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Abstract

The automated extraction of kinematic parameters from

athletes in video footage allows for direct training feedback

and continuous quantitative assessment of an athlete’s per-

formance. Recent developments in the field of deep learning

enable the measurement of kinematic coefficients directly

from human pose estimates. However, the detection quality

decreases while errors and noise increase with the complex-

ity of the scene. In aquatic training scenarios, for instance,

continuous pose estimation suffers from several orthogonal

errors like switched joint predictions between the left and

right sides of the body. In this paper, we analyze differ-

ent error modes and present a rectification pipeline for im-

proving the pose predictions using merely joint coordinates.

We show experimentally that joint rectification equally im-

proves the detection of key-poses, which are essential for

a continuous qualitative performance assessment and pose

retrieval, as well as posture visualization for quantitative

training feedback.

1. Introduction

We study the problem of human pose retrieval in con-

text of human motion analysis for top-tier athletes. During

training sessions qualitative and quantitative video analysis

is a common tool for giving feedback and thereby improv-

ing the performance of athletes. An athlete is filmed during

a training session and the footage is evaluated afterwards

by coaches and training scientists. Evaluation includes ex-

pert judgment about the execution of motion for a qualita-

tive feedback as well as quantitative assessment. For swim-

mers, quantitative evaluation includes kinematic parameters

like stroke rate, leg kick frequencies and inner-cyclic exe-

cution times of motion intervals. The boundaries of motion

intervals are defined by human poses of specific interest -

denoted as key-poses - that have to be determined manually

through a highly time consuming and exhaustive search.

Recent advances in deep learning assisted human pose

estimation have the potential to automate and thereby accel-
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Figure 1: The proposed kinematic rectification pipeline

(green) improves joint localization by enforcing temporal

consistency between consecutive pose estimates.

erate this process. The continuous estimation of the human

pose in videos tags a persons joints and allows for retriev-

ing specific key-poses automatically. While state-of-the-art

pose estimation algorithms often perform well on bench-

mark video footage and less complex scenes, we found that

in visually difficult training scenarios, the output of such

algorithms can be inaccurate and partially incorrect. Hu-

man pose estimation in aquatic environments is exacerbated

by noise from air bubbles, water splashes, constant self-

occlusion and refraction, which often impede the prediction

of the human pose and consequently the retrieval of key-

poses. For automated performance analyses to be useful for

training feedback, expectations of coaches have to be met

with appropriately precise results.

We present a rectification pipeline for joint coordinate

estimates of swimmers with the objective to improve on

the prediction of performance indicators (Figure 1). Work-

ing solely on noisy joint coordinates obtained from a pose

estimation system, an analysis of errors modes illustrates

three typical detection errors: joint swaps, detection out-

liers and posture specific joint prediction noise. A three-

stage pipeline is proposed to rectify aforementioned three
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Figure 2: Qualitative examples of different errors. The first row depicts ground truth annotations, the second row pose

estimates on a refined version of [19]. Left: arms and ankles are swapped. Middle: left wrist outlier and poor elbow

prediction. Right: swaps and outliers occur together.

orthogonal errors: (1) A joint-kinematic based optimization

identifies and corrects joint swaps. (2) A robust regression

scheme identifies outliers and replaces them with motion-

consistent values. (3) An adaptive filtering targets specific

kinematic states of an athlete’s pose to reduce the variance

of joint predictions. Alltogether our pipeline improves joint

estimates up to 5% for individual swimming styles. Also,

temporal prediction of key-frames directly benefits from en-

forcing temporal consistency, while at the same time dis-

carding up to 7% false positive events.

Contributions. (1) While complex approaches are of-

ten built on image data, we present an error analysis and

rectification pipeline merely based on joint coordinate pre-

dictions. The rectification pipeline improves joint estimates

considerable with little training and negligible inference

costs. (2) The reported orthogonal joint errors are not swim-

ming specific, but can occur in many other complex scene,

too. Thus, the proposed rectification pipeline is universally

applicable despite our focus on swimming in this paper.

(3) With the instrumentation of training grounds with cam-

eras, sport specific databases of training footage grow each

day. However, obtaining large quantities of high precision

annotations to training sophisticated machine learning al-

gorithms remains a time-consuming and tedious challenge.

Especially in less popular sports, this effort is often not fea-

sible. We show that the proposed pipeline for improving

continuous pose predictions can be trained with a compar-

atively small set of annotated training data. (4) The recti-

fied pose estimates lead to a better pose visualization, thus

assisting coaches with a qualitative pose assessment by re-

moving joint localization jitter between frames.

2. Related Work

Human pose estimation in 2D images has recently ex-

perienced a shift from deformable part models based on

hand-crafted features[2, 22, 13] to using deep neural net-

works for learning visual appearance [21, 17] and structure

[6, 19, 20] of the human pose. Deep architectures have also

been proposed for pose estimation in videos, for example

by stacking multiple contiguous frames [15] as a parallel in-

put for a deep network or by means of a recurrent network

structure [4]. In context of sports, pose estimation has been

researched by [10], who combine global and local pose esti-

mation to refine the location an athlete’s joints. [8] propose

a generative approach for estimating the human pose in TV

footage. The extraction of kinematic parameters of athletes

from video footage, specifically stroke rates of swimmers,

was recently researched by Victor et al. [18], who perform

stroke frequency detection for athletes in a generic swim-

ming pool by means of a deep neural network architecture

for key-pose regression. [24, 23] derive additional param-

eters from swimmers by determining interval lengths and

frequencies from multiple keyframes.

The topic of cleaning pose data was recently addressed

by [12], who propose a recurrent framework for finding out-

liers in motion capture data. Within this field, methods like

Kalman filters [3], dimensionality reduction [1] or condi-

tional Boltzmann machines [16] have been successfully ap-

plied to outlier detection. Data-dependent filtering was ad-

dressed in [7], who introduce the concept of filter forests

for learning data-dependent filters for noise reduction in im-

ages.

3. Problem Description and Analysis

Given video footage of a performing athlete, a state-of-

the-art pose estimation system estimates his/her pose for

each frame. A pose estimate is commonly comprised of

a set of joint coordinates for head, neck, shoulders, el-

bows, wrists, hips, knees and ankles. We use Convolu-

tional Pose Machine (CPM, [19]) models throughout this

work to estimate poses. They were initially pre-trained on

the Leeds Sports Pose dataset [11] and refined on our sport
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µx µy σx σy

left wrist -3.99 0.06 17.65 12.82

right wrist -6.65 0.64 20.32 12.92

Table 1: Mean µ and standard deviation σ of normalized

error between predicted wrist location and ground truth in

freestyle in our dataset. As the swimmer is swimming from

right to left, the right arms is often occluded by his/her body.

Thus, the error for the right wrist is higher.

% rand swaps 0% 1% 2% 3% 4% 5%

RMS(‖p′i(t)‖) 4.4 5.1 6.5 7.3 8.7 9.5

RMS(‖p′′i (t)‖) 4.4 6.0 8.7 10.5 13.2 14.9

Table 2: RMS of joint velocity and acceleration for freestyle

swimmers with varying fractions of simulated random joint

swaps.

specific footage, one fine-tuned model for each of the four

main swimming styles (freestyle, backstroke, butterfly and

breaststroke).

Frame-based pose estimators have the disadvantage of

ignoring consistency between temporally contiguous poses.

While CPMs can nevertheless perform surprisingly well

on video footage of standard scenes, visually challenging

footage of swimmers may still confuse the fine-tuned and

adapted pose detectors due to heavy splashes, water bub-

bles or refraction, producing many false estimates. Figure 2

depicts some qualitative examples. The top row visualizes

ground truth annotations obtained from a human expert, the

bottom row depicts the CPMs’ pose estimates. Typically

errors include complete swaps of left and right body sides

(left image), single joint outliers (middle) and a combina-

tion of both (right). Pose estimation errors are sometimes

isolated phenomena within a long sequence, but more often

than not occur in clusters. Figure 4 (left) depicts the x and y

coordinates of elbows of a freestyle swimmer. In this exam-

ple, a joint swap occurs for single frames in the sequence as

well as for multiple contiguous frames. Additionally, three

single joint outliers (left elbow, blue) blend in together with

switched joints. Apart from obvious pose estimation errors,

extremity joint predictions can be strongly influenced by the

orientation of their respective limbs. We performed the fol-

lowing experiment: From all wrist predictions of freestyle

swimmers in our dataset, we subtract the true (ground truth)

wrist positions. Additionally, we normalized the orienta-

tions of all predictions with respect to the true orientation

of wrist and elbow. Table 1 shows the means and standard

deviations of the errors in predicting the x and y coordinates

of both wrists. First, we observe that the error mean is not

zero-centered, but biased towards the elbows joint. Second,

the standard deviation in x direction is much larger than in

y direction, i.e., the prediction error along the limb is larger

than the prediction error orthogonal to that limb. We ob-

serve the same effect for all extremity joints. In this paper,
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Figure 3: Distribution for velocity and acceleration of joints

for the ground truth (blue) and predictions (orange) from

finetuned [19]. Dashed lines indicate distribution means.

we propose a pipeline to improve on the aforementioned

problems. First, we present an optimization for untangling

joint swaps. Second, we approach the problem of filtering

coordinate outliers and signal noise with a novel method

for robust regression. Third, we propose data-dependent fil-

ters for fine-tuning joint coordinates. All three stages work

solely on the noisy raw output of a pose detection system,

i.e., on joint coordinates.

4. Joint Refinement

We define configurations of the human pose as a graph

Γ = (V,E) with vertices corresponding to N = |V | human

joints identified by an index i ∈ {1, ..., N}. V includes

the head, neck, shoulders, elbows, wrists, hips, knees and

ankles of a person. We denote two joints of the same type,

e.g., the left and right wrists, as partner joints. The subset

V̂ = V \ {head, neck} contains all joints with a semantic

partner. Joints i and j are connected via edges (i, j) ∈ E
in Γ according to the skeletal structure of the human body

depicted in Figure 2.

We describe the temporal locations of a predicted joint

i by a function pi(t) : N0 → R
2 with t ∈ {0, ..., T}.

Each function value at pi(t) = (xi(t), yi(t))
T describes

the location of a joint i in frame t of a video. P (t) =
[p1(t)

T , ..., pN (t)T ]T is used to describe a whole pose con-

figuration at time t. A slicing operator ”:” is used to ex-

tend this vector to a matrix P (t1 : t2) = [P (t1), P (t1 +
1), · · · , P (t2 − 1), P (t2)], combining all pose coordinates

within a timeframe [t1, t2]. The ground truth related to pi(t)
and P (t) is denoted by the time series of ground truth joint

coordinates gi(t) and ground truth configurations G(t).
Preprocessing. All raw pose configurations p̂i(i) are re-

sized relative to a reference upper body size dref . In our

experimental setup, the size of the athlete in a video is ap-

proximately constant. Hence, let dup is estimate by the me-

dian length of an athlete’s upper body size in a video, deter-

mined by the distance between right shoulder and left hip.

Then, preprocessed p(i) is defined as

pi(t) =
dref
dup

p̂i(t), ∀i ∈ V. (1)
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Figure 4: A sequence of joint coordinates of a freestyle swimmer’s left (blue) and right (orange) elbow. Top row depicts x

coordinates, bottom row y coordinates. From left to right: Original sequence predicted, after swap correction, after outlier

and noise correction, after data-dependent filtering. Dashed lines in last column represent the ground truth.

The estimate of dup may be more complex if athletes are

filmed in different training situations. For example, if pan

shots are used and the size of the athlete in the footage

changes over time, dup needs to be continuously estimated,

e.g., by a smoothing spline over predicted upper body

lengths.

4.1. Untangling Joint Swaps

As discussed before, state-of-the-art pose detection sys-

tems sometimes erroneously swap joint assignments. For

instance, the left knee is recognized as the right knee, while

the right knee is identified as the left knee. This section de-

scribes our robust approach to correct most of these errors.

Our approach is based on the following observation: Erro-

neous joint swaps increase the observed magnitudes of joint

velocities and joint accelerations. Table 2 shows the aver-

age joint velocities and average joint accelerations of the

training data set for varying percentages of noise, i.e., ran-

dom joint swaps, ranging from 0% to 5%. The noise was

generated by randomly picking joint pairs of V̂ from the

training data ground truth and swapping the ground truth

joint positions until the desired noise level was reached. As

can be seen in Table 2, the observed average joint veloci-

ties and average joint accelerations are increasing with the

noise level. The same increase can be observed in the actual

joint detections of our human pose detector with respect to

the ground truth joint locations (see Figure 3). Some of this

increase is due to the faulty joint swaps.

Based on this observation, our approach is to minimize

a loss comprised of the squared magnitudes of joint veloci-

ties and joint accelerations by swapping the assignments of

associated joints. Thus, we propose the following loss func-

tion f for finding swapped joint predictions of an athlete for

a predicted pose sequence of length T :

min f(T ) =

T
∑

t=2

∑

i∈V̂

(‖p′i(t)‖
2+λ‖p′′i (t)‖

2) (2)

The numerical derivative of the function p(t) is ap-

proximated by p′(t) ≈ p(t) − p(t − 1). For the joint

location functions pi(t), the first derivative p′i(t) equals

the velocity in [pixels /framerate−1], the second derivative

p′′i (t) corresponds to the joint acceleration with unit [pixels

/framerate−2]. The coefficient λ balances the magnitudes

of both objective terms. As evident in our error simulation

in Table 2, the magnitude ratio changes depending on the

error bias of the pose detector, which has to be determined

on a dataset specific validation set.

At each timestep t of the minimization of the loss f ,

we only consider joint placements that are contained in our

original pose predictions. For example, the position of the

right wrist can only be one of two possible solutions: ei-

ther the position it already has or the position of the left

wrist. Whatever solution is assigned to the right wrist, the

second solution is consequently assigned to the left part-

ner wrist. For each of the six partner joints, there are 2

possible solutions, leaving us with n = 26 possible swaps

per frame that have to be evaluated with Equation 2. Mini-

mizing Equation 2 directly would lie in O(nT ) for a video

of length T, and is therefore too expensive. This problem,

however, structurally resembles the well studied optimiza-

tion problem of deformable part models [9]. It is decom-

posable into a sequence of optimization stages, where each

stage is only dependent on previous stages via the numerical

derivatives. This can be solved by finding the Viterbi path

via dynamic programming in O(n2T ). For our problem,

the Viterbi path contains the sequence of pose estimates that

minimize Equation 2. It is computed as follows:

We start with the third pose estimate, the first for which

joint velocities and accelerations can be computed, and add

it to the empty Viterbi path. From this initial estimate, all

possible joint swaps of partner joints for the sequentially

next pose estimate are generated and evaluated by Equation

2, taking into account the last pose estimates already in the

solution path. The configuration with the smallest error is
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choosen and added to the solution path. We only accept

solutions with joint swaps if the joint velocities and accel-

erations for a joint are above a threshold, determined by a

validation set of ground truth pose sequences. After the last

pose estimate was added, the Viterbi path contains all poses

minimizing Equation 2. One example of a resulting Viterbi

path for two elbow joints is depicted in Figure 4 (middle).

Joint swaps have been eliminated, only single outlier are left

in the sequence.

4.2. Outlier interpolation and noise reduction

After untangling swaps by minimizing the loss in Equa-

tion 2, we are left with outliers. In order to detect and rec-

tify them, we have to account for noisy joint detections over

time. We propose a windowed least squares robust regres-

sion for finding and replacing outliers and increasing the

signal to noise ratio for each pi(t). Hereto, the time se-

ries of 2D locations pi(t) is separated into their respective

coordinate time series xi(t) and yi(t). Each time series is

segmented into pieces of length m, overlapping at ⌊m/2⌋
values. A good value for m depends on the frequency of

arm strokes or leg kicks. We found that a window size of

m = 21 is a good value for both, independent of the swim-

ming style.

For each segment, we fit a polynomial using iteratively

reweighted least squares regression (IRLS, [5]). IRLS is

an algorithm that iteratively performs polynomial regres-

sion on a set of weighted sample points. In each iteration,

the samples are reweighted according to the inverse of their

residuals. A new polynomial is then fitted with updated

weights. Consequently, the influence of outliers is mitigated

by lowering their weights. We apply IRLS with a polyno-

mial of degree three to each window of size m. Each value

in the final fit is weighted with a triangular Bartlett window

of size m. All weighted polynomials are added up accord-

ing to the position of the original segments in pi(t), leaving

us with a robust regression si(t) for each pi(t). We de-

note this process a Short-Time Iteratively Reweighted Least

Squares (ST-IRLS) robust regression of a time series.

The ST-IRLS estimates si(t) are now used for two pur-

poses: Finding and correcting outliers and reducing the

noise in the signal. Therefore, for each value in pi(t), we

set

pi(t) =

{

si(t), if |si(t)− pi(t)| > τ

pi(t)− η(pi(t)− si(t)) otherwise

(3)

The first line in Equation 3 replaces the original joint esti-

mate with the value of the ST-IRLS estimate if pi(t) is more

than τ away from si(t). The second line reduces noise in

the signals by pulling pi(t) closer to its regression result

si(t) by reducing the distance by a fraction η of the error

pi(t)− si(t). The parameter τ is dataset specific and adap-

tively set through an established ratio of assumed outliers

per window m. This ratio and η are determined via a pa-

rameter search on a validation set.

4.3. Data Dependent Joint Refinement

With larger joint estimation errors mostly out of the way,

we propose adaptive temporal filtering for improving joint

predictions on a finer scale. Adapting to the observed joint

velocities in a pose seems to be a natural choice. Thus, our

goal is to learn different temporal pose filters for different

clusters of observed (i.e., predicted) joint velocities in pre-

dicted poses, allowing the filter to better fit to the current

situation than a single static filter.

The velocity of a joint is physically defined as the first

derivative of the location p′i(t) and is approximated here by

p′i(t) ≈ p(t) − p(t − 1). Unfortunately, noise in joint lo-

cations is amplified by taking the derivative, leading to po-

tentially unstable velocity estimates. Therefore, only in the

case of the ground truth annotations we compute the veloci-

ties directly from the joint locations, while in the case of the

predicted joint locations we compute a more stable velocity

estimate from our smoothed trajectory estimates si(t) and

not from our refined estimate pi(t) from Subsection 4.2.

The velocity clusters are computed as follows: Given se-

quences of ground truth annotated poses G(t) in our valida-

tion set, we compute the velocities for all N joints in G(t),
yielding a velocity feature VG(t) = [g′1(t), · · · , g

′

N (t)]T

. We cluster these velocity features into 11 clusters with

k-means clustering function K(.), resulting in 11 different

cluster labels. We now determine the cluster id c of each

smoothed pose and assign this very cluster id c to the re-

spective pose estimates P (t). Each predicted pose estimate

in the validation set is thereby augmented with a cluster id

c, i.e., K(VP (t)) = c.
Our cluster id specific filters are now learned as follows:

We sort all poses with the same cluster assignment c in sep-

arate training sets Sc:

Sc = {(P (t− ρ : t+ ρ), G(t)) |K(VP (t)) = c} . (4)

For the sake of readability, we write P[t] ≡ P (t− ρ : t+ ρ)
to describe P (t) in its temporal context of width 2ρ + 1.

Each Sc contains tuples of training data P[t] ∈ R
2N×(2ρ+1),

i.e., coordinates of contiguous pose estimates around P (t),
together with a vector of ground truth annotations G(t) ∈
R

2N for the pose at time t.
For each training set Sc, we improve each P (t) by find-

ing a mapping W ∗

c that minimized the distance between

P (t) and G(t), i.e.,

W ∗

c = argmin
Wc

∥

∥

∥

∥

∥

∑

t

diag([P[t]|1] ·Wc)−G(t)

∥

∥

∥

∥

∥

2

(5)

Note that this formulation extends matrices P[t] with bias

terms to allow for a constant offset between pose estimates
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free back fly breast

# sequences 24 28 26 26

# pose annotations 1883 2268 2281 2100

# videos 97 74 80 80

# key-poses 1504 1172 1920 1280

Table 3: Statistics of datasets and annotations.

and ground truth coordinates. It can be shown that min-

imizing this problem is equivalent to solving several sub-

problems, namely

w∗

i = argmin
wi

‖[Di · wi −Gi‖
2
, (6)

where Di are the i-th rows from all [P[t]|1] stacked into one

data matrix, wi is the i-th column of Wc and Gi are the cor-

responding target coordinates gi(t) stacked into one vector.

Depending on the number and distribution of training sam-

ples in Sc, several solutions for Equation 6 are possible: (a)

Equation 6 is overdetermined. Then there exists a closed

form solution w∗

i = (DT
i Di)

−1DT
i Gi. (b) The system is

underdetermined, which may happen if an insufficient num-

ber of training examples are assigned to Sc. In this case, we

set w∗

i = (0, · · · , 0, 1, 0, · · · , 0, µ)T , where the bias term

is initialized with the mean deviation µ between the pre-

dicted coordinates and ground truth. (c) The training set Sc

is empty. In this case, all w∗

i are are identity mappings, i.e.,

w∗

i = (0, · · · , 0, 1, 0, · · · , 0)T .

5. Experiments

Competitive swimming covers four different swimming

styles: breaststroke (breast), butterfly (fly), freestyle (free)

and backstroke (back). The first two are termed symmet-

rical styles, because both halves of the body perform the

same motion at all times. The later two are denoted anti-

symmetrical: The left half of the body performs a motion

that is mirrored approximately half a cycle later by the right

half of the body and vice versa. If viewed from the side,

both body halves in symmetric styles are mostly indistin-

guishable due to self occlusion, hence joint swaps appear to

a lesser extend. On the other side, anti-symmetrical styles

are affected by joint swaps and outliers. This may change

with camera perspective. However, we only consider a side

view on athletes in this work.

A key-frame depicts an athlete in a key-pose. A key-pose

in turn is defined by means of a key-pose feature. Features

can be angles between certain body parts, angles of body

parts relative to the camera, contact points of body part and

water surface or moments where a specific motion starts or

ends. Key-poses are commonly defined by human experts

based on training requirements.

Dataset. Our datasets are comprised of swimming chan-

nel footage. All sequences and videos depict swimmers of

different age, stature, gender and body size in two differ-

ent swimming channels. The athletes are filmed from a side

view through a glass wall, hence the whole body - above

and below the water surface - is always visible. We distin-

guish between two overlap-free datasets in our experiments.

The first set is contains 104 fully annotated sequences of

human poses with 50 to 100 consecutive images each, giv-

ing us a total of 8532 annotated video frames. The second

dataset covers 331 swimmer videos for key-pose retrieval.

Each video is between 20 and 30 seconds long and has a

framerate of 50 fps. Instead of ground truth pose annota-

tions, we obtained annotations for key-poses from human

experts. These annotations are spread over two to four full

swimming cycles per video, summing up to a total of 5876

key-poses. Key-poses cover the angle of the upper arm for

freestyle, backstroke and butterfly and the angle between

upper and lower arm and leg for both breaststroke and but-

terfly. We give a visual overview over evaluated key-poses

in Figure 7. Table 3 summarizes the dataset size and the

number of annotations available for our experiments.

Metrics. For the quantitative evaluation of pose esti-

mates, we apply the Percentage of Correct Keypoints (PCK,

[14]) measure. PCK counts a joint as correctly localized if

the euclidean distance to the ground truth annotation does

not exceed a fixed fraction α of the upper body size, which

is defined by the euclidean distance between right shoulder

and left hip. Commonly, thresholds α = 0.1 (PCK@0.1)
and α = 0.2 (PCK@0.2) are evaluated for comparing the

performance of pose estimation systems.

We evaluate a correct detection of a key-pose using a re-

lated metric, denoted as Percentage of Correct Key-Poses

(PCKP, [24]). Similar to PCK, a key-pose is counted as

correctly identified if the absolute temporal deviation of its

key-frame from the annotated ground truth frame is smaller

than a fraction β of one swimming cycle length. This met-

ric takes into account that key-poses are often difficult to

identify, even by experts. Multiple human annotations of

the same key-pose can derive up to ±2 frames from each

other, which translates to β ≈ 0.03. Some annotations in

our dataset miss a second key-pose as a closing boundary

of the interval that defines a complete cycle, hence we will

specify the derivation from the ground truth not by beta, but

w.l.o.g. in full frames in this paper.

5.1. Joint Localization

The initial pose estimates are predicted by a 3-staged

CPM as described in [19]. The CPM model is initially pre-

trained on the Leeds-Sports-Pose dataset [11]. As we wish

to compare the PCK of our approach with the CPM base-

line but only have a small, fully annotated dataset of mo-

tion sequences available, we have to evaluate our pipeline

on our training data. Therefore, we refine a CPM on each

swimming style by fine-tuning it on our fully annotated se-
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Figure 5: Percentage of correct key frames. From left to right: freestyle, backstroke, butterfly, breaststroke.
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Figure 6: PCK@0.1 and PCK@0.2 for all four major swim-

ming styles.

quences using a 3-fold cross validation. The data is split

into 3 partitions. One partition is kept as the test set while

the model is refined using the remaining partitions for train-

ing and validation. Hereby, we obtain pose estimates for

each frame in our fully annotated pose sequences and can

compare our approach directly without having to worry

about overfitting. The PCK on the inital estimates serves as

our baseline and is depicted in Figure 6 (red). We found that

the symmetrical swimming styles already work very well:

the PCK@0.1 is beyond 90%; almost all joints (>98.5%)

are predicted within 0.2 of the upper body size. The anti-

symmetrical swimming styles are more difficult to predict

precisely, with a PCK@0.1 of 78.7% for freestyle and 82%

for backstroke. Both hardly exceed 95% PCK@0.2.

We now evaluate each step in our pose rectification

pipeline separately. Again, due to the small database of

pose sequences, we apply a leave-one-out training scheme.

One sequence is kept for testing, while the pipeline is

trained on the remaining sequences. The joint swap op-

timization problem, outlier rectification, noise reduction

and data-dependent filtering is applied to all swimming

styles, although model specific parameters are optimized

for each style individually. Figure 6 depicts the PCK for

all stages. We observe an increase in PCK for almost all

stages in our rectification pipeline. Anti-symmetrical swim-

ming style benefit from untangling swaps (up to 0.8 %

PCK). We choose the parameter τ for ST-IRLS depending

free back fly breast

CPM baseline 14.81 17.90 7.07 6.14

swap correction 12.50 15.66 6.91 6.14

outlier corr. 11.60 14.40 6.67 6.28

noise reduc. 11.39 14.20 6.64 6.18

data-dep. filt. 10.74 11.34 5.78 5.56

Table 4: RMS values for squared euclidean distance be-

tween prediction and ground truth for all partner joints on

arms and legs.

on the swimming style to adaptively account for outliers

per ST-IRLS window. Block size m, polynomial degree and

smoothing parameter η are determined by a grid search on a

separate validation set per swimming style. With this setup,

we obtain a PCK increase of up to 1%.

The largest increase of up to +3.5% is gained from data-

dependent filtering. As for ST-IRLS, an optimal number

of clusters is determined via parameter search on a valida-

tion set. We found that this number is larger than 9 clus-

ters and does not exceed 13. Overall, we obtain a consid-

erable increase in PCK of up to 5% per swimming style for

PCK@0.1 and +2% for PCK@0.2 for freestyle and back-

stroke. As butterfly and breaststroke were already perform-

ing very well at this range, performance increase for both is

only marginal.

We additionally evaluate the Root Mean Square (RMS)

of euclidean distance between joint prediction and ground

truth in Table 4. This table should give the reader a better

intuition of the decreasing distance between prediction and

ground truth. Equivalent to 6, we observe a decrease of the

error for each rectification step, although this decrease is

much smaller for symmetrical swimming styles.

5.2. Key­Pose Retrieval

The initial motivation for improving the joint predictions

of swimmers was to improve the identification of specific

key-poses. Key-poses serve as interval boundaries to inner-

cyclic intervals that are timed and give important insight

into the quality of a swimming motion. The evaluation of

inner-cyclic intervals is a valuable tool for improving the

performance of top level swimmers. We approach the prob-
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Figure 7: Example of key-poses defined by human experts. Raw images and rectified pose estimates are depicted. Arrows

indicate the key-features: upper arm angle π/2 (green), upper arm angle 3/2π (yellow), angle between two parts (red).

lem of correctly identifying key-poses from a retrieval point

of view. Initial pose estimates for our video database are

predicted by CPMs refined on the respective sequences for

the corresponding swimming styles. In the following, the

raw CPM output serves as the baseline and is compared with

the rectified poses from the proposed rectification pipeline.

We retrieve key-poses or rather their associated key-frame

numbers as follows. For each key-pose, a mathematical

function of the pose feature is defined. It returns a maximal

value if a key-pose is present returns smaller values other-

wise. For example, the key-pose ”upper arm angle γ equals

90 degrees relative to camera plane” translates to sin(γ).
The sine equals 1 if a pose configuration depicts an upper

arm angle of 90 degrees and < 1 otherwise. By flipping

the sign of the function to −sin(γ), we can detect an an-

gle of 270 degrees. By this, we compute a timeseries for

each key-pose in a sequence of predicted poses, denoted as

a key-pose timeseries. A local maxima search on each key-

pose timeseries then identifies possible key-frames. In or-

der to account for double detections within temporally close

frames, we apply non-maximum suppression. Within a tem-

poral window of size ±6 frames ≈ 0.2· cycle duration, the

peak with the largest function value is kept while all other

maxima in this windows are discarded. If multiple peaks

within this window have the same peak value, we keep only

the first occurrence. A key-pose prediction is counted as a

True Positive (TP) if a ground truth annotation lies within

±6 frames. All detections outside ±6 frames that can’t be

matched against a ground truth are considered false positive

detections (FP). If a ground truth is not matched against a

key-pose prediction, we count it as a False Negative (FN).

PCKP values for all swimming styles are depicted in Fig-

ure 5. Within the human error of ±2 frames, we report a

considerable PCKP increases between +2% to +5% for all

swimming styles. We additionally report the precision and

free back fly breast

recall CPM 0.79 0.90 0.82 0.85

precision CPM 0.78 0.77 0.87 0.84

recall refinement 0.83 0.92 0.85 0.90

precision refinement 0.85 0.82 0.89 0.88

Table 5: Precision and Recall of key-pose retrieval for CPM

baseline and the proposed pipeline.

recall for all retrieved key-poses at the largest allowed devi-

ation of ±6 frames in Table 5. An increase of up to 7% for

the precision means that we not only are able to improve on

correctly predicted key-poses within the human error, but

also retrieve far less false positive predictions for key-pose

occurrences.

6. Conclusion

We studied the problem of key-pose retrieval on training

footage of world-class swimmers in a swimming channel.

The difficult visual environment leads to erroneous human

pose detections and consequently to false key-pose predic-

tions. We demonstrated that even with few training data a

rectification pipeline can improve the prediction of an ath-

lete’s joints and thereby considerably increase recall and

precision of retrieved key-poses. Experiments also show

that there still is room to improve on both key-point predic-

tion and key-frame extraction. For example, the optimiza-

tion problem presented in Section 4.1 is often challenged

by joint swaps for spatially close joints like hips and knees.

Improving on peculiarities of our approach remains future

work.

Acknowledgements: We would like to thank the In-

stitute of Applied Training Science (IAT) Leipzig and the

Olympic Training Center (OSP) Hamburg for providing the

video data.

1911



References

[1] I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh.

Bilinear spatiotemporal basis models. ACM Transactions on

Graphics, 31(2):17:1–17:12, Apr. 2012. 2

[2] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures

revisited: People detection and articulated pose estimation.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1014–1021, June 2009. 2

[3] A. Aristidou and J. Lasenby. Real-time marker prediction

and CoR estimation in optical motion capture. The Visual

Computer, 29(1):7–26, Jan 2013. 2

[4] V. Belagiannis and A. Zisserman. Recurrent human pose

estimation. In 2017 12th IEEE International Conference on

Automatic Face Gesture Recognition (FG 2017), pages 468–

475, May 2017. 2

[5] C. S. Burrus, J. A. Barreto, and I. W. Selesnick. Iterative

reweighted least-squares design of fir filters. IEEE Trans-

actions on Signal Processing, 42(11):2926–2936, Nov 1994.

5

[6] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang. Adver-

sarial posenet: A structure-aware convolutional network for

human pose estimation. 2017 IEEE International Confer-

ence on Computer Vision (ICCV), pages 1221–1230, 2017.

2

[7] S. R. Fanello, C. Keskin, P. Kohli, S. Izadi, J. Shotton, A. Cri-

minisi, U. Pattacini, and T. Paek. Filter forests for learning

data-dependent convolutional kernels. In 2014 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

volume 00, pages 1709–1716, June 2014. 2

[8] M. Fastovets, J.-Y. Guillemaut, and A. Hilton. Athlete pose

estimation from monocular tv sports footage. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, June 2013. 2

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Trans. Pattern Anal. Mach. Intell.,

32(9):1627–1645, Sept. 2010. 4

[10] J. Hwang, S. Park, and N. Kwak. Athlete pose estimation by

a global-local network. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

July 2017. 2

[11] S. Johnson and M. Everingham. Learning effective human

pose estimation from inaccurate annotation. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recog-

nition, 2011. 2, 6

[12] U. Mall, G. R. Lal, S. Chaudhuri, and P. Chaudhuri. A

deep recurrent framework for cleaning motion capture data.

CoRR, abs/1712.03380, 2017. 2

[13] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and

Y. Sheikh. Pose machines: Articulated pose estimation via

inference machines. In European Conference on Computer

Vision, pages 33–47. Springer, 2014. 2

[14] B. Sapp and B. Taskar. MODEC: multimodal decomposable

models for human pose estimation. In CVPR, pages 3674–

3681. IEEE Computer Society, 2013. 6

[15] J. Song, L. Wang, L. Van Gool, and O. Hilliges. Thin-slicing

network: A deep structured model for pose estimation in

videos. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July 2017. 2

[16] G. W. Taylor, G. E. Hinton, and S. T. Roweis. Modeling hu-

man motion using binary latent variables. In B. Schölkopf,

J. C. Platt, and T. Hoffman, editors, Advances in Neural In-

formation Processing Systems 19, pages 1345–1352. MIT

Press, 2007. 2

[17] A. Toshev and C. Szegedy. DeepPose: Human pose estima-

tion via deep neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1653–1660, 2014. 2

[18] B. Victor, Z. He, S. Morgan, and D. Miniutti. Continu-

ous video to simple signals for swimming stroke detection

with convolutional neural networks. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR)

Workshops, July 2017. 2

[19] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 2, 3, 6

[20] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang. Learn-

ing feature pyramids for human pose estimation. In arXiv

preprint arXiv:1708.01101, 2017. 2

[21] W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end

learning of deformable mixture of parts and deep convolu-

tional neural networks for human pose estimation. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016. 2

[22] Y. Yang and D. Ramanan. Articulated human detection

with flexible mixtures of parts. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 35(12):2878–2890,

2013. 2

[23] D. Zecha, C. Eggert, and R. Lienhart. Pose estimation for

deriving kinematic parameters of competitive swimmers. In

Electronic Imaging:Computer Vision Applications in Sports,

volume 2017, pages 21–29, 01 2017. 2

[24] D. Zecha and R. Lienhart. Key-pose prediction in cyclic hu-

man motion. In IEEE Winter Conf. on Applications of Com-

puter Vision (WACV), January 2015. 2, 6

1912


