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Abstract

This paper proposes a novel algorithm of estimating 3D
human pose from multi-view videos captured by unsynchro-
nized and uncalibrated cameras. In a such configuration,
the conventional vision-based approaches utilize detected
2D features of common 3D points for synchronization and
camera pose estimation, however, they sometimes suffer
from difficulties of feature correspondences in case of wide
baselines. For such cases, the proposed method focuses on
that the projections of human joints can be associated each
other robustly even in wide baseline videos and utilizes them
as the common reference points. To utilize the projections
of joint as the corresponding points, they should be detected
in the images, however, these 2D joint sometimes include
detection errors which make the estimation unstable. For
dealing with such errors, the proposed method introduces
two ideas. The first idea is to relax the reprojection er-
rors for avoiding optimizing to noised observations. The
second idea is to introduce an geometric constraint on the
prior knowledge that the reference points consists of human
joints. We demonstrate the performance of the proposed al-
gorithm of synchronization and pose estimation with qual-
itative and quantitative evaluations using synthesized and
real data.

1. Introduction

Measuring 3D human pose is important for analyzing the
mechanics of the human body in various research fields,
such as biomechanics, sports science and so on. In gen-
eral, some additional devices, e.g. optical markers [1] and
inertial sensors [2], are introduced for measuring 3D human
pose. While these approaches have advantages in terms of
high estimation quality, i.e. precision and robustness, it is
sometimes difficult to utilize them in some practical scenar-
ios, such as monitoring people in daily life or evaluating the
performance of each player in a sports game, due to incon-
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Figure 1. Our target. 3D human pose estimation with unsynchro-
nized and uncalibrated cameras with wide baselines.

veniences of installing the devices.

To estimate 3D human pose in such cases, vision-based
motion capture techniques have been studied in the field
of computer vision [9]. Basically, they utilize multi-view
cameras or depth sensors and assume that they are syn-
chronized and calibrated beforehand. Such synchroniza-
tion and calibration are troublesome to establish and main-
tain; typically, the cameras are connected by wires and cap-
ture the same reference object. Some 2D local features
based synchronization and calibration methods have also
been proposed for easy-to-use multi-view imaging systems
in case for which the preparation cannot be done. However,
they sometimes suffer from difficulties of feature correspon-
dences in case for which the multiple cameras are scattered
with wide baselines, which the erroneous correspondences
affect the stability and precision of estimation severely.

This paper addresses the problem of 3D human pose es-
timation from multi-view videos captured by unsynchro-
nized and uncalibrated cameras with wide baselines. The
key feature of this paper is its focus on using the projec-
tions of human joints to derive robust point associations
for use as common reference points. To detect the pro-
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jections of human joints some 2D form of pose detector is
needed [7,24,25], however, 2D joint positions sometime in-
clude detection errors which make the estimation unstable.
To deal with such errors, the proposed method introduces
two ideas. The first idea is to relax the reprojection errors
to avoid the optimization of noisy observations. The second
idea is to introduce a geometric constraint based on the a
priori knowledge that the reference points are actually hu-
man joints.

The key contribution of this paper is to propose a novel
algorithm for 2D human joint based multi-camera synchro-
nization, camera pose estimation and 3D human pose esti-
mation. This algorithm enables us to obtain 3D human pose
easily and stably even in a practical and challenging scenes,
such as sports games.

The reminder of this paper is organized as follow. Sec-
tion 2 reviews related works in terms of synchronization,
extrinsic calibration and human pose estimation. Section 3
introduces our proposed algorithm using the detected 2D
joint positions as the corresponding points in multi-view
images. Section 4 reports the performance evaluations and
Section 5 provides discussions on the proposed method.
Section 6 concludes this paper.

2. Related Works

This section introduces the related works of our research
in terms of (1) camera synchronization, (2) extrinsic camera
calibration, and (3) human pose estimation.

Camera Synchronization Multiple camera synchroniza-
tion significantly impacts the estimation precision of multi-
view applications, such as 3D reconstruction. In general,
the cameras are wired and receive a trigger signal from an
external sensor telling the camera when to acquire an im-
age. However, these wired connections can be troublesome
to establish when the cameras are widely scattered as hap-
pens when capturing a sports games.

Audio-based approaches [9, 18] estimate the time shift of
multi-view videos in a software post-processing step, how-
ever, the significant difference in camera position degrades
the estimation precision due to the delay in sound arrival.

Some image-based methods [3,22] are able to synchro-
nize the cameras even in such cases. Cenek et al. [3] es-
timates the time shift by using epipolar geometry on the
corresponding points in the multi-view images. Tamaki et
al. [22] detected the same table tennis ball in sequential
frames and utilized them to establish point correspondences
for computing epipolar geometry. Given the scale of the
capture environment envisaged, our method is also based
on epipolar geometry and so uses detected 2D joint posi-
tions as the corresponding points.

Extrinsic Camera Calibration Extrinsic camera calibra-
tion is an essential technique for 3D analysis and under-
standing from multi-view videos and various proposals have
been made for various camera settings. Most proposals uti-
lize detected 2D features, such as chess board corners or
local features, e.g. SIFT [13], as the corresponding points.
These approaches have difficulty in establishing reliable
feature correspondence if the multiple cameras are scattered
with wide baselines, as erroneous correspondences degrade
the stability and precision of estimation severely.

For such cases, some studies utilize a priori knowledge
of the scene. Huang et al. [11] use the trajectories of pedes-
trians in calibrating multiple fixed cameras based on the as-
sumption that the cameras can capture the same pedestrians
for a long time. Namdar et al. [10] assume that the cameras
capture a sport scene in a stadium and calibrate them by in-
troducing vanishing points computed from the lines on the
sports field.

In addition, some studies [6, 16, 20] propose calibra-
tion algorithm that utilizes a priori knowledge that that the
scenes contain humans. The silhouette-based approaches
[5,19] establish the correspondences between special points
on the silhouette boundaries, called frontier points [8],
across the multiple views. These points are the projections
of 3D points tangent to the epipolar plane. The epipolar ge-
ometry can be recovered from the correspondences of the
frontier points.

Puwein et al. [16] proposed using detected 2D human
joints in multi-view images as common reference points
and using these points to compute the extrinsic parameters.
Our method is inspired by [16]. In [16], the error function
consists of reprojection error, a kinematic structure term, a
smooth motion term and so on, is minimized in the bundle
adjustment manner. Our work, on the other hand, intro-
duces a relaxed reprojection error for robust estimation in
the face of very noisy data; it also solves the synchroniza-
tion problem.

2D Human Pose Estimation Conventional studies of 2D
human pose estimation problem fall into two basic groups:
pictral structure approach [4, 15], in which spatial correla-
tions between each part are expressed as a tree-structured
graphical model with kinematic priors that couple con-
nected limbs, and hierarchical model approach [21, 23],
which represents the relationships between parts at differ-
ent scales and sizes in a hierarchical tree structure.

Given the rapid improvement in neural network tech-
niques, a lot of neural network based 2D pose detectors have
been proposed [7,24,25]. Toshev et al. [24] solve 2D human
pose as a regression problem by introducing the AlexNet
architecture, which was originally used for object recogni-
tion. Wei et al. [25] achieve high precise pose estimation by
introducing CNN to the Pose Machine [17]. Caoet al. [7]
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Figure 2. Configuration of the capture system. These cameras cap-
ture a human modeled as a set of articulated 3D joints J'}

consider the connectivity of each joint by introducing a part
affinity field to the work of [25]; they achieve robust esti-
mation of multi-person pose in real time.

3. Proposed Method

This section describes our proposed method for estimat-
ing 3D human pose with unsynchronized and uncalibrated
multiple cameras with wide baselines.

3.1. Problem Formulation

This paper assumes that a human body is captured by
multiple unsynchronized and uncalibrated cameras. As il-
lustrated in Figure 2, the human body is modeled as a set of
articulated 3D joints. The 3D position of the & th joint and
its 2D projection onto the image plane of the ith camera, Cj,
in frame f are represented as J = {j’}},k el ,Ny]
and ijlfc,i €[l,---, N N, > 2] respectively.

Let P = {R;,t;} denote the rotation matrix and trans-
lation vector, that is the extrinsic parameters of ¢th camera
C;; they satisfy,

p” = Rip" +1; (M

where p©i and p" denote the coordinates of 3D point p in
the C; coordinate system and the world coordinate system
respectively. In this paper, C; is the base camera and its
coordinate system is used as the world coordinate system.

Let D = {d;} denote the temporal difference in frame
scale compared with the base camera C;. This d; satisfies
the following equation,

f=f+d )

Il
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Figure 3. Confidence map of each joint. Blue area represents
a high-confidence area and red area represents a low-confidence
area.

where f; denotes at € [1,---,N;] th frame of a video
captured by C;. Hereafter, f is written as f; for simplicity.

The goal of this research is to estimate the 3D positions
of human joint j ]Ji, the extrinsic camera parameters R; and
t;, and temporal differences d;. This paper assumes that a
single human appears in the captured video, however, the
proposed method can be extended to cover multiple people.
This extension is discussed in Section 5.

For estimating these parameters, the proposed method
regards as the human model as a reference object and takes
a bundle adjustment approach by utilizing their projections
i j’;c as points for which correspondence is to be found. The
proposed method defines the following objective function,

arg min E(P, J, L, D) 3)
P,J,L,D
where L denotes the separation of each joint pair, intro-
duced in Section 3.1.2, and minimizes Eq.(3) over parame-
ters P, J, L and D.
This objective function consists of two major error terms
as follows,

E(P7J7LaD):ETep(P7J7D)+Emdoel(JaL7D) (4)

where E,..,,(P,J, D) and Ey,o401(J, L, D) represent the er-
ror terms of the reprojection error and the human model,
respectively. Following sections detail these error terms.

3.1.1 Relaxed Reprojection Error

The conventional 2D features for camera synchronization or
calibration, such as chess corners, local features and so on,
are detected with sub-pixel precision. On the other hand,
the proposed method utilizes the 2D joint positions detected
by a 2D pose estimation algorithms [7, 24, 25] as 2D fea-
tures and most of these positions include detection errors of
a few pixels. These detection errors severely impact the per-
formance of the conventional bundle adjustment approach,
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Figure 4. Outline of the proposed method. Firstly the 2D joint positions are detected from the multi-view videos, and the initial values
of each parameter are estimated in a SfM manner with assumed time shift d;. Next, the initial values are optimized in terms of relaxed
reprojection error and constraints on human joint. Finally, the parameters yielding the smallest values of Eq. (4) with d; are selected as the

output of the proposed method.

which attempts to minimize the reprojection errors. Here,
the proposed method avoids the problem of detection errors
by relaxing the reprojection errors.

Most conventional 2D pose estimation techniques such
as [7,24,25] estimate a confidence map for each joint and
define the 2D joint position as the peak of the map as illus-
trated in Figure 3. Following this idea, the proposed method
uses the confidence map to relax the reprojection error; that
is, the influence of the reprojection error is weakened when
the reprojected point is in an area of high-confidence and
enhanced in when the reprojected point is in an area of low-
confidence. The proposed method assumes that the high-
confidence area in the confidence map follows a normal dis-
tribution and defines the reprojection error term as follows,

1 N; .5 ~i
Erep(Pv J7 D) = X Ei\iozgozkiog(k.?f”kﬂ}t): (5)

Nrep
where N, = Ny x N, x N; and kjlft denote the reprojec-
tion of ¥ 5 }t computed from P, J and D, and

g(x, @") = (n(0) = nerep(@, @")))erep(x, @), (6)

erep(T, @) = ||l — 2'|]. 7

n(x) denotes the probability density function of normal dis-
tribution N (f1,,07) and ||z|| denotes the L*-norm of .

3.1.2 Constraints on Human Joints

The proposed method assumes that the multi-cameras
capture a human body and introduces constraints based
on a priori knowledge as E,,o4e1(J, L, D). Error term
Ernodei(J, L, D) has two terms as follows,

Emodel(Ja L, D) = Elength(J7 L7 D) + Emotion(J7 D)
(3)

The following sections describe these error terms in detail.

Constraint on Length of a Joint Pair The pair of the
k th joint and the %’ joint is denoted as (k, k') in Figure
2. The pairs of (2,3) and (8,9) can be recognized as the
humerus and femur, respectively, and the length between
the 3D joints on each bone are taken to be constant over
time. Here, the proposed method assumes the joint pairs
P = {<0’1>7 <1’2>7 <1’5>7 <2a3>7 <3,4>7 <576>’ <677>a
(8,9), (8,11), (9,10), (11,12), (12,13)} has consistent
length and introduce the error term Ejepg:n(J, L, D) as fol-
lows,

Eiengin(J, L, D) = SN pl |58 — 38 1| = 1((k, K'))], 9)

where [((k, k")) represents the distance between joint pair
(k,k'yand L = {I({k, k")) }.

Constraint on Smooth Motion of Each Joint The pro-
posed method introduces a constraint on the smooth motion
of a joint based on the observation that the 3D positions the
joints do change drastically in sequential frames. The pro-
posed method assumes that the local motion of each joint
can be modeled as the linear motion created by uniform ac-
celeration and introduces the following error term,

Emotion(J, D) = -u(jy). (10)

NtXN]

u(j¥) represents the third order differential value of 5%. The
minimization of u( jf ) forces the second order differential
value of j f , that is the acceleration, to be consistent in se-
quential frames.

3.2. Algorithm

Figure 4 illustrates the processing flow of the proposed
method. First, it detects 2D joint positions from the in-
put multi-view videos using a 2D pose detector such as
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Figure 5. Configuration of evaluation with synthesized data. Three
cameras are set around a field with wide baselines.

[7,24,25]. Since the 2D pose detector output includes detec-
tion errors and joint detection sometimes fails due to self-
occlusion, the proposed method applies a median filter after
applying a cubic spline interpolation method to the output
data. Next, select two cameras and the initial values of each
parameter are estimated by the standard SfM approach us-
ing assumed time shift d;; that is, it estimates the essential
matrix for selected cameras, decomposes it into the extrin-
sic parameters, and estimates 3D joint positions through tri-
angulation. The extrinsic camera parameters of the other
cameras are estimated by solving PnP problems [12]. Then,
Eq.(4) is computed using the initial parameters and mini-
mized by the Levenberg-Marquardt algorithm over parame-
ters P, J, and L. Finally, the parameters yielding the small-
est value of Eq. (4) with d; are selected as the optimized
parameters.

4. Evaluations

This section describes the performance evaluations of the
proposed method with synthesized data and real data.

4.1. Evaluations with Synthesized Data

4.1.1 Experimental Environment

Figure 5 illustrates the evaluation setup used with syn-
thesized data. The three unsynchronized cameras are set
around a large field with baselines of about 50 ~ 100m.
These cameras capture 1920 x 1080 resolution videos with
60 frame rate. Their focal length and optical center, that is
intrinsic parameters, are set to 16000 and (960, 540) respec-
tively. The ground truth of 3D joint is synthesized from the
motion capture data. The input data, the projections of the
3D joint positions, is perturbed by the addition of zero-mean
Gaussian noise whose standard deviation o(0 < o < 8).
The input data also includes 10% detection failures.

To demonstrate the performance of the proposed algo-
rithm, the following two conventional methods are evalu-
ated with same input data,

Method1: Initial values As described in Section 3.2, each
parameter can be linearly estimated in a conventional
structure-from-motion manner. As to Methodl, the
evaluation function for selecting appropriate time shift
is defined as the reprojection error, that is the param-
eters with smallest reprojection error are the output of
Methodl.

Method2: Bundle Adjustment Method2 uses the bundle
adjustment approach to estimate the parameters, each
parameter is optimized by minimizing the reprojection
errors. Here, Method2 uses the Levenberg-Marquardt
algorithm for optimization. Method2 also utilizes the
reprojection error as the evaluation function for select-
ing the appropriate time shift.

In this evaluation, each parameter is evaluated with fol-
lowing error functions. The error of time shift £ is defined
as the average of absolute error (millisecond time scale) as

follows, )
Ef = Ezﬁalﬁ — figl, (11)

where the parameter with subscript g represents the ground
truth. The error of rotation matrix E'r is defined as the Rie-
mannian distance [14].

1 :
Ep = mzﬁﬂﬂﬁ)g(fﬁﬁ’igmﬂ (12)
0 (¢ = 0)7
LogR' = (13)
{QSMR’—R’T) (6 #0).
where ¢ = cosfl(%) and || - || denotes Frobenius

norm. The error of translation vector F; is defined as
_ 1 N, t
Et - N Zi:l'lsiti _tigH; (14)
C

where s! denotes a scale parameter computed by s =
[|t:]|/l|tig]|- The error of 3D joint, E;, is defined as,

1 N

N - .
E; zk:lzfilnsjjl;_.??” (15)

TN X N,

where s7 represents a scale parameter that makes each esti-
mated joint pair length match its ground truth.

4.1.2 Results

Figure 6 plots the average errors of synchronization, extrin-
sic parameters, and 3D joint positions for 10 trials at each
noise level. From these results, we can see that all methods
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Figure 6. Estimation error of (a) time shift, (b) rotation matrix, (c) translation vector, and (d) 3D human positions.
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Figure 7. Visualization of estimated camera positions and 3D joint positions in ¢ = 5 case. Left; Camera positions estimated by the
proposed method (red), Method1 (green), Method2 (blue) and its ground truth (magenta). The positions of C; estimated by each method
are set to (0, 0, O)T. Right; 3D positions of each joint. The upper figures show the ground truth data with a CG human model in each frame
and the lower figures show the 3D joints estimated by the proposed method in each corresponding frame.

estimate the time shift with error of 0.006 ~ 0.012 sec-
onds. As to the extrinsic parameters, the proposed method
offers robust estimation even if large detection error is as-
sumed while the conventional methods suffer degraded per-
formace. Especially, Method2 significantly degrades in
o > 1 cases. We consider that the reason is that the
Method2, which minimizes the reprojection errors strictly,
is significantly affected by the noise and detection failures.
The proposed method estimates 3D joint positions robustly
while the Method1 degrades with noisy data. Method?2 also
estimates 3D joint positions with comparable precisions to
the proposed method in spite of its degraded extrinsic pa-
rameters. This is considered that the adjusting the scale and
initial position in case of evaluating the 3D positions ab-
sorbs this degradation.

Figure 7 renders one example of the estimated camera
positions and 3D joint positions in 3D space with ¢ = 5.
This figure shows that the proposed method estimates rea-
sonable camera positions and 3D joints.

From the above, we can conclude that the proposed
method is more robust than the conventional methods even
if the input data includes significant noise, especially in
terms of the extrinsic parameters.

Player From mound view

Camera 2

‘\(jamera 1

10 m
Figure 8. Configuration of evaluation with real data. Three cam-
eras are set around a field with wide baselines.

Camera 2

Camera 1

4.2. Evaluations with Real Data

This section demonstrates that the proposed method
works with real data in a practical scenario.

4.2.1 Experimental Environment

Figure 8 shows the configuration of the evaluation that used
real data. The two cameras (CASIO EX100) with 640 x
480 resolution and 120 fps were set with a wide baseline.
Camera 0 and Camera 1 had focal lengths of 200mm and
165mm, respectively. The input video consisted of 1000
frames, that is about 8.3 seconds. These cameras captured
one player throwing a ball.
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Figure 9. Visualization of estimated camera positions and 3D joint positions with the real data. Left; Camera positions estimated by the
proposed method (red), Method1 (green), Method2 (blue) and baseline (magenta). The positions of C estimated by each method are set to

. Right; 3D positions of each joint. The upper figures show input data captured by camera 2 in each frame and the lower figures

show the 3D joints estimated by the proposed method in each corresponding frame.

Table 1. Evaluation of extrinsic parameters.
Er FE; (mm)
Method1 0.4162 3491
Method2 0.5843 10973
Proposed method 0.3683 5355

In the 2D pose estimation step, Cao et al. [7]’s method is
utilized. This evaluation used, in addition to Method1l and
Method?2 introduced in Section 4.1, Zhang’s method [26] as
benchmarks.

4.2.2 Results

Table 1 reports the estimation error of extrinsic parame-
ters between each method and [26]. Figure 9 visualizes
the estimated camera positions and 3D joint positions in 3D
space. In Figure 9, while the camera positions estimated by
Method1, Zhang’s method and the proposed method are al-
most same, that of Method?2 diverged significantly. The rea-
son is that the detected 2D poses include severe noise and
Method2, which minimizes the reprojection errors strictly,
is optimized to the noisy data same as in the evaluations
with synthesized data, whereas the proposed method avoids
the problem by relaxing the reprojection errors.

From these results, we can see that the proposed method
works robustly with severely noise-degraded data in practi-
cal situations.

5. Discussion

5.1. Precision of 2D Human Pose Detector

The 2D pose detector is utilized in the first step of the
proposed method and it has significant effects on the esti-
mation precision. Here we investigate the performance of
2D pose detector [7] utilized in this paper.

Table 2. Evaluation of 2D pose detector (pixel).

Ave Std Min Max
8.144 6.188 0.0058 48.492

Table shows the average, standard deviation, smallest
value and biggest value of estimation error, that is euclidean
norm of 2D human pose detected by [7] and its ground truth,
in 700 frames with 1920 x 1080 resolutions. In the evalua-
tions in Section 4, the y,, and o, in the relaxed reprojection
error are set based on these results.

5.2. Multi-player Cases

As introduced in Section 3.1, our algorithm assume that
there is a single player in the shared field-of-view of mul-
tiple cameras, however, it can be extend to multi-player
cases. By considering the multi-players, it is considered
that the estimation precision by the proposed method is im-
proved because the number of constraints increase and the
2D joint positions, which are recognized as the correspond-
ing points, cover more wide area in image planes of each
camera. To deal with multi-player cases, the person identi-
fication problem and occlusion handling are to be solved in
addition. This extension is included in our future works.

6. Conclusion

This paper proposed a novel 3D human joint position
estimation algorithm for unsynchronized and uncalibrated
cameras with wide baselines. The method focuses on the
major skeleton joints and the constancy of joint separation.
The 2D human pose is detected from the multi-view images
and joint position estimates are used in the structure-from-
motion manner. The proposed method provides an objec-
tive function consisting of a relaxed reprojection error term
and human joint error term in order to achieve robust es-
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timation even if the input data is noisy; the objective term
is optimized. Evaluations using synthesized data and real
data showed that the proposed method works robustly with
noise-corrupted data. Future works include evaluations that
use marker-based motion capture techniques and extension
to the multi-player cases.
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