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Abstract

In this paper, we introduce a challenging new dataset,

MLB-YouTube, designed for fine-grained activity detection.

The dataset contains two settings: segmented video clas-

sification as well as activity detection in continuous videos.

We experimentally compare various recognition approaches

capturing temporal structure in activity videos, by classi-

fying segmented videos and extending those approaches to

continuous videos. We also compare models on the ex-

tremely difficult task of predicting pitch speed and pitch type

from broadcast baseball videos. We find that learning tem-

poral structure is valuable for fine-grained activity recogni-

tion.

1. Introduction

Activity recognition is an important problem in com-

puter vision with many applications within sports. Every

major professional sporting event is recorded for entertain-

ment purposes, but is also used for analysis by coaches,

scouts, and media analysts. Many game statistics are cur-

rently manually tracked, but could be replaced by computer

vision systems. Recently, the MLB has used the PITCHf/x

and Statcast systems that are able to automatically capture

pitch speed and motion. These systems use multiple high-

speed cameras and radar to capture detailed measurements

for every player on the field. However, much of this data is

not publicly available.

In this paper, we introduce a new dataset, MLB-

YouTube, which contains densely annotated frames with ac-

tivities from broadcast baseball videos. Unlike many exist-

ing activity recognition or detection datasets, ours focuses

on fine-grained activity recognition. As shown in Fig. 1,

the scene structure is very similar between activities, often

the only difference is the motion of a single person. Addi-

tionally, we only have a single camera viewpoint to deter-

mine the activity. We experimentally compare various ap-

proaches for temporal feature pooling for both segmented

video classification as well as activity detection in continu-

ous videos.

(a) (b) (c)

Figure 1: Examples of (a) No swing, (b) Swing and (c)

Bunting. This task is quite challenging as the difference

between these activities is very small.

2. Related Works

Activity recognition has been a popular research topic

in computer vision [1, 10, 20, 25, 16]. Hand-crafted fea-

tures, such as dense trajectories [25] gave promising re-

sults on many datasets. More recent works have focused on

learning CNNs for activity recognition [3, 22]. Two-stream

CNNs take spatial RGB frames and optical flow frames as

input [20, 7]. 3D XYT convoltuional models have been

trained to learn spatio-temporal features [22, 3, 23, 8]. To

train these CNN models, large scale datasets such as Ki-

netics [11], THUMOS [9], and ActivityNet [6] have been

created.

Many works have explored temporal feature aggregation

for activity recognition. Ng et al. [13] compared various

pooling methods and found that LSTMs and max-pooling

the entire video performed best. Ryoo et al. [17] found that

pooling intervals of different locations/lengths was benefi-

cial to activity recognition. Piergiovanni et al. [14] found

that learning important sub-event intervals and using those

for classification improved performance.

Recently, segment-based 3D CNNs have been used to

capture spatio-temporal information simultaneously for ac-

tivity detection [26, 19, 18]. These approaches all rely on

the 3D CNN to capture temporal dynamics, which usually

only contain 16 frames. Some works have studied longer-

term temporal structures [3, 10, 13, 24], but it was gener-

ally done with a temporal pooling of local representations or

(spatio-)temporal convolutions with larger fixed intervals.

Recurrent neural networks (RNNs) also have been used to

model activity transitions between frames [27, 28, 5].
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(a) (b) (c) (d)

Figure 2: Examples of some of the activities in the MLB-YouTube Dataset. The activities are (a) Hit, (b) Bunt, (c) Hit by

pitch, and (d) No activity (hard negatives). The difference between the activities is quite small, making this a challenging

task.

3. MLB-YouTube Dataset

We created a large-scale dataset consisting of 20 base-

ball games from the 2017 MLB post-season available on

YouTube with over 42 hours of video footage. Our dataset

consists of two components: segmented videos for activ-

ity recognition and continuous videos for activity classi-

fication. Our dataset is quite challenging as it is created

from TV broadcast baseball games where multiple differ-

ent activities share the camera angle. Further, the mo-

tion/appearance difference between the various activities is

quite small (e.g., the difference between swinging the bat

and bunting is very small), as shown in Fig. 2. Many ex-

isting activity detection datasets, such as THUMOS [9] and

ActivityNet [6], contain a large variety of activities that vary

in setting, scale, and camera angle. This makes even a sin-

gle frame from one activity (e.g., swimming) to be very dif-

ferent from that of another activity (e.g., basketball). On the

other hand, a single frame from one of our baseball videos

is often not enough to classify the activity.

Fig. 3 shows the small difference between a ball and

strike. To distinguish these activities requires detecting if

the batter swings or not, or detecting the umpire’s signal

(Fig. 4) for a strike, or no signal for a ball. Further com-

plicating this task is that the umpire can be occluded by the

batter or catcher and each umpire has a unique way to signal

a strike.

Our segmented video dataset consists of 4,290 video

clips. Each clip is annotated with the various baseball activ-

ities that occur, such as swing, hit, ball, strike, foul, etc. A

video clip can contain multiple activities, so we treat this as

a multi-label classification task. A full list of the activities

and the number of examples of each is shown in Table 1.

We additionally annotated each clip containing a pitch with

the pitch type (e.g., fastball, curveball, slider, etc.) and the

speed of the pitch. We also collected a set of 2,983 hard

negative examples where no action occurs. These examples

(a) (b)

Figure 3: The difference between a (a) strike and (b) ball is

very small.

Figure 4: Detecting a strike often relies on the umpire’s sig-

nal (or lack of signal) at the end of the pitch sequence.

include views of the crowd, the field, or the players standing

before or after a pitch occurred. Examples of the activities

and hard negatives are shown in Fig. 2.

Our continuous video dataset consists of 2,128 1-2
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Table 1: The activity classes in the segmented MLB-

YouTube dataset and the number of instances of the activity.

Activity # Examples

No Activity 2983

Ball 1434

Strike 1799

Swing 2506

Hit 1391

Foul 718

In Play 679

Bunt 24

Hit by Pitch 14

minute long clips from the videos. Each video frame is an-

notated with the baseball activities that occur. Each contin-

uous clip contains on average of 7.2 activities, resulting in a

total of over 15,000 activity instances. Our dataset and mod-

els are avaiable at https://github.com/piergiaj/mlb-youtube/

4. Segmented Video Recognition Approach

We explore various methods of temporal feature aggre-

gation for segmented video activity recognition. With seg-

mented videos, the classification task is much easier as ev-

ery frame (in the video) corresponds to the activity. The

model does not need to determine when an activity be-

gins and ends. The base component of our approaches is

based on a CNN providing a per-frame (or per-segment)

representation. We obtain this from standard two-stream

CNNs [20, 7] using a recent deep CNNs such as I3D [3] or

InceptionV3 [21].

Given v, the T ×D features from a video, where T is the

temporal length of the video and D is the dimensionality of

the feature, the standard method for feature pooling is max-

or mean-pooling over the temporal dimension followed by

a fully-connected layer to classify the video clip [13], as

shown in Fig. 5(a). However, this provides only one repre-

sentation for the entire video, and loses valuable temporal

information. One way to address this is to use a fixed tem-

poral pyramid of various lengths, as shown in Fig 5(b). We

divide the input video into intervals of various lengths (1/2,

1/4, and 1/8), and max-pool each interval. We concatenate

these pooled features together, resulting in a K ×D repre-

sentation (K is the number of intervals in the temporal pyra-

mid), and use a fully-connected layer to classify the clip.

We also try learning temporal convolution filters, which

can learn to aggregate local temporal structure. The kernel

size is L × 1 and it is applied to each frame. This allows

each timestep representation to contain information from

nearby frames. We then apply max-pooling over the out-

put of the temporal convolution and use a fully-connected

layer to classify the clip, shown in Fig. 5(c).

While temporal pyramid pooling allows some structure

to be preserved, the intervals are predetermined and fixed.

Previous works have found learning the sub-interval to pool

was beneficial to activity recognition [14]. The learned in-

tervals are controlled by 3 learned parameters, a center g, a

width σ and a stride δ used to parameterize N Gaussians.

Given T , the length of the video, we first compute the loca-

tions of the strided Gaussians as:

gn = 0.5 · T · (g̃n + 1)

δn =
T

N − 1
δ̃n

µi
n = gn + (i− 0.5N + 0.5)δn

(1)

The filters are then created as:

Fm[i, t] =
1

Zm

exp(−
(t− µi

m)2

2σ2
m

)

i ∈ {0, 1, . . . , N − 1}, t ∈ {0, 1, . . . , T − 1}

(2)

where Zm is a normalization constant.

We apply F to the T ×D video representation by matrix

multiplication, resulting in a N × D representation which

is used as input to a fully connected layer for classification.

This method is shown in Fig 5(d).

Other works have used LSTMs [13, 4] to model tempo-

ral structure in videos. We also compare to a bi-directional

LSTM with 512 hidden units where we use the last hidden

state as input to a fully-connected layer for classification.

We formulate our tasks as multi-label classification and

train these models to minimize binary cross entropy:

L(v) =
∑

c

zc log(p(c|G(v)))+(1−zc) log(1−p(c|G(v)))

(3)

Where G(v) is the function that pools the temporal informa-

tion (i.e., max-pooling, LSTM, temporal convolution, etc.),

and zc is the ground truth label for class c.

5. Activity Detection in Continuous Videos

Activity detection in continuous videos is a more chal-

lenging problem. Here, our objective is to classify each

frame with the occurring activities. Unlike segmented

videos, there are multiple instances of activities occurring

sequentially, often separated by frames with no activity.

This requires the model to learn to detect the start and end of

activities. As a baseline, we train a single fully-connected

layer as a per-frame classifier. This method uses no tempo-

ral information not present in the features.

We extend the approaches presented for segmented video

classification to continuous videos by applying each ap-

proach in a temporal sliding window fashion. To do this,

we first pick a fixed window duration (i.e., a temporal win-

dow of L features). We apply max-pooling to each window

(as in Fig. 5(a)) and classify each pooled segment.
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Figure 5: Illustration of the various feature aggregation methods. (a) Temporal max/mean-pooling, (b) Temporal Pyramid

Pooling, (c) Temporal convolution followed by temporal max-pooling, (d) Sub-events. All models are followed by a fully-

connected layer for classification.

We can similarly extend temporal pyramid pooling.

Here, we split the window of length L into segments of

length L/2, L/4, L/8, this results in 14 segments for each

window. We apply max-pooling to each segment and con-

catenate the pooled features together. This gives a 14×D-

dim representation for each window which is used as input

to the classifier.

For temporal convolutional models on continuous

videos, we slightly alter the segmented video approach.

Here, we learn a temporal convolutional kernel of length

L and convolve it with the input video features. This oper-

ation takes input of size T ×D and produces output of size

T ×D. We then apply a per-frame classifier on this repre-

sentation. This allows the model to learn to aggregate local

temporal information.

To extend the sub-event model to continuous videos, we

follow the approach above, but set T = L in Eq. 1. This

results in filters of length L. Given v, the T × D video

representation, we convolve (instead of using matrix multi-

plication) the sub-event filters, F , with the input, resulting

in a N ×D×T -dim representation. We use this as input to

a fully-connected layer to classify each frame.

We train the model to minimize the per-frame binary

classification:

L(v) =
∑

t,c

zt,c log(p(c|H(vt)))+

(1− zt,c) log(1− p(c|H(vt)))

(4)

where vt is the per-frame or per-segment feature at time t,
H(vt) is the sliding window application of one of the fea-

ture pooling methods, and zt,c is the ground truth class at

time t.
A recent approach to learn ‘super-events’ (i.e., global

video context) was proposed and found to be effective for

activity detection in continuous videos [15]. The approach

learns a set of temporal structure filters that are modeled as

a set of N Cauchy distributions. Each distribution learns a

center, xn and a width, γn. Given T , the length of the video,

the filters are constructed by:

x̂n =
(T − 1) · (tanh (xn) + 1)

2
γ̂n = exp(1− 2 · | tanh (γn) |)

F [t, n] =
1

Znπγ̂n

(
(t− x̂n)

γ̂n

)2

(5)

where Zn is a normalization constant, t ∈ {1, 2, . . . , T}
and n ∈ {1, 2, . . . , N}.

The filters are combined with learned per-class soft-

attention weights, A and the super-event representation is

computed as:

Sc =

M∑

m

Ac,m ·

T∑

t

Fm[t] · vt (6)

where v is the T ×D video representation. These filters al-

low the model to learn intervals to focus on for useful tem-

poral context. The super-event representation is concate-

nated to each timestep and used for classification. We also

try concatenating the super- and sub-event representations

to use for classification to create a three-level hierarchy of

event representation.
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Table 2: Results on segmented videos performing binary

pitch/non-pitch classification.

Model RGB Flow Two-stream

InceptionV3 97.46 98.44 98.67

InceptionV3 + sub-events 98.67 98.73 99.36

I3D 98.64 98.88 98.70

I3D + sub-events 98.42 98.35 98.65

6. Experiments

6.1. Implementation Details

As our base per-segment CNN, we use the I3D [3] net-

work pretrained on the ImageNet and Kinetics [11] datasets.

I3D obtained state-of-the-art results on segmented video

tasks, and this allows us to obtain reliable per-segment fea-

ture representation. We also use two-stream version of In-

ceptionV3 [21] pretrained on Imagenet and Kinetics as our

base per-frame CNN, and compared them. We chose Incep-

tionV3 as it is deeper than previous two-stream CNNs such

as [20, 7]. We extracted frames from the videos at 25 fps,

computed TVL1 [29] optical flow, clipped to [−20, 20]. For

InceptionV3, we computed features for every 3 frames (8

fps). For I3D, every frame was used as the input. I3D has

a temporal stride of 8, resulting in 3 features per second (3

fps). We implemented the models in PyTorch. We trained

our models using the Adam [12] optimizer with the learning

rate set to 0.01. We decayed the learning rate by a factor of

0.1 after every 10 training epochs. We trained our models

for 50 epochs. Our source code, dataset and trained models

are available at https://github.com/piergiaj/mlb-youtube/

6.2. Segmented Video Activity Recognition

We first performed the binary pitch/non-pitch classifica-

tion of each video segment. This task is relatively easy, as

the difference between pitch frames and non-pitch frames

are quite different. The results, shown in Table 2, do not

show much difference between the various features or mod-

els.

6.2.1 Multi-label Classification

We evaluate and compare the various approaches of tempo-

ral feature aggregation by computing mean average preci-

sion (mAP) for each video clip, which is a standard eval-

uation metric for multi-label classification tasks. Table 4

compares the performance of the various temporal feature

pooling methods. We find that all approaches outperform

mean/max-pooling, confirming that maintaining some tem-

poral structure is important for activity recognition. We

find that fixed temporal pyramid pooling and LSTMs give

some improvement. Temporal convolution provides a larger

increase in performance, however it requires significantly

Table 3: Additional number of parameters for models when

added to base (e.g., I3D or Inception V3).

Model # Parameters

Max/Mean Pooling 16K

Pyramid Pooling 115K

LSTM 10.5M

Temporal Conv 31.5M

Sub-events 36K

Table 4: mAP results on segmented videos perform-

ing multi-label classification. We find that learning sub-

intervals to pool is important for activity recognition.

Method RGB Flow Two-stream

Random 16.3 16.3 16.3

InceptionV3 + mean-pool 35.6 47.2 45.3

InceptionV3 + max-pool 47.9 48.6 54.4

InceptionV3 + pyramid 49.7 53.2 55.3

InceptionV3 + LSTM 47.6 55.6 57.7

InceptionV3 + temporal conv 47.2 55.2 56.1

InceptionV3 + sub-events 56.2 62.5 62.6

I3D + mean-pool 42.4 47.6 52.7

I3D + max-pool 48.3 53.4 57.2

I3D + pyramid 53.2 56.7 58.7

I3D + LSTM 48.2 53.1 53.1

I3D + temporal conv 52.8 57.1 58.4

I3D + sub-events 55.5 61.2 61.3

more parameters (see Table 3). Learning sub-events of [14]

we found to give the best performance on this task. While

LSTMs and temporal have been previously used for this

task, they require greater number of parameters and perform

worse, likely due to overfitting. Additionally, LSTMs re-

quire the video features to be processes sequentially as each

timestep requires the output from the previous timestep,

while the other approaches can be completely parallelized.

In Table 5, we compare the average precision for each

activity class. Learning temporal structure is especially

helpful for frame-based features (e.g., InceptionV3) whose

features capture minimal temporal information when com-

pared to segment-based features (e.g., I3D) which capture

some temporal information. Additionally, we find that sub-

event learning helps especially in the case of strikes, hits,

foul balls, and hit by pitch, as those all have changes in

video features after the event. For example, after the ball is

hit, the camera will often follow the ball’s trajectory, while

being hit by a pitch the camera will follow the player walk-

ing to first base, as shown in Fig. 6 and Fig. 7.

6.2.2 Pitch Speed Regression

Pitch speed regression from video frames is a challenging

task because it requires the network to learn localize the
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Figure 6: Illustration of the learned sub-events for the hit by pitch activity. It localizes the start of the pitch as well as the

batter walking towards first base.

Figure 7: Illustration of the learned sub-event for the hit activity. It captures the start of the pitch as well as the camera change

to watch the runner and ball in the field.

start of a pitch and the end of the pitch, then compute the

speed from a weak signal (i.e., only pitch speed). The base-

ball is often small and occluded by the pitcher. Professional

baseball pitchers can throw the ball in excess of 100mph

and the pitch only travels 60.5 ft. Thus the ball is only trav-

eling for roughly 0.5 seconds. Using our initial frame rates

of 8fps and 3fps, there was only 1-2 features of the pitch in

the air, which we found was not enough to determine pitch

speed. The YouTube videos contain 60fps, so we recom-

puted optical flow and extract RGB frames at 60fps. We

use a fully-connected layer with one output to predict the

pitch speed and minimize the L1 loss between the ground

truth speed and predicted speed. Using features extracted at

60fps, we were able to determine pitch speed, with 3.6mph

average error. Table 6 compares various models. Fig. 8

shows the sub-event learned for various speeds.

6.2.3 Pitch Type Classification

We experiment to see if it is possible to predict the pitch

type from video. This is an extremely challenging problem

because it is adversarial; pitchers practice to disguise their

pitch from batters. Additionally, the difference between

pitches can be as small as a difference in grip on the ball

and which way it rotates with respect to the laces, which is

rarely visible in broadcast baseball videos. In addition to the

video features used in the previous experiments, we also ex-

tract pose using OpenPose [2]. Our features are heatmaps

of joint and body part locations which we stack along the

channel axis and use as input to an InceptionV3 CNN which

we newly train on this task. We chose to try pose features as

the body mechanics can vary between pitches as well (e.g.,

the stride length and arm angles can be different for fastballs

and curveballs). Our dataset has 6 different pitches (fastball,

sinker, curveball, changeup, slider, and knuckle-curve). We

report our results in Table 7. We find that LSTMs actually

perform worse than the baseline, likely due to overfitting the

small differences between pitch types, while learning sub-

events helps. We observe that fastballs are the easiest to

detect (68% accuracy) followed by sliders (45% accuracy),

while sinkers are the hardest to classify (12%).

6.3. Continuous Video Activity Detection

We evaluate the extended models on continuous videos

using per-frame mean average precision (mAP), and the

results are shown in Table 8. This setting is more chal-

lenging that the segmented videos as the model must de-

termine when the activity starts and ends and contains neg-

ative examples that are more ambiguous than the hard neg-

atives in the segmented dataset (e.g., the model has to de-

termine when the pitch event begins compared to just the

pitcher standing on the mound). We find that all models

improve over the baseline per-frame classification, confirm-

ing that temporal information is important for detection.

We find that fixed temporal pyramid pooling outperforms

max-pooling. The LSTM and temporal convolution seem

to overfit, due to the larger number of parameters. We find

that the convolutional form of sub-events to pool local tem-

poral structure especially helps frame based features, not

as much on segment features. Using the super-event ap-

proach [15], further improves performance. Combining the

convolutional sub-event representation with the super-event
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Table 5: Per-class average precision for segmented videos performing multi-label activity classification using two-stream

features. We find that using sub-events to learn temporal intervals of interest is beneficial to activity recognition.

Method Ball Strike Swing Hit Foul In Play Bunt Hit by Pitch

Random 21.8 28.6 37.4 20.9 11.4 10.3 1.1 4.5

InceptionV3 + max-pool 60.2 84.7 85.9 80.8 40.3 74.2 10.2 15.7

InceptionV3 + sub-events 66.9 93.9 90.3 90.9 60.7 89.7 12.4 29.2

I3D + max-pool 59.4 90.3 87.7 85.9 48.1 76.1 14.3 18.2

I3D + sub-events 62.5 91.3 88.5 86.5 47.3 75.9 16.2 21.0

Figure 8: Illustration of the learned sub-events used for the pitch speed regression task. Each sub-event localizes different

start/end times for the pitch and this information is used to predict the pitch speed.

Table 6: Results on segmented video pitch speed regression.

We are reporting their root-mean-squared errors.

Method Two-stream

I3D 4.3 mph

I3D + LSTM 4.1 mph

I3D + sub-events 3.9 mph

InceptionV3 5.3 mph

InceptionV3 + LSTM 4.5 mph

InceptionV3 + sub-events 3.6 mph

Table 7: Accuracy of our pitch type classification using

I3D on video inputs and InceptionV3 trained using pose

heatmaps as input.

Method Accuracy

Random 17.0%

I3D 25.8%

I3D + LSTM 18.5%

I3D + sub-events 34.5%

Pose 28.4%

Pose + LSTM 27.6%

Pose + sub-events 36.4%

representation provides the best performance.

7. Conclusion

We introduced a challenging new dataset, MLB-

YouTube, for fine-grained activity recognition in videos.

Table 8: Results on continuous videos performing multi-

label activity classification (per-frame mAP).

Method RGB Flow Two-stream

Random 13.4 13.4 13.4

I3D 33.8 35.1 34.2

I3D + max-pooling 34.9 36.4 36.8

I3D + pyramid 36.8 37.5 39.7

I3D + LSTM 36.2 37.3 39.4

I3D + temporal conv 35.2 38.1 39.2

I3D + sub-events 35.5 37.5 38.5

I3D + super-events 38.7 38.6 39.1

I3D + sub+super-events 38.2 39.4 40.4

InceptionV3 31.2 31.8 31.9

InceptionV3 + max-pooling 31.8 34.1 35.2

InceptionV3 + pyramid 32.2 35.1 36.8

InceptionV3 + LSTM 32.1 33.5 34.1

InceptionV3 + temporal conv 28.4 34.4 33.4

InceptionV3 + sub-events 32.1 35.8 37.3

InceptionV3 + super-events 31.5 36.2 39.6

InceptionV3 + sub+super-events 34.2 40.2 40.9

We experimentally compare various recognition approaches

with temporal feature pooling for both segmented and con-

tinuous videos. We find that learning sub-events to select

the temporal regions-of-interest provides the best perfor-

mance for segmented video classification. For detection

in continuous videos, we find that learning convolutional

sub-events combined with the super-event representation to

form a three-level activity hierarchy provides the best per-

formance.
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