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Abstract

Millions of people are disconnected from basic services

due to lack of adequate addressing. We propose an auto-

matic generative algorithm to create street addresses from

satellite imagery. Our addressing scheme is coherent with

the street topology, linear and hierarchical to follow human

perception, and universal to be used as a unified geocoding

system. Our algorithm starts with extracting road segments

using deep learning and partitions the road network into

regions. Then regions, streets, and address cells are named

using proximity computations. We also extend our address-

ing scheme to cover inaccessible areas, to be flexible for

changes, and to lead as a pioneer for a unified geodatabase.

Figure 1. Street Addresses starts with (a) satellite imagery, pre-

dicts (b) roads, creates (c) regions, to obtain (d) addresses.

1. Introduction

Street addresses enhance precise physical presence and

effectively increase the connectivity all around the world.

Currently 75% of the roads in the world are not mapped, and

this number is increasing in developing countries. To solve

this universal problem, we propose a generative address-

ing system to bridge the gap between grid-based digital ad-

dressing schemes and traditional street addresses. Merging

the two extents, we designed a linear, hierarchical, and in-

tuitive addressing scheme that follows a set of properties.

To automatically generate such street addresses, our sys-

tem learns regions, roads, and blocks from satellite images

using deep learning and graph partitioning. We also proto-

typed the holistic framework of the generative system sup-

porting forward and inverse geoqueries. We compared our

generated maps to existing commercial and open maps for

already fully mapped areas for validating hierarchical label-

ing and unmapped areas for increased map coverage. We

also compared travel times using old and new addresses to

evaluate the intuitiveness and utility of our system.

2. Related Work

The geocoding process involves converting latitude and

longitude information into a unique code. A quick investi-

gation among popular geocoding solutions reveals that such

codes are either not in human-readable form (e.g., Plus-

Codes, OkHi) or they tend to de-correlate from the true

topological information (e.g. What3Words, Zippr, Map-

Tags). On the other hand, automatic generation of maps is

extensively studied in the urban procedural modeling world

[2, 5], creating detailed and structurally realistic models.

Following the example-based generation idea, another

approach is to learn from already existing data resources

[4]. In our approach, to provide scalability across coun-

tries and terrains, we modified state-of-the-art image seg-

mentation neural networks for road extraction. Processing

the road topology has also been studied as an example case

for clustering and graph partitioning approaches [6]. In ad-

dition to the problem being NP-hard, the underconstrained

definition of regions adds another layer of complexity, thus

we suggested our own partitioner in Section 4.2.

3. The Address Format

Naturally occurring addresses around the world are usu-

ally shaped by cultural dynamics, politics, and other long-

term processes. We want to mimic this organic process,

while still maintaining a unified representation independent

of human factors. We enumerated some properties for the

ideal address format. Semantic properties emphasize user-

friendly features, implying linear, hierarchical, universal,

and memorable addresses. Structural properties enable the

format of street addresses to be computer friendly, necessi-

tating linear, hierarchical, compressible, robust, extendible,

and queryable codes. Following these design principles

(Figure 2), the last field indicates version, the fourth field

contains the country and state information when applicable,

preceded by the city information in the third field. The sec-
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ond field contains the road name, which starts with the re-

gion label, followed by the road number. Lastly, the first

field is composed of the meter marker along the road and

the block letter from the road, animating the house number

and apartment number consecutively.

Figure 2. Our Address Format is composed of country, state, city,

road, and house number of the cell; followed by the version.

4. The Holistic Addressing Framework

Figure 3. System Pipeline. Segmentation extracts roads, breaks

them into road segments and clusters them into regions. Labeling

names the regions and road segments, places markers, and assigns

block letters to individual addressable units.

4.1. Road Extraction

The first step of our approach creates binary road pre-

diction images from three channel satellite images. Our

model is trained on satellite images of 0.5m resolution and

of size 19K ∗ 19K, provided by DigitalGlobe. We use

a modified version of SegNet [1], where the last soft-max

layer is changed from the multi-class structure to have bi-

nary classes for road detection, by substituting it with a con-

volutional layer. We experimented with other architectures

(Figure 4), like VGG , U-Net, and ResNet variations, how-

ever we achieved the best result with SegNet model result-

ing in 72.6% precision and 57.2% recall. We also experi-

mented with DeepLab variations and achieved 75.4% preci-

sion and 75.9% recall (Figure 4h). After we obtain the road

predictions, we threshold, binarize, and apply orientation-

bucketing on the road pixels to obtain road segments.

Figure 4. Road Prediction Models. An example (a) satellite im-

age and (b) ground truth. Road predictions using (c) VGG, (d) U-

Net, (e) ResNet50, (f) ResNet101, (g) SegNet, and (h) DeepLab.

4.2. Region Creation

We convert the road segments into a road graph where

the nodes correspond to intersections (and end points) and

edges correspond to streets. We weight the edges based

on the segment distance and partition the road graph into

communities with maximum inter- and minimum intra-

connectivity. We experimented with normalized min-

cut [7], Newman-Girvan, and optimal modularity based

graph partitioning approaches (Figure 5), and concluded [7]

efficiently produced results closest to real-world. Graph-

based approaches was also better at segmenting from natu-

ral cuts (rivers, bridges) over pixel-based.

Figure 5. Region Creation. Experiments with (a) normalized min-

cut, (b) Newman-Girvan, (c) modularity-based partitioning.

4.3. Address Labeling

We name the densest region ‘CA’ for the city center. We

divide all other regions based on their midpoint: N(orth),

S(outh), W(est), and E(ast). Next, we name the adjacent re-

gions in each bucket, based on their distance from the city

center. The roads in each region is ordered with two main

directions of the roads, odd for north-south bound, and even

for east-west bound. On each road segment, we place a vir-

tual meter marker in every 5m. We also compute a dis-

cretized distance field of the roads by 5m, assign a letter to

each, concluding the address generation.

5. Inaccessible Areas

Putting streets in focus creates a drawback for geocoding

structures that are considerably further from any street. To

cover areas that are not accessible by streets using a hier-

archical hashing of spatial coordinates, we decide on the
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alphanumeric format with 26 letters and 10 digits. We use

two levels of hashing, into 1km x 1km cell of three letters,

and into 30m x 30m address cells represented by five letters

– first level hash (3), second level hash (1) and the direction.

Expressing it in our geocoding formulation, it becomes

f(C, (lat, lon)) = H(R(lat, 2)) + H(lat − R(lat, 2)) +
dir(lat).H(R(lon, 2))+H(lon−R(lon, 2))+dir(lon).C,

expressed as LlatLlatHlatDlat.LlonLlonHlonDlon.C

where H is the hash function, and R is round.

Figure 6. Labeling System. (a) Regions based on orientation and

distance, (b) roads based on direction and order, (c) markers and

blocks based on proximity. The yellow house lives at 38K WB14.

6. Results and Applications

Our system is written in python and C++, uses Chainer,

networkx, and sci-kit libraries. The results are exported in

.osm format in addition to the on-the-fly computation of ad-

dress cells in our prototype. We processed more than 10

cities, totaling up to more than 16K km2. The source code

to convert .osm files and geotiffs to street addresses is avail-

able on our repository1.

We evaluated our framework in a traditional US city that

is already well-mapped, accomplishing to extract 95% of

the roads. However, keeping the motivation of providing

street addresses to the approximately 4 billion unconnected

people, our results shine for unmapped developing coun-

tries as shown in Figure 7 on 3 different cities. We accom-

plished to automatically address more than 80% of the pop-

ulated areas, which significantly improves map coverage.

We validated the usefulness of our generative maps with

some user experience by comparing the travel times using

the old and new addressing schemes. Overall travel times

decreased by 21.7% with a 52.4 seconds improvement on

the average. We used population density data to evaluate

how our algorithm reflects density criteria. We evaluated

our road accuracy versus manually marked roads. We de-

signed a universal Place Name Server to store all addresses,

including prototype web and mobile map applications that

utilize PNS. For more results we refer you to our article[3].

7. Conclusions

Overall, we presented a generative system that can be

applied to any given area producing a complete address-

1https://github.com/facebookresearch/street-addresses

ing solution. Generated street labels improve map cover-

age, physically connect people to services, as well as help

provide immediate aid in disaster zones. More discussions

and extensions about missing city boundaries, overflowing

regions, 3D additions, and theoretical analysis, follow up

in [3]. We would also like to acknowledge our whole team

listed in the same article[3]. In future, we would like to

scale up and enable large entities as cities, states, and coun-

tries to adopt our framework.

Figure 7. Street Addresses in Developing Countries. Satellite

image, extracted roads, labeled regions and roads, and meter mark-

ers and blocks of three unmapped cities.
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