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Three-dimensional realistic representations of buildings

in urban environments have been increasingly applied as

data sources in a growing number of remote sensing fields

such as urban planning and city management, navigation,

environmental simulation (i.e. flood, earthquake, air pollu-

tion), 3D change detection after events like natural disasters

or conflicts, etc. With recent technological developments,

it becomes possible to acquire high-quality 3D input data.

There are two main ways to obtain elevation information:

from active remote sensing systems, such as light detection

and ranging (LIDAR), and from passive remote sensing sys-

tems, such as optical images, which allow the acquisition of

stereo images for automatic digital surface models (DSMs)

generation. Although airborne laser scanning provides very

accurate DSMs, it is a costly method. On the other hand,

the DSMs from stereo satellite imagery show a large cover-

age and lower costs. However, they are not as accurate as

LIDAR DSMs. With respect to automatic 3D information

extraction, the availability of accurate and detailed DSMs

is a crucial issue for automatic 3D building model recon-

struction. We present a novel methodology for generating

a better-quality stereo DSM with refined buildings shapes

using a deep learning framework. To this end, a conditional

generative adversarial network (cGAN) is trained to gen-

erate accurate LIDAR DSM-like height images from noisy

stereo DSMs.

Over the past two decades, the need of accurate DSMs

for 3D building modeling from remote sensing imagery in-

creases research effort to develop the methodologies for au-

tomatic elevation model enhancement. For example, Maire

[1], first, extract from high-resolution satellite imagery the

user-defined semantic contents like sea, lakes, buildings or

roads with a supervised classification. Then for each de-

tected segment a plane is interpolated with geometric con-

straints given by the topological properties of each class and

neighbor regions. Krauß et al. [2] segment and transfer

one stereo image to the disparity map, then for each seg-

ment the original disparity map is filled with suitable inter-

polation of the disparities to recover the occlusion errors.

Poli et al. [3] propose to use segmentation of a very high-

resolution (VHR) satellite imagery to refine a given DSM at

a coarser resolution. Mainly, the image scene is segmented

with alpha-omega connectivity [4] and overlaid on the given

DSM. Then the statistics like mean, median, standard de-

viation, maximum and minimum values of the heights of

the points falling into each segment are calculated. The

new surface model is determined afterward from the ex-

isting one by enforcing that the height values belonging to

the same segment follow a certain mathematical function,

i.e. constant value or planar surface. Although the previ-

ous methodologies show the promising results, automatic

enhancement of buildings shapes in DSMs is still an open

research problem.

The recent developments in artificial neural networks

provide the best solutions to problems in various fields

like computer vision, medicine, biology, and remote sens-

ing. The introduction of generative adversarial networks

(GANs) attracted a lot of attention in the field of machine

learning as they offer a new possibility to generate high-

quality images across a wide range of domains [5]. Re-

cently, several works made an attempt to go from the 2D

domain to 3D and generate 3D object shapes. Wu et al.

[6] propose a generative model of 3D shapes from a prob-

abilistic space by using volumetric convolutional networks

and GANs. Yan et al. [7] generate 3D shape from a single

2D image using multiple projections from 3D shape from a

known viewpoint. In opposition to the common GAN setup,

we want to generate an artificial LIDAR DSM-like height

image similar to some known input image (a stereo DSM

in our case). For this purpose, we utilize the cGANs ap-

proach proposed by Isola et al. [8]. The cGANs consist of

a generative model G and a discriminative model D which

compete against each other. Training a cGANs is equivalent

to a min-max game

G⋆ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (1)

between the generator and the discriminator, where G in-
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Figure 1. Example of the generated DSM with refined 3D buildings shapes and profiles of selected buildings.

tents to minimize the objective LcGAN (G,D) against the D

that aims to maximize it. The second term in Equation 1 as-

sures that the generator produces the output near the ground

truth in a L1 sense.

The architecture of the cGANs is organized as follows:

The generator G is represented by an U-Net architecture [9],

an encoder-decoder type of network, which combines the

encoder feature maps with up-sampled feature maps from

the decoder at every stage by skip connections. The skip

connections allow the decoder to learn back relevant fea-

tures that are lost due to the pooling in the encoder. The

discriminator D is realized via several convolutional layers

with a sigmoid activation function as the last layer. Since

the remote sensing images are huge, for training and testing

we tile the images into patches with a size of 256×256 pix-

els which fits into the available GPU memory. In order to

avoid artifacts and object discontinuities at tile boundaries,

the patches are generated with overlap. During optimiza-

tion, the G and D networks are trained at the same time by

alternating their trainings. The generator G tries to synthe-

size realistic images to fool the discriminator D, and D in its

turn tries to tell which samples are real or generated. In the

inference step, the predictions are performed for each patch

separately from the test dataset to generate a predicted map

of the same size as the patch. After that, the tiles are stitched

together in order to generate an image with the same size as

the original test area.

Experiments have been performed on data consisting

of stereo DSM over Berlin city, Germany, derived from

WorldView-2 very high-resolution stereo panchromatic im-

agery with a resolution of 0.5 m. A sample of the input im-

age is illustrated in Figure 1(a). As ground truth, a LIDAR

DSM from the Senate Department for Urban Development

and Housing, Berlin, was used for learning the mapping

function between the noisy DSM and the one with better

quality. The test sample is illustrated in Figure 1(c). As the

LIDAR DSM was generated from last pulse data, there is

no or much less vegetation within a scene in comparison to

the stereo DSM. Figure 1(b) shows the results generated by

cGAN and depicts the elevation model of the same resolu-

tion as the input image. It can be clearly seen that geomet-

ric structures of buildings from stereo DSM are preserved

in the generated sample and closer to the LIDAR DSM.

Besides, the network has learned about the much smaller

amount of vegetation from these data. More examples of

generated images are illustrated in Figure 2. By investigat-

ing the profiles (see Figures 1(d)-(f)) of the selected build-

ings, highlighted by the red lines in Figure 1(b), we can

confirm that the cGAN successfully learned the 3D build-

ings representations close to the LIDAR data representa-

tions. Regarding to the ridge lines of the buildings from

the first two profiles we can see that they are much sharper

in comparison to ridge lines from stereo DSM and are at the

center of the roof which gives more realistic view and is ge-

ometrically correct. The profile in Figure 1(f) also shows

very close resemblance of resulted building shape to the

ground truth, especially regarding the width and borders of

the building, although, the input 3D shape is much wider
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Figure 2. Example of the generated DSM with refined 3D buildings shapes.

due to the trees in the neighborhood. Thus, it is evident that

the trees have much less influence on the building shapes.

More results on quantitative evaluation experiment can be

found in original paper published in ISPRS Archives.

In the future, we will augment the generative part of

cGAN network with additional branch which learns the in-

formation from spectral image: In our case it is 1 channel

panchromatic image. We believe, the generative network

will leverage mutual information of the spectral image and

the height image to enhance the contours of building to-

gether with the ridge line for some roof types as this sort of

information is more visible and accurate on spectral images.

Moreover, we will experiment with total variation loss and

8-connected gradient loss used together with data loss to

train generative networks for producing images even more

closer to the real ones.
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