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Abstract

Camera design involves tradeoffs between spatial and

temporal resolution. For instance, traditional cameras pro-

vide either high spatial resolution (e.g., DSLRs) or high

frame rate, but not both. Our approach exploits the optical

stabilization hardware already present in commercial cam-

eras and increasingly available in smartphones. Whereas

single image super-resolution (SR) methods can produce

convincing-looking images and have recently been shown

to improve the performance of certain vision tasks, they

are still limited in their ability to fully recover informa-

tion lost due to under-sampling. In this paper, we present

a new imaging technique that efficiently trades temporal

resolution for spatial resolution in excess of the sensor’s

pixel count without attenuating light or adding additional

hardware. On the hardware front, we demonstrate that the

consumer-grade optical stabilization hardware provides e-

nough precision in its static position to enable physically-

correct SR. On the algorithm front, we elaborately design

the Image Stabilization (IS) lens position pattern so that the

SR can be efficiently conducted via image deconvolution.

Compared with state-of-the-art solutions, our approach sig-

nificantly reduces the computation complexity of the pro-

cessing step while still providing the same level of optical fi-

delity, especially on quantifiable performance metrics from

optical character recognition (OCR) and barcode decoding.

1. Introduction

Image super-resolution (SR) is a long standing problem

in computer vision and image processing. The goal of SR

is to generate a physically correct result from a resolution-

limited optical target [7, 10]. Whereas single image super-

resolution methods [3, 5, 8, 14, 17] can produce convincing-

looking images - and have recently been shown to improve

the performance of certain vision tasks - they are still lim-

ited in their ability to fully recover information lost due to

under-sampling. More recent solutions attempt to combine

multiple low-resolution images into a high-resolution result.

The process can be formulated using an observation mod-

el that takes low-resolution (LR) images L as the blurred

result of a high resolution image H:

L = WH+ nk (1)

where Wk = DBM , in which M is the warp matrix (trans-

lation, rotation, etc.), B is the blur matrix, and D is the

decimation matrix.

Most state-of-the-art image SR methods consist of three

stages, i.e., registration, interpolation and restoration (an in-

verse procedure). These steps can be implemented separate-

ly or simultaneously according to the reconstruction meth-

ods adopted. Registration refers to the procedure of estimat-

ing the motion information or the warp function M between

H and L. In most cases, the relative shifts between the LR

image and the high resolution (HR) image are within a frac-

tion of a pixel. Further, such shifts, by design or by nature,

can be highly non-uniform and therefore a precise subpix-

el motion estimation and subsequent non-uniform interpo-

lation are crucial to conduct reliable image SR. However,

to robustly conduct nonuniform motion estimation and then

interpolation, previous solutions rely on sophisticated opti-

mization schemes, e.g., an iterative update procedure. Such

schemes are computationally expensive and are not always

guaranteed to converge, as illustrated in Table 1.

In this paper, we present a computational imaging so-

lution for producing a (very) high-resolution image using

a low-resolution sensor. Our approach exploits the opti-

cal stabilization hardware already present in commercial

cameras and increasingly available in smartphones. On the

hardware front, we demonstrate that consumer-grade opti-

cal stabilization hardware provides enough precision in its

static position to enable physically-correct SR, and thus that

expensive custom hardware (used previously for SR [1]) is

unnecessary. In light of the increasing availability of optical

stabilization in smartphones (Apple’s iPhone 8s, etc.), our

use of this hardware will ultimately enable hand-held SR on

smartphones, as described below.

On the algorithm front, we elaborately design the IS lens

position pattern so that SR can be efficiently conducted vi-
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Figure 1. From Left to Right:(a)Camera with a modified image stabilizer controls the movement of IS lens unit. (b)(c) The algorithm

overview.

a image deconvolution/deblurring. Compared with state-

of-the-art solutions, our approach significantly reduces the

computational complexity of the processing step while still

providing the same level of optical fidelity. In order to avoid

well-known issues with low-level image quality metrics, we

demonstrate the advantages of our method with quantifi-

able performance metrics from optical character recognition

(OCR) and barcode decoding.

1.1. Related Work

Single-image, learning-based SR methods, reviewed in

[12], have shown continued improvement recently acceler-

ated by deep learning [2,5,9,15]. Performance-wise, single

image SR methods produce aesthetically convincing results,

and are more useful for vision tasks than the LR inputs [4],

but still fall short of a HR image because of ambiguities

which can’t be resolved. This is because single image SR is

ill-posed: any given low-resolution image is consistent with

multiple high-resolution originals. Image priors and learned

mappings may prove useful in certain cases, but can’t ren-

der the problem well-posed. Fig. 2 illustrates this with a

barcode; a gray pixel in the image is as likely to come from

a sequence of a white bar followed by a black bar as from

a black bar followed by a white bar. The figure also shows

that the JOR method [3] - identified in [4] as one of the

highest-performing single image methods - is unable to re-

solve this ambiguity under 2× SR even when it is trained

on barcode data; the JOR result cannot be decoded.

Our approach falls into the category of multiple-image

SR. Popular approaches include iterative back projection

(IBP) [8], which achieve SR by iteratively updating the es-

timated HR image according to the difference between its

simulated LR images and the observed ones, and [6] max-

imize a posteriori and regularized maximum likelihood to

restore a SR images form several blurred, noisy and under-

sampled LR images. Most recently, sparse representation

in line with compressive sensing has attracted much atten-

tion [16]. Their approach learns dictionaries from sample

images and the HR images can be reconstructed by a glob-

al optimization algorithm. These reconstruction techniques

focus solving the ill-posed inverse problem with a conven-

tional sensor and setup.

The most similar prior work to ours is the jitter cam-

era [1], which captures video while the sensor ‘jitters’ be-

tween different positions. In addition to the user of addi-

tional hardware to control the motion, the jitter camera al-

gorithm is based on a back-projection algorithm which, due

to its iterative nature, has prohibitively high computational

complexity. Our work demonstrates that neither the custom

hardware nor the high computational complexity are nec-

essary to produce an SR image with improved utility (for

recognition) relative to the LR images. We capture our LR

images using commodity image stabilization hardware, and

demonstrate that SR can be performed much faster without

any reduction in the utility of the SR image.

2. Jittered Lens Super-Resolution

We start with image SR from multiple LR images, cap-

tured under different positions of the IS hardware, with an

emphasis on streamlining algorithms to reduce the tempo-

ral resolution loss. We first introduce our prototype lens,
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Figure 2. Single image SR is ill-posed. An original barcode image

near the resolution limit, after 2× downsampling and SR via JOR

[3], cannot be recovered from a single image. Ambiguities in the

green-dashed region prevent the JOR image from being decoded.

and then analyze how to locate each captured LR image to

generate HR images.

2.1. Camera prototype

In contrast to the former jitter camera [1] which control-

s the movement of the sensor, our camera achieves precise

sub-pixel movement without the need for additional hard-

ware by controlling the lens stabilizer. Fig. 4 shows the

prototype of our camera where, once the shutter button has

been pressed, the hot shoe signal triggers an external sta-

bilizer controller to modify the IS lens’s position to a loca-

tion of our choosing. Note that if we can access the Appli-

cation programming interface (API) of the stabilizer con-

troller within the camera, we don’t need to modify the cam-

era body at all. In that sense, it is not nessesary to add any

additional hardware to achieve SR beyond the sensor’s pix-

els count.

As shown in Fig. 4, we mounted the modified Canon EF

100mm/2.8L Macro IS lens to a Canon 70D DSLR camera

body. The Canon Optical Image Stabilization (OIS) mod-

ule includes a light-weight lens encased in a housing with a

metallic yoke, motion of which is achieved by modulating a

voice coil. When the shutter release is depressed halfway, a

mechanical lock is released and the lens is moved by a pro-

cessor via pulse width modulation. As described in [11],

the standard mode of that processor is a closed control loop

where motion detected by gyroscopes mounted within the

lens induces a compensating motion of the stabilizing el-

ement. In order to drive the lens to the desired positions

while capturing our LR images, we break the control loop

and decouple the stabilizing element from the motion sen-

sor. We utilize an independent microprocessor to control

the movement of IS lens through pulse width modulation

supervised by a proportional-integral-derivative (PID) con-

troller control loop. Once the shutter button is pressed, the

hot shoe signal initiates our PID control loop to hold at a

programmed position.

2.2. Multi­Image SR via De­blurring

For the purpose of analysis, consider the problem of re-

covering a high resolution 1-D signal via deconvolution.

The goal is to estimate the signal H(x), that was blurred

by a linear system’s point-spread function (PSF) P (x). The

Lens Stabilizer 

Stabilizer Controller 

Figure 4. From Left to Right: (a) Our prototype Jitter Camera. (b)

The IS lens stabilizer controller enables precise sub-pixel move-

ment of the center of projection.

measured image signal I(x) is then known to be

I(x) = P (x) ∗H(x) (2)

with ∗ denoting convolution. In the ideal case, a good esti-

mate of the image, H ′(x), can be recovered via a deconvo-

lution filter P+(x)

H ′(x) = P+(x) ∗ I(x) (3)

In a more general case, we describe convolution using

linear algebra. Let I denote the blurred input image pixel

values. Each pixel of I is a linear combination of the inten-

sities in the desired unblurred image H, and can be written

as:

I = PH+ ǫ (4)

The matrix P is the smearing matrix, effecting the convo-

lution of the input image with the point spread function

P (x, y) and ǫ describes the measurement uncertainty due

to noise, quantization error and model inaccuracies. For

two-dimensional PSF’s, P is a block-circulant matrix. For

simplicity, we only discuss how to locate LR pixels to gen-

erate SR image along horizontal direction. Extending this

to the vertical direction for 2D is straightforward.

Given an estimated PSF P (or Bk), our goal is find lens

positions that can recover the blurred image I from a mini-

mal set of LR images {Lk|k = 1, ...K} of the form in [12]:

Lk = (DkBk)H = Dk(BkH) = Dk(PH) = DkI (5)

Eqn. 5 indicates that the LR images are derived directly

from the blurred HR image I with different downsample

patterns Dk. Theoretically, to recover I, {Lk|k = 1, ...K}
should contain all pixels of I. To ensure the minimal set

{Lk|k = 1, ...K}, there should be no overlapping pixel-

s within {Lk|k = 1, ...K}. As a result, we can easily

conclude that the relative motion between neighboring sub-

captures {Lk} and {Lk+1} should satisfy:

∆I =
size(pixel)

K
(6)
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Figure 3. (a) We utilize the motion blur artifacts to calculate the pixel size of LR images. (b)(c) We capture the motion blur along horizontal

and vertical axis and count the blurred pixel number during each motion direction. (d) The blurred sharp edge along horizontal (the upper)

and vertical (the bottom) directions respectively. Desired (black solid line) versus actual (orange and green dash lines) blur value.

where K is the expected magnification factor, that is

size(I)/size(Lk) = K.

Suppose that the LR images are of size M × N , and

Lk(m,n) denotes the pixel (m,n) on the LR image Lk,

where m = 1, ...,M and n = 1, ..., N . The corresponding

relationship between Lk(m,n) and I(x, y) is:

I((m− 1)K + k, (n− 1)K + k) = Lk(m,n), (7)

as illustrated in Fig. 1 (b). Having recontructed I, we can

solve the deblurred high resolution image H as:

H = (PTP)−1PTI (8)

Fig. 8 shows several SR results of real scenes by our

method. We also compare our method with IBP in Sec-

tion. 3.2.

3. Experiments

3.1. Camera Calibration

In order to achieve the precise subpixel movement, we

need to calculate the exact pixel size w.r.t. the moving u-

nit of the IS lens. While the approximate pixel pitch (about

4µm for our camera) on the sensor is useful for images cap-

tured at the full resolution, the effective pixel pitch for other

resolutions is not publicized in the camera specifications.

To estimate this quantity, we use motion blur artifacts un-

der a known lens motion. Instead of keeping the IS lens at

a fixed position during the exposure time, the images with

motion blur is achieved by changing the lens position at a

constant speed during exposure. By doing this, sharp edges

in the scene will be motion blurred in the captured image.

Since that we already know the moving length of the con-

trolled IS lens, i.e., dl, during the exposure period, the pixel

size w.r.t to camera lens is computed as:

p =
dl

pb
(9)

where pb is the blurred pixel number along the lens motion

direction. The procedure is presented in Fig. 3. Fig. 3(d)

shows the average blur change along x and y axis while

the IS lens position changing 500 units. The black solid

lines indicates the desired value curves. The orange dash

line denotes the average blur value curve along x axis, and

the green one corresponds to the curve along y axis. The

high correspondence between the desired and actual curves

indicates the high accuracy of our PID controlled IS lens

motion.

As discussed in Section 3.2, an inaccurate estimation of

pixel size will largely degrade our performance. To obtain

the precise pixel size, we captured six motion blurred im-

ages of the same checker board, 3 images for each of the

two motion. pbx and pby are the average of the three comput-

ed values. Our estimated pixel size w.r.t. the lens unit under

the resolution 720 × 480 is [56, 44]. If the lens position

changed 56 units along the horizontal direction, the cap-

tured image will shift 1 pixel along x−axis. For instance,

to achieve 2× super-resolution, we will capture 4 images at

{(cx, cy), (cx − 28, cy), (cx, cy − 22), (cx − 28, cy − 22)},

where (cx, cy) is the center location of the lens. Notice that

if the captured edge is not sharp enough, the estimated pb

might be incorrect. In the ideal situation, we hope to cap-

ture sharp edges along both x and y axis.

3.2. Error Estimation

We then analyze the errors that might be introduced to

our capture system. Next, we compare the errors tolerance

ability between our methods and the back-projection tech-

nique [6]. There are two main sources of error in our frame-

work. One results from the incorrect predicted blur ker-

nel(PSF), i.e., ǫB , the other one ǫP is caused by the wrongly

estimated pixel size.

Error from PSF: ǫB To simplify our discussion, the PS-

Fs discussed in this paper have the same blur kernel F of
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Methods ANR Zeyde et al. A+ SRCNN JOR IBP Ours

Maximum 2× super-res <40 <40 <40 <40 <40 70 70

Distance (in.) 3× super-res <40 <40 <40 <40 <40 80 80

Running 2× super-res 0.87 3.82 0.94 4.99 87.78 5.54 0.61

time (sec.) 3× super-res 1.24 3.60 1.30 12.14 100.65 20.96 1.57

Table 1. The maximum distance at which we could decode a UPC symbol, and the average running time of different SR algorithms. The

testing LR images are of size 218× 212. All methods are implemented in Matlab R2013a.
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Figure 5. (a) Errors caused by wrongly estimated pixel sizes. (b)

The PSNR curves of our method and IBP w.r.t. ‖ǫB‖1. (c) The

PSNR curves of our methods under different SR size w.r.t. ‖ǫP ‖1.

(d) The PSNR curves of IBP.

size 1 ×m along horizontal and vertical directions. Recall

that valid blur kernel should satisfy two criterion: 1) its el-

ements should be non-negative; 2) the sum of all elements

in it should be equal to 1. Based on these definition, the

estimated blur kernel F̂ can be written as:

F̂ = F + ǫB (10)

where ǫB describes the errors vector of F . In our discus-

sion, we assume that F̂ and F are of the same length. We

first synthesize 4 LR images from a given HR image ac-

cording to Eqn. 1. The ground truth blur kernel F is a

Gaussian kernel with the size of 1 × 3 and σ = 0.5. We

then apply the incorrect blur kernel F̂ to generate an es-

timated HR image. Specifically, for a given ‖ǫB‖1 = β,

we set ǫB = 1

4
[β,−2β, β], and F̂ is generated by Eqn. 10.

Fig. 5(c) presents the relationship between PSNR curves vs.

‖ǫB‖1. Notice that when P−1 in Eqn. 8 is approximate to

a singular matrix, there will be serious artifacts in our result

(when ‖ǫB‖1 > 0.5). A detailed analysis of this artifacts

is shown in supplementary materials. We can tell that keep-

ing ‖ǫB‖1 under 0.1 is essential in rendering high quality

super-resolution images.

Error from Pixel Size: ǫ
P Another crucial errors in our

scheme is caused by the inaccurate estimated pixel size

(px, py), as shown in Fig. 5(a). ǫPx and ǫPy describe the

estimation errors of pixel size along x and y-axis respec-

tively. The incorrect estimated pixel size is (p̂x, p̂y), where

p̂x = px + ǫPx and p̂y = py + ǫPy . Fig. 5(d) plots the PSNR

curves of IBP and our method w.r.t. |ǫPx | under 2×, 3× and

4× super-resolution respectively. Suppose that we want to

achieve M× super-resolution, according to Section 2.2, M2

numbers of low resolution images are needed to construc-

t the blurred high resolution image I. If we only require

information along x−axis, the relative locations between

subcapture images to the first LR image should be

{i ·
p̂x
M

, i = 0, ...M − 1}

This indicates that ǫP is accumulated as the increasing of

super-resolution size, which has been verified in Fig. 5 (d).

When is Iteration Required? Our experiments clearly

indicate that consumer-grade IS hardware provides suffi-

cient positional accuracy to obviate the iterative approach

of IBP, as we have the same recognition performance while

being an order of magnitude faster (as shown in Table. 1).

At what level of error, then, does it become necessary to in-

cur additional computational complexity? To compare the

error tolerance of our method to IBP, we test the two algo-

rithms on 10 sets of synthetic images and plot their average

PSNR curves w.r.t. two nuisance factors: having an error in

the PSF ‖ǫB‖1, and in the pixel size ‖ǫP ‖1. Fig. 5 (b)(c)(d)

shows this for different super-resolution factors, revealing

that our algorithm achieves higher PSNR value when the

errors are small. As errors get larger, the performance ad-

vantage switches to IBP.

3.3. Performance Evaluation

We capture real scenes with our camera at the resolution

720×480. Because none of the higher resolution modes are
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an integer multiple of these dimensions, we are unable to di-

rectly capture the ground truth HR images to compute tradi-

tional SR metrics, i.e., PSNR, SSIM , IFC etc. Instead,

we evaluate image utility metrics which we believe - in light

of [4] - is more meaningful than evaluating the SR images

quality. One measures character recognition rate, and the

other tests whether the reconstructed SR barcode images

can be decoded. We compare to 6 state-of-the-art SR al-

gorithms: ANR [14], Zeyde [17], A+ [13], SRCNN [5],

JOR [3] and IBP [8].

Character Recognition We first compare the character

recognition accuracy of the estimated SR images. We use

the OCR in Google drive to convert SR text images into

documents and compare with the ground truth text using an

online comparison tool1, which counts and highlights the

mismatching characters in text files automatically.

We use a printed text with 153 words and 880 character-

s (including spaces), captured at 7 different distances from

the camera: [40, 50, 60, 70, 80, 90, 100] inches. At each, we

take two sets of LR images for 2× and 3× SR. For sin-

gle image SR methods, we use the first LR image. Fig. 7

shows curves for 2× SR results of each methods: one for

character-level precision and the other for word-level preci-

sion. Our algorithm and IBP are very comparable, achiev-

ing the best results.

We also note that for single image super-resolution tech-

niques, the text recognition accuracy shows little improve-

ment as the increasing of super-resolution size. By contrast,

since IBP and our method use more images to obtain high-

er SR factors, our text recognition performance increases

correspondingly. For instance, when the object-camera dis-

tance is 100 inches, the character and word recognition pre-

cision of our algorithm are 78.6% and 60.13% in 2× super-

resolution and 84.1% and 66.7% in 3× super-resolution;

the single image super-resolution models hardly detect any-

thing on both 2× and 3× results at that distance.

Barcode Recognition The second metric checks whether

the HR barcodes reconstructed by different algorithm can be

decoded. We make use of online barcode scanner software2

to test each HR image. This online barcode scanner shows

high quality barcode recognition ability for barcodes even

with slight blur, rotation and occlusion.

Since a barcode either decodes properly or doesn’t, we

don’t use recognition rate to measure SR performance here.

Instead, we choose the maximum decodable distance be-

tween the barcode and camera to quantify SR performance.

Similar to the text recognition experiment, at each loca-

tion, we capture two sets of images for 2× and 3× super-

1 http://text-compare.com/
2Intelligent Barcode Scanner: http://www.ibscanner.com/

online-barcode-scanner

resolution. Table. 1 shows the maximum recognizable dis-

tance for different algorithms. Fig. 8 presents the barcode

SR results of different algorithms. Since all the single im-

age SR techniques fail at barcode recognition at 40 inches

distance, it is meaningless to further test the exactly recog-

nizable distance for the rest algorithms.

We do not capture images at the full resolution 5472 ×
3648 for two reasons. Firstly, higher resolution indicates

larger recognition distance. At full resolution, a small bar-

code of size 1′′×0.6′′ will be recognizable at even 200 inch-

es, which means that we need to capture object at 7000 inch-

es to draw Table 1 and Fig. 7. Also, as shown in Fig. 3(d),

our PID controlled IS lens matches the desired value quite

well. Since the actual size of sensor pixel is 4.1 µm, the

minimum length of the IS lens motion is

4.1

Sdl
= 0.06µm (11)

where S = 5472/720 = 3648/480 = 7.6 is the downsam-

ple scale and dl = 500 is the IS lens’s moving length. Our

camera has already achieve sub-pixel shifts on the order of

0.01 µm, and we can therefore choose the low resolution

for better implementation and illustration.

Running Time. Table. 1 compares the running time of d-

ifferent algorithms. Even though our methods utilize mul-

tiple images to reconstruct the SR image, our efficiency is

still high. This is because our method eliminates registra-

tion and iterative updating, which are widely adopted by

other multi-image SR methods.

4. Discussion and Conclusion

We have presented a new computational imaging solu-

tion for conducting multi-image super-resolution. In our

present implementation, we capture the multiple SR images

from a stationary camera, and our approach is limited to s-

tationary scenes. While the ability to handle non-stationary

scenes will necessarily be limited by the ability to register

(potentially multiple) moving objects, the current limitation

to a stationary camera is not fundamental. The same stabi-

lization hardware we use to move the lens between captures

is more commonly used to maintain the position of the cam-

era’s center of projection (relative to the sensor) of a cam-

era while it moves during capture. By combining the two,

it will be possible to capture a sequence of LR images with

the needed shifts, each of which has been stabilized during

its own exposure period. We have not done this because we

do not wish to duplicate the functionality of the in-exposure

stabilization, and because of the amount of engineering ef-

fort required to do so.

In the future, we expect that our method can be extended

to provide optimized, on-demand SR for optical recogni-

tion tasks. Instead of capturing an image with the highest
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"Excellent!" ovlled Ron as the shimrock soarod owet them, and

heavy gold coins rained from it, bouncing off their loads and seats.

Squinting up at the shamrock. Harry realtood that it was octually cor

prisod of thousands of tiny little beorded men with red weors. sach

carring 1 minute kamp of gold or groen.

!“Excellent " yelled Ron as the shamrock soared over them, and

heavy gold coins rained from it, bouncing off their heads and seats.

Squinting up at the shamrock, Harry realized that it was actually

comprised of thousands of tiny little bearded men with red vests,

each carrying a minute lamp of gold or green.

“Excellent!” velled Ron as the shimrock noarod oven then, and

heavy rold coin rained from it, bouncing off their herds und seats.

Squinting up at the shamrock, Harry realized that it was actually

comprised of tho-sando of siny, lindle beardel men with red vest,

each carrying a minute lamp of gold or green.

Figure 6. From Left to Right: (a) The SR images with textual contents: Bicubic (the top row) JOR (the middle row) and ours (the bottom

row). (b) The text recognition results on different schemes. Our method only produces one recognition error. Red corresponds to missing

letter and highlight corresponds to wrong recognition.
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Figure 7. The character and word recognition rates of different SR algorithms w.r.t. different object to camera distance. Our algorithm are

of the highest recognition precision.

resolution possible at all times - which increases the com-

putational complexity of recognition applied to the image -

we propose instead to capture a first LR image which can

be quickly analyzed. If that first image lacks the resolution

needed to recognize the target, we can capture additional L-

R images and apply our SR method to produce only as much

resolution as is needed to recognize the target. For instance,

if our first image contains a 1D barcode captured with insuf-

ficient resolution, we can capture the minimum number of

additional images needed to produce a HR image with the

necessary resolution to decode it. By only super-resolving

the image in the critical direction, we will reduce the HR

image size and allow for more efficient recognition.
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