform a fairer comparison with these results with
SqueezeNext, we trained MobileNet under similar training
regimen to SqueezeNext and report the results in Table 2.
SqueezeNext is able to achieve similar results for Top-1
and slightly better Top-5 with half the model parameters. It
may be possible to get better results for SqueezeNext with
hyper-parameter tuning which is network specific. How-
ever, our main goal is to show the general performance trend
of SqueezeNext and not the maximum achievable perfor-
mance for each individual version of it.

Hardware Performance Results Figure 6 shows the
per-layer cycle count estimation of 1.0-SqNxt-23, along
with its optimized variations explained below. For better
visibility, the results of the layers with the same configu-
ration are summed together, e.g. Conv8, Conv13, Convl18,
and Conv23, and represented as a single item. In the 1.0-
SqNxt-23, the first 7 x 7 convolutional layer accounts for
26% of the total inference time. This is due to its relatively
large filter size applied on a large input feature map, There-
fore, the first optimization we make is replacing this 7 x 7
layer with a 5 x 5 convolution, and construct 1.0-SqNxt-23-
v2 model. Moreover, we plot the accelerator efficiency in
terms of flops per cycle for each layer of the 1.0-SqNxt-23
model. Note the significant drop in efficiency for the lay-
ers in the first module. This drop is more significant for the
16 x 16 PE array configuration as compared to the 8 x 8
one. The reason for this drop is that the initial layers have
very small number of channels which needs to be applied
a large input activation map. However, later layers in the
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network do not suffer from this, as they contain filters with
larger channel size. To resolve this issue, we explore chang-
ing the number of modules to better distribute the work-
load. The baseline model has 6 — 6 — 8 — 1 modules before
the activation map size is reduced at each stage, as shown
in Fig. 3. We consider three possible variations on top of the
v2 model. In the v3/v4 variation, we reduce the number of
the blocks in the first module by 2/4 and instead add it to the
second module, respectively. In the v5 variation, we reduce
the blocks of the first two modules and instead increase the
blocks in the third module. The results are shown in Table 3.
As one can see, the v5 variation (/.0-SgNxt-23v5) actually
achieves better top-1/5 accuracy and has much better perfor-
mance on the 16 x 16 PE array. It uses 17% lower energy
and is 12% faster as compared to the baseline model (i.e.
1.0-SqNxt-23). In total, the latter network is 2.59x/8.26 x
faster and 2.25%/7.5x more energy efficient as compared
to SqueezeNet/AlexNet without any accuracy degradation.

Very similar performance improvement is observed with
the v4 variation, with only 50K higher number of parame-
ters. We also show results comparing MobileNet and 2.0-
SqNxt-23v5 which matches its classification performance.
SqueezeNext has lower energy consumption, and achieves
better speedup when we use a 16 x 16 PE array as compared
to 8 x 8. The reason for this is the inefficiency of depthwise-
separable convolution in terms of hardware performance,
which is due to its poor arithmetic intensity (ratio of com-
pute to memory operations) [24]. This inefficiency becomes
more pronounced as higher number of processors are used,
since the problem becomes more bandwidth bound. A com-
parative plot for trade-offs between energy, inference speed,
and accuracy for different networks is shown in Fig. 7. As
one can see, SqueezeNext provides a family of networks
that provide superior accuracy with good power and infer-
ence speed.

5. Conclusions

In this work, we presented SqueezeNext, a new fam-
ily of neural network architectures that is able to achieve
AlexNet’s top-5 performance with 112x fewer parame-
ters. A deeper variation of the SqueezeNext architecture
exceeds VGG-19’s accuracy with 31x fewer parameters.
MobileNet is a very novel network for Mobile applications,
but SqueezeNext was able to exceed MobileNet’s top-5 ac-
curacy by 1.6%, with 1.3x fewer parameters. SqueezeNext
accomplished this without using depthwise-separable con-
volutions that are troublesome for some mobile processor-
architectures. The baseline network consists of a two-stage
bottleneck module to reduce the number of input channels
to spatial convolutions, use of low rank separable convo-
lutions, along with an expansion module. We also restrict
the number of input channels to the fully connected layer to
further reduce the model parameters. More efficient varia-
tions of the baseline architecture are achieved by simulating
the hardware performance of the model on the PE array of
a realistic neural network accelerator and reported the re-
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Figure 7: The spectrum of accuracy versus energy and in-
ference speed for SqueezeNext, SqueezeNet (v1.0 and vi.1),
Tiny DarkNet, and MobileNet. SqueezeNext shows superior
performance (in both plots higher and to the left is better).
The circle areas are proportional to square root of model
size for each network.

sults in terms of power and inference cycle counts. Using
per layer simulation analysis, we proposed different varia-
tions of the baseline model that can not only achieve better
inference speed and power energy consumption, but also
got better classification accuracy with only negligible in-
crease in model size. The tight coupling between neural
net design and performance modeling on a neural net ac-
celerator architecture was essential to get our result. This
allowed us to design a novel network that is 2.59x/8.26 x
faster and 2.25x/7.5x more energy efficient as compared
to SqueezeNet/AlexNet without any accuracy degradation.

The resulting wide of range of speed, energy, model-size,
and accuracy trade-offs provided by the SqueezeNext fam-
ily allows the user to select the right neural net model for a
particular application.
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