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Abstract

Computer vision performances have been significantly

improved in recent years by Convolutional Neural Networks

(CNN). Currently, applications using CNN algorithms are

deployed mainly on general purpose hardwares, such as

CPUs, GPUs or FPGAs. However, power consumption,

speed, accuracy, memory footprint, and die size should all

be taken into consideration for mobile and embedded ap-

plications. Domain Specific Architecture (DSA) for CNN is

the efficient and practical solution for CNN deployment and

implementation. We designed and produced a 28nm Two-

Dimensional CNN-DSA accelerator with an ultra power-

efficient performance of 9.3TOPS/Watt and with all process-

ing done in the internal memory instead of external DRAM.

It classifies 224x224 RGB image inputs at more than 140fps

with peak power consumption at less than 300mW and an

accuracy comparable to the VGG benchmark. The CNN-

DSA accelerator is reconfigurable to support CNN model

coefficients of various layer sizes and layer types, includ-

ing convolution, depth-wise convolution, short-cut connec-

tions, max pooling, and ReLU. Furthermore, in order to

better support real-world deployment for various applica-

tion scenarios, especially with low-end mobile and embed-

ded platforms and MCUs (Microcontroller Units), we also

designed algorithms to fully utilize the CNN-DSA acceler-

ator efficiently by reducing the dependency on external ac-

celerator computation resources, including implementation

of Fully-Connected (FC) layers within the accelerator and

compression of extracted features from the CNN-DSA ac-

celerator. Live demos with our CNN-DSA accelerator on

mobile and embedded systems show its capabilities to be

widely and practically applied in the real world.

1. Introduction

Computers have been divided into servers, desktop com-

puters and embedded computers[10]. The basic building

blocks for application domain-specific integrated comput-

ers include the input, output, data path, memory and con-

trol - as with an ordinary computer[5]. Typical performance

metrics of the computer system include the execution time

and power consumption[10]. Domain Specific Architec-

tures (DSA) are the only path forward for improved perfor-

mance and energy efficiency given the end of Moores Law

and Dennard scaling[11].

Cellular Neural Networks or Cellular Nonlinear Net-

works have been applied to many different fields and prob-

lems including, but not limited to, image processing since

1988[4]. However, most of the prior art approaches are ei-

ther based on software solutions (e.g., Convolutional Neu-

ral Networks (CNN)[17, 16, 32, 24, 9], Recurrent Neu-

ral Networks[21], etc.) or based on hardware that are de-

signed for other purposes (e.g., graphic processing, general

computation, etc.). As a result, prior CNN approaches are

too slow in term of computational speed and/or too, ex-

pensive, thereby impractical for processing large amounts

of imagery data. The imagery data can be from any two-

dimensional signals (e.g., a still photo, a picture, a frame of

a video stream, etc.)

There has been much interest in designing ASIC

(Application-Specific Integrated Circuit) chips for com-

puter vision tasks to efficiently accelerate CNN. Chen, Kr-

ishna, and et al. designed and made 65nm Eyeriss with the

peak performance at 42GOPS at 200MHz core clock and

60MHz link clock, resulting in a frame rate of 34.7fps on the

five convolutional layers in AlexNet and a measured power

of 278mW at 1V[3]. The power efficiency of Eyeriss equals

151GOPS/Watt. Han, Liu, and et al. designed and made

EIE with a processing power of 102 GOPS working directly

on a compressed network, corresponding to 3 TOPS on an

uncompressed network, and processes FC layers of AlexNet

with a power dissipation of only 600mW[8]. The power ef-

ficiency of EIE equals 170GOPS/Watt, or corresponding to

5TOPS/Watt on an uncompressed network. Chen, Du, and

et al. designed and made 65nm DianNao capable of per-

forming 452 GOP/s at 485mW[1]. The power efficiency of
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Diannao equals 932GOPS/Watt. Du, Fasthuber and et al.

designed and made a 65 nm CMOS technology with a peak

performance of 194 GOP/s at 320.10 mW[6]. The power

efficiency of ShiDianNao equals 606GOPS/Watt. Chen,

Luo and et al. designed and made 28nm 15.97Watt 5.58

TeraOps/s for 16-bit operation[2]. The power efficiency of

DaDianNao equals 349.4GOPS/Watt. Jouppi, Young and

et al. designed and made TPU with 92TOPS typically us-

ing 40 Watts[14]. The power efficiency of TPU equals

2.3TOPS/Watt.

We designed a Convolutional Neural Networks Do-

main Specific Architecture (CNN-DSA) accelerator for ex-

tracting features out of an input image. It processes

224x224RGB images at 140fps with ultra power-efficiency

of 9.3TOPS/Watt and peak power less than 300mW. The

die size of CNN-DSA accelerator is 7mm by 7mm. This

architecture mainly focuses on inference, rather than train-

ing. The designed CNN-DSA contains a plurality of iden-

tical CNN processing engines operatively coupled to an in-

put/output (I/O) data bus. A CNN processing engine con-

troller is configured on the IC for controlling various oper-

ations of the CNN processing engines. Each CNN process-

ing engine includes a CNN processing block, a first set of

memory buffers for storing imagery data and a second set

of memory buffers for storing filter coefficients.

In the sections below, we will first provide our hard-

ware design for CNN-DSA accelerator, and then the hard-

ware performance metrics measured on test bench, fol-

lowed by its implementation on mobile and embedded plat-

forms with live demos. After that, we will show that

our CNN-DSA can support the majority of CNN layer

types through algorithm designs on the accelerator, and also

proved that ResNet[9], MobileNet[12] and ShiftNet[27] are

special cases of VGG[24]-Type model. For the convenience

of this paper, we define the CNN model as VGG-Type CNN

models if the layer types only consist of ReLU, 3x3 con-

volution, and max pooling. Lastly, we design algorithms

and show the experimental results on the CNN-DSA accel-

erator for real-world applications on mobile and embeded

platforms, and even very low-end MCUs (Microcontroller

Unit). The target is to reduce the computation outside the

CNN-DSA accelerator by fully utilizing our low power and

ultra efficient CNN-DSA accelerator, including implemen-

tation of FC (Fully Connected) layers inside CNN-DSA ac-

celerator, and compression of features extracted from CNN-

DSA accelerator.

2. CNN-DSA hardware design

For convolution on 2-D image, both the convolution fil-

ters and input data in each channel are two dimensional. We

design a matrix architecture of CNN-DSA Engine (CE)[30]

as shown in Figure 1. CNN processing engines extract fea-

tures out of an input image by performing multiple layers

Figure 1. CNN-DSA processing engine

of 3x3 convolutions with rectifications and 2x2 pooling op-

erations. It includes a CNN processing block, a first set of

memory buffers for storing imagery data and a second set

of memory buffers for storing filter coefficients. The CNN

processing block is configured to simultaneously perform

3x3 convolutions at MxM pixel locations using received im-

agery data and corresponding filter coefficients, In Figure 1

we show our implementation of M = 14. Imagery data rep-

resents a (M+2)-pixel by (M+2)-pixel region of the input

image. The CNN processing block further performs recti-

fication and/or 2x2 pooling operations as directed. When

two or more CNN processing engines are configured on the

integrated circuit (IC), the CNN processing engines connect

to one another as a loop via a clock-skew circuit for cyclic

data access.

In Figure 2 we show the block diagram of our CNN-

DSA which contains a plurality of identical processing en-

gines operatively coupled to the input/output (I/O) data bus.

The CNN-DSA contains an NE number of CNN process-

ing engines connected in a loop via a clock-skew circuit. In

Figure 2 we show our implementation of NE = 16. The

CNN processing engines are connected to one another to

form a cyclic data access loop via a clock-skew circuit. The

clock-skew circuit enables the CNN processing engine to

receive imagery data from a first neighbor CNN process-

ing engine while sending its own imagery data to a second

neighbor CNN processing engine. A CNN processing en-

gine controller is also configured on the IC for controlling

operations of the CNN processing engine. The imagery data

and filter coefficients are arranged in a specific scheme to fit

the data access pattern that the CNN based digital integrated

circuit requires to operate. The specific scheme is deter-

mined based on the number of imagery data, the number of

filters and the characteristics of the CNN based digital IC,

such as the number of CNN processing engines, the connec-

tion direction of clock-skew circuit and the number of the
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Figure 2. CNN-DSA block diagram

I/O data bus. The method for arranging imagery data and

filter coefficients includes the following steps and actions:

(a) determining the number of imagery data groups required

for storing NIM sets of imagery data in the CNN process-

ing engines, with each imagery data group containing NE

sets of the NIM sets of imagery data, where NE is the

number of CNN processing engines connected in a loop via

a clock-skew circuit, and NIM is a positive integer; (b) cir-

cularly storing the NE sets of the imagery data of each im-

agery data group in the respective CNN processing engines;

(c) repeating (b) for the remaining imagery data groups; (d)

determining the number of filter groups required for stor-

ing all filter coefficients for NF number of filters in the

CNN processing engines, with each filter group containing

NE sets of filter coefficients and said each filter group be-

ing further divided into one or more subgroups with each

subgroup containing a portion of the NE sets that corre-

lates to a corresponding group of the imagery data groups,

where NF is a positive integer; (e) storing the portion of

the NE sets of filter coefficients in a corresponding one of

the CNN processing engines, with the portion of filter coef-

ficients being arranged in a cyclic order for accommodating

convolution operations with imagery data received from an

upstream neighbor CNN processing engine; and (f) repeat-

ing (e) for the remaining subgroups; and (g) repeating (e)

and (f) for the remaining filter groups.

The CNN-DSA contains 16x42x42=28224 MAC units,

and 9MB SRAM to hold the coefficients. All process-

ings are in memory by CNN Domain Specific Floating

Point (CNN-DSFP), enabling it to operate without external

DRAM. CNN-DSFP has totally 9-bits total for image data

and activations, where 5 bits for mantissa and 4 bits for ex-

ponents. Filter coefficients are allocated 15-bits total, the

mantissa 12 bits, exponents 2 bits, and 1 bit sign.

Our design of the CNN-DSA accelerator is optimized for

VGG-Type CNN models. Specifically, it only consists of

convolution kernels of size 3x3. In the next section, we will

prove that our design can implement the majority of CNN

models, including but not limited to, Resnet, MobileNet and

ShiftNet.

2.1. Hardware system implementation with CNN­
DSA as coprocessor

When building a hardware system, the CNN-DSA accel-

erator serves as a coprocessor. The host processor could be

a mobile or embeded processor, or other host CPU, which

serves as the controller. The interface between the host pro-

cessor and the CNN-DSA accelorator is USB, EMMC or

PCIe. To run inference with the CNN-DSA accelerator,

the host processor first loads weights and instructions of

the CNN model configurations to the on-chip SRAM. After

that, the host processor sends image data to the CNN-DSA

accelerator, and the data goes through the convolution pro-

cessed by the coefficients loaded in the CNN-DSA acceler-

ator. When the CNN-DSA accelerator finishes convolution,

it signals the host processor and sends back the convolution

output to the host processor for next step processing.

3. CNN-DSA hardware performance measur-

ments

3.1. Speed and power consumption measurement

The CNN-DSA accelerator speed and power consump-

tion measurements are shown in Figure 3. The equipments

used include: A test board with CNN-DSA accelerator, a

Fluke 179 DMM core voltage monitor, a Protek 506 DMM

current monitor in Amps, an Agilent E3630A DC Power

Supply which supplies core voltage power at 0.90 Volts nor-

mal, a Tektronix TDS 3054 Digital Phosphor Oscilloscope,

a FTDI USB bridge UMFT601x, and Dell PowerEdge T30

PC with Ubuntu.

Figure 3 shows that, we process the RGB image of size

224x224 at a speed of 142.86fps when the CNN-DSA ac-

celerator is set at 66MHz. Based on the readings from me-

ters, the voltage is 0.904 volts, and the current is 0.15 Amps.

Thus the power consumption is 0.904x0.15=0.1356W. Con-

sidering the different temperature conditions, we estimate

that the power consumption in worst temprature conditions

should be under 400mW, so the corresponding power ef-

ficiency is 28224x2x66M/0.4 = 9.3 TOPS/Watt. We also

measured with frequency set to 50MHz, and the power con-

sumption is less than 300mW.

3.2. Accuracy on ImageNet[23] dataset

Table 1 compares the accuracy and model size of the

CNN models in our accelerator with other published mod-

els. For fair comparison, we only compared the convolu-

tional layers sizes, without FC layers. Here Gnet-1 is our

compressed model using CNN-DSFP with same 13 layer
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Figure 3. CNN-DSA accelerator speed and power consumption

measurement. It is recommanded to zoom in this figure to see

processing speed in fps in the top-left portion of the photo.

Model Accuracy Top-1 Size(MB)

AlexNet[16] 57.1 15.0

VGG-16[24] 71.5 58.9

Googlenet[25] 69.8 23.2

ShuffleNet-2x[33] 70.9 19.2

1.0 MobileNet-224[12] 70.6 15.9

Compact DNN[28] 68.9 13.6

Gnet-1(ours) 67.0 5.5

Gnet-2(ours) 58.1 2.8

Table 1. Comparison of model size and accuracy on ImageNet[23].

convolutional architecture as VGG, and the FC layers are

deployed outside the accelerator. In Section 6, we will show

that FC can be implemented within our CNN-DSA acceler-

ator as well. Gnet-2 is almost the same architecture as Gnet-

1 except that we halved the number of channels for layers 1

through 10, and kept the same number of 512 channels for

layer 11 through 13 . We can see that Gnet-1 compressed

the original VGG model by more than 10x with the cost of

only a 4.5% decrease of Top-1 accuracy. And Gnet-2 fur-

ther compressed the VGG model by more than 20x and the

accuracy is still 1% better than AlexNet.

4. CNN-DSA accelerator deployed on mobile

and embedded platforms

Figure 4 shows an image classification demo on a mobile

platform. We use a Qualcomm 820 development board with

an Android system. It has 8 cores, with 4 at 1.6GHz and 4

at 2.1GHz. The memory is 2.8GB and storage is 19GB. The

interface to the CNN-DSA accelerator is USB 3.0. Figure

5 shows our Chinese handwritten OCR (Optical Character

Recognition) demo on the same embedded platform.

Figure 4. Image recognition on CNN-DSA accelerator connected

to mobile platform.

Figure 5. OCR on CNN-DSA accelerator connected to mobile

platform.

5. Algorithm design on CNN-DSA to support

various CNN models

In this section, we design algorithms for CNN-DSA to

implement various CNN models. And we prove that the ma-

jority of CNN layer types can be replaced and implemented

by VGG-Type layers with 3x3 convolutional filters.

5.1. ResNet is a special case of VGG­Type model[20]

In addition to convolutional layers, activation layers and

pooling layers, ResNet[9] requires shortcut layers. It typ-

ically contains an original convolutional layer W1 along

with a second original convolutional layer W2 followed by

element-wise add operations, as shown in Figure 6. Since

3x3 convolutional operations are conducted with very fast

speed in the CNN-DSA accelerator, it would therefore be

desirable to implement a deep neural network using 3x3

convolutional filter kernels to replace such operations in a
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Figure 6. Example of a shortcut layer.

CNN-DSA. By performing a network surgery and modify-

ing the architecture of the trained ResNet, we can replace

the shortcut layer in Figure 6 by a set of three particular con-

volutional layers of multiple 3x3 filters as shown in Figure

7. In Figure 7, first particular convolutional layer contains

2NxN of 3x3 filter kernels formed by placing the original

NxN of 3x3 filter kernels of W1 in the left side and NxN of

3x3 filter kernels of an impulse response (or, identity-value)

convolutional layer P1 in the right side. Each of the 3x3

kernels of P1 contains numerical value “0” except for the

kernels located on the diagonal of the NxN kernels. Each

of the diagonal kernels contains the numerical value “0” in

each of the eight perimeter positions and “1” in the center

position. All off-diagonal kernels contains nine “0”. Be-

cause of this, the first particular convolutional layer is con-

figured for N-channels or an N-‘feature maps’ input with

2N-channels output. The second particular convolutional

layer contains 2Nx2N of 3x3 filter kernels formed by plac-

ing NxN of 3x3 filter kernels of the second original convolu-

tional layer W2 in the upper left corner and NxN of 3x3 fil-

ter kernels of impulse response convolutional layer P1 in the

lower right corner, and two zero-value convolutional layers

P0 in either off diagonal corner. The zero-value convolu-

tional layers P0 contains NxN of 3x3 filter kernels with all

zero numerical values in each of the 3x3 kernels. As a re-

sult, the second particular convolutional layer is configured

for a 2N-channel input and 2N-channel output. The third re-

placement convolutional layer contains Nx2N of 3x3 filter

kernels formed by two impulse response convolutional layer

P1 each containing NxN of 3x3 filter kernels in a vertical

stack. As a result, the third particular convolutional layer is

configured for a 2N-channel input and N-channel output. It

is trivial to see that the output from Figure 7 is equal to that

from Figure 6. By repeating the above mentioned method

several times for all the shortcut in Resnet, we can convert

all the shortcut into VGG type layers. Thus, ResNet is a

special case of VGG-Type network. One point to mention

here: we can only deploy shallow or narrow ResNet model

due to the memory limitation of the accelerator.

5.2. MobileNet is also special case of VGG­Type
model[29]

In additional to convolutional layers, activation layers

and pooling layers, MobileNet[12] requires operations of

depthwise separable layers. It typically contains a combina-

tion of a depthwise convolutional layer followed by a point-

wise convolutional layer as shown in Figure 8. Input and

depthwise convolution contain P feature maps or channels,

while the output contains Q feature maps. P and Q are pos-

itive integers. Pointwise convolutional layer contains QxP

of 1x1 filter coefficients. Similarly, we change the architec-

ture of the trained MobileNet by replacing the depthwise

convolution with the combination of multiple 3x3 filters,

and set the weight to a specific value as shown in Figure

9, such that these filters are equal to the functionality of a

depthwise convolution. Figure 9 shows an example of the

first replacement convolutional layer, which contains PxP

number of 3x3 filter kernels formed by placing Px1 num-

ber of 3x3 filter kernels (W1, W2, ..., WP) of the depthwise

convolutional layer on respective diagonal locations. The

remaining off-diagonal locations of the PxP number of 3x3

filter kernels are filled by zero-value 3x3 filter kernels. As

a result, the first replacement convolutional layer is config-

ured for replacing the depthwise convolutional layer. The

second replacement convolutional layer shown in Figure 9

contains QxP number of 3x3 filter kernels formed by plac-

ing the QxP number of 1x1 filter coefficients Y11, Y21,

Y31, ..., YQ1, Y12, Y22, ..., YQ2, ..., Y1P, Y2P, ..., YQP

of the pointwise convolutional layer in the center position of

the respective QxP number of 3x3 filter kernels, and numer-

ical value zero in eight perimeter positions. As a result, the

second replacement convolutional layer is configured for re-

placing the pointwise convolutional layer. Similarly, we uti-

lize many 3x3 filters to implement the equivalent depth wise

convolution in the deep neural network, and finally replace

the depthwise convolution with the VGG-Type layers. Us-
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Figure 7. Implement Resnet in VGG-Type 3x3 convolutional filters.

Figure 8. Depth-wise convolution followed by point-wise convo-

lution.

Figure 9. Implement MobileNet with VGG-Type 3x3 convolu-

tional filters.

ing the same scheme, Inception[25] and ShiftNet[27] can

also be proved as special cases of the VGG-Type model.

6. Algorithm design and experiments on CNN-

DSA for various application scenarios

Considering CNN-DSA accelerator applications in real-

world scenarios, we design algorithms that best utilize the

fast speed and low power consumption of CNN-DSA accel-

erator to best fit mobile and embedded platforms.

6.1. Basic model applications with CNN­DSA ac­
celerator and experiment result on CASIA­
HWDB[31]

Traditional deep neural network architectures for 2-D in-

puts generally have two parts: convolution layers and FC

layers. Notably, convolution layers require less storage for

holding coefficients but require significant amounts of com-

putation (for example, VGG16 [24] requires 15 GFLOPs)

for Mult-Adds due to the repeated applications of filters. On

the contrary, FC layers require less computation for Mult-

Adds but necessitate a significant amount of storage (for ex-

ample, VGG16 requires storage for 123M FC coefficients)

for storing coefficients due to inner-products.

VGG-Type models are optimally accelerated in the

CNN-DSA. The basic application mode is to use the CNN-

DSA accelerator as the feature extractor, so most of the

heavy-lifting convolutional computations are taken care of

by the power efficient accelerator. The output features from

the CNN-DSA accelerator connect to the external devices

for the FC computation. The FC which is typically handled

by either cpu or gpu, consumes more storage and memory

but little computation and power. We show one experiment

for this basic application mode on the CNN-DSA accelera-

tor. The data set we used here is the offline handwritten iso-

lated character recognition CASIA-HWDB[31] released by

CASIA (the Institute of Automation of Chinese Academy

of Sciences (CASIA)). We used the designed training and

testing data sets of unconstrained offline Chinese handwrit-

ing database level-1 set of GB2312-80 with 3755 Chinese

characters to train our model and evaluate accuracy perfor-

mance. We used the same architecture as VGG-16[24] and

trained the CNN-DSFP fixed point model to load it into our

CNN-DSA accelerator, and the fully connected is processed
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by mobile device with Android system, as shown in Fig-

ure 5. We obtained 94.95% accuracy on the testing data

running low power CNN-DSA accelerator connected to a

mobile device. The winning model of the ICDAR[31] com-

petition on this data set attained a 94.77% accuracy in 2013

[31] and a 92.18% accuracy in 2011 [26].

6.2. Mobile friendly: compress extracted features
directly from CNN­DSA accelerator[19]

For tasks like object classification and face authentica-

tion, feature extraction from input is useful. Traditional

methods of face feature extraction use one or several layers

of the FC layers in the CNN network. Through inner prod-

uct computation, the output of FC layer dimension would be

reduced from convolution layers of very high dimensional

data. For example, the convolution output after pooling in

VGG-16 gives a 512x7x7=25088 high dimensional feature

which the FC layer will project into a relatively low dimen-

sional space, like 4096, or 1024, or 128, as done by[22].

But the disadvantage of this feature extraction is that the

model size remains very large, especially for mobile de-

vices. For example, the FC layer connecting convolution

layers in VGG-16 will require 25k*4k=100M parameters.

At the same time, the runtime performance will be low due

to the high computation complexity.

Our CNN-DSA accelerator can load the entirety of the

VGG net into the chip, and completes the heavy-lifting

convolution computations locally. We design a method of

extracting features directly from convolution layers in the

CNN-DSA with a very small number of channels. For a

given image input, the output from the CNN-DSA acceler-

ator completes feature extraction without using FC layers.

After our invention method is implemented in our CNN-

DSA accelerator, it requires minimum hardware support for

feature extraction. Feature vectors are obtained directly

from the convolution layer output, instead of from the FC

layers. We also use very small number of channels from

the last convolution layer. Thus, the output from our CNN-

DSA accelerator requires minimum hardware requirement

from outside the accelerator.

We show our method implemented in the CNN-DSA in

a face authentication experiment. We have a collected data

set with 21278 different people, each with at least 10 pic-

tures. First, we trained our model using the same model ar-

chitecture as VGG using our CNN-DSFP fixed point. Then

we changed the number of channels for 5 3 from 512 to

8,4,2,1, but still connected to the same FC layers of fc6 of

size 4096, fc7 of size 4096, and fc8 of size 21278. After

training, the convolutional layers of the model are loaded

into CNN-DSA, and can be used directly for face feature ex-

traction from the output of convolutional layer 5 3. The FC

layers are no longer used. Input face image will be feature-

extracted directly from the output of the CNN-DSA. Thus,

#Channels LFW Verification Accuracy

512 95.57

8 94.92

4 94.76

2 94.42

1 94.25

Table 2. Compress the number of channels of VGG 5-3 layer

the extracted feature will only be a vector of 49x1 (7x7x1)

for the model with 5 3 set to 1 channel. This low dimen-

sional data is feasible for computation in very low end de-

vices like MCUs (Microcontroller Unit).

We use the LFW [13] data set for face authentication

performance evaluation. For preprocessing before perfor-

mance evaluation, we only made a cropping using dlib[15]

face detection on the original LFW data set. The same

preprocessing used in VGG Face[22] gives an accuracy of

92.83% with no alignment and no embedding. Table 2

shows the result on LFW unrestricted setting with a com-

pressed number of channels from CNN-DSA. We have de-

creased the number of channels all the way down from 512

to 1 but accuracy performance degradation is negligible. In

this way we compressed the size of extracted features. The

trade off of using this method is that the robustness for face

verification degrades a little bit. However, the computaion

needed in addition to the accelerator is minimized.

6.3. Implement FC inside CNN­DSA
accelerator[18]

FC computations are mainly composed of inner-

products, which can easily be replaced by convolution lay-

ers if the input data size of the convolution layers is the

same as that of the inner-product. However, our CNN-DSA

accelerator only supports 3x3 convolution kernel, because

large kernel size convolutional layers are not efficient in ma-

trix products. As pointed out by the VGG paper[24], two

connected 3x3 convolution kernels have the same reception

field as that of a 5x5 kernel, and three connected 3x3 ker-

nels can have the same reception field as that of 7x7 kernel.

With operations of convolutional layers performed very fast

in our CNN-DSA accelerator, the computation bottleneck

in deep learning networks is in FC which are processed by

CPU or GPU. We provide a solution for utilizing CNN-DSA

accelerator in classification tasks without FC. We use mul-

tiple layers of 3x3 kernels to approximate larger-sized ker-

nels. By using L layers of connected 3x3 kernels, we can

approximate the inner-product for an input feature map of

(2*L+1)*(2*L+1) size. For example, for a feature map in-

put of size 7x7, we can use L=3 layers of connected 3x3

convolution kernels to approximate the inner-product. For

a feature map input of size 7x7, applying a 3x3 convolution

without padding will output a 5x5 feature map. Applying
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Figure 10. CNN model architecture of implementation of Fully

Convolutional Classification using only 3x3 convolution kernels.

a second layer of size 3x3 without padding, connected to

this 5x5 feature map, will result in an output of a 3x3 fea-

ture map. Finally, applying a third layer of size 3x3 without

padding, connected to this 3x3 feature map, will output a

1x1 map, which is a scalar. This scalar can be treated as

equal to the result given by an inner-product of the original

7x7 feature map. We can still use L′
> (F-1) /2 (L′ is an-

other possible number of layers of connected 3x3 kernels)

to arrive at the (2L′+1) layers approximation for the inner-

product by simply increasing the redundancy. As a result,

FC is implemented within the CNN-DSA accelerator.

We show an example of implementing FC in CNN-DSA

on the Kaggle competition cats and dogs data set[7]. The

CNN architecture is shown in Figure 10. The first five ma-

jor layers are the same as VGG-16, with the exception that

the 5 3 layer has 16 channels. We also add a sixth major

layer consisted of 3 sub-layers, with respectively 32 chan-

nels, 32 channels and 2 channels in these 3 sub-layers. On

this data set, we achieved 97.4% accuracy with the FC and

convolution layers all inside the accelerator. This gives the

same accuracy as the traditional (convolution + FC layered)

solutions. This model also makes use of our CNN-DSFP

fixed point model.

Although we only show a special case of binary classifi-

cation, it indicates the potential of using our chip in cheap,

low-end computation devices. Classification computation is

done within the chip, while only a tiny portion of calcula-

tion is done outside the chip.

7. Conclusion and future work

In conclusion, we have designed a CNN-DSA accel-

erator which achieved a power consumption of less than

300mW and an ultra-power efficiency of 9.3TOPS/Watt.

Demos on mobile and embedded systems show its applica-

tions in real-world scenarios. This 28nm Two-Dimensional

CNN-DSA accelerator attains a 140fps at an accuracy com-

parable to that of the VGG architecture. The CNN-DSA

accelerator has four main advantages: First, it is a CNN-

specific matrix architecture and distributes memory blocks

as the center of the processing unit. Second, it is data driven

and enables full parallel processing. Third, CNN domain-

specific floating point data structures efficiently use mem-

ory and completes all processing in internal memory rather

than external DRAM. Fourth, it allows for a flexible pro-

cess unit expansion. We also proved that shorcut layer types

and depthwise separable convolution layer types are special

cases of VGG-Type layers. The current CNN-DSA accel-

erator supports ResNet and MobileNet, but it is originally

optimized for VGG-Type CNN models. Future work in-

volves designing a CNN-DSA optimized for ResNet and

MobileNet, among other architectures.
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