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Nezihe Merve Gürel1,2, Paul Hurley2, Matthieu Simeoni2,3

1 Department of Computer Science, ETH Zürich
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Abstract

Radio interferometry usually compensates for high lev-

els of noise in sensor/antenna electronics by throwing data

and energy at the problem: observe longer, then store and

process it all. We propose instead a method to remove the

noise explicitly before imaging. To this end, we developed

an algorithm that first decomposes the instances of antenna

correlation matrix, the so-called visibility matrix, into addi-

tive components using Singular Spectrum Analysis and then

cluster these components using graph Laplacian matrix. We

show through simulation the potential for radio astronomy,

in particular, illustrating the benefit for LOFAR, the low fre-

quency array in Netherlands. Least-squares images are es-

timated with far higher accuracy with low computation cost

without the need for long observation time.

1. Introduction

In radio astronomy, signals are inherently weak. Noise

in antennas is thus significant (far stronger than the signal),

and a low signal-to-noise ratio (SNR) results. Relative to

the brightest source in the sky, the SNR is usually on the

order of -30 dB or less [11, 14, 18].

To date, this thermal noise is circumvented through col-

lecting large amounts of data (long observation times) to-

gether with large numbers of antennas (whose role is noise

resilience as well as spatial resolution). In addition, when

data is heavily corrupted, it is thrown away [16], wasting

resources.

This work proposes to explicitly denoise the visibility

matrix using a subspace algorithm. The ultimate goal is to

obtain accurate output in the end of the processing chain

and thus one may choose to observe for a shorter time, or

to use less antennas and still obtain better quality images by

reducing substantially the cost of building a phased-array.

Typically, noise structure is different from the true pat-

tern underlaying in the visibility matrix, hence the noise can

usually be separated from the visibility matrix by subspace

methods. In this paper, we specifically study the case where

thermal noise follows an additive white Gaussian distribu-

tion and no correlation exists among antennas. Our intuition

behind employing subspace methods can then be justified as

follows. Consider the visibility matrix samples at a specific-

time instance. These samples represent the same snapshots

taken at different time instances, which differs merely by a

negligible phase difference among each other. That is, the

underlaying structure in the visibility matrix samples is es-

sentially similar yet corrupted by different noise. Therefore,

given this similarity throughout the visibility matrix sam-

ples and corruption by different noise, subspace methods

seem promising for distinguishing these two components.

Related Work: To the best of our knowledge, denoising via

subspace methods has extensively been studied when noise

is far lower than the true signal. For example, Cadzow’s

method successfully performs noise reduction for high [3]

as well as for moderate SNR signals [4] but works poorly

in a low SNR regime. Singular Spectrum Analysis (SSA)

is likewise powerful in denoising high SNR signals [5].

In [15], authors propose a subspace based identification

method in the presence of small disturbance for linear time-

varying channels, which also potentially function noise re-

duction for high SNR phased-array signals. This work, on

the other hand, is built upon [7, 9, 8, 6].

Problem Statement: Consider L closely located antennas

where sample taken by i’th antenna at time tn is denoted by

xi(tn). The entries of visibility matrix instance Σi,j(tn) is

estimated by the cross product between i, j’th antennas, i.e.,

xj(tn)xi(tn)
† where † stands for the Hermitian transpose,

also i and j denote row and column indices, respectively.

Radio interferometers measure electromagnetic radia-

tion from space which are used to deduce a sky image. In-

terferometers first estimate cross-product between the time

series measurements Σi,j(tn), that is called visibilities, av-

erage them through a certain time interval and form visi-

bility matrix such that Σ = 1/N
PN

n=1
Σ(tn) for N time

samples, and finally sky image is estimated from the visi-

bility matrix by a specified imaging technique. The various

4321

2015



techniques for mapping from the visibility matrix to the sky

image are throughly studied in the literature, ranging from

CLEAN [10] to A(W)-projection [13, 2].

2. Proposed Method

In this section, we propose a method to denoise visibility

matrix instances separately by exploiting the similarity in

between, even under significant noise corruption. The ap-

proach decomposes the low SNR visibility matrix instances

into additive components. It then learns, by spectral cluster-

ing, the representative components for the noise by detect-

ing outliers.

2.1. Decomposition via Singular Spectrum Analysis

SSA has attracted much attention by permitting us to

create algorithms with high learning capability to extract

meaningful features from a given data set [15]. Opening up

its role regarding noise reduction, SSA reconstructs noise

from the residual and uninterpretable feature space under

high SNR constraint. The methodology for decomposition

part can be given as follows.

1st Step: Decomposition

At this step, the noisy visibility matrix Σ(tn) is analysed

by performing an SVD. The SVD of Σ(tn) is given by

the product of three matrices U = (u1,u2, ...,uW ), Λ =

diag(λ1, λ2, ..., λW ) and V = (v1,v2, ...,vW ) such that

Σ(tn) = UΛVT where un and vn denote nth Empirical

Orthogonal Function (EOF) as a sequence of elements of

the singular-vector corresponding to nth singular value for

n ∈ {1, 2, ...,W}.

Let singular-values be in decreasing order of magnitude

λ1 ≥ λ2 ≥ ... ≥ λW ≥ 0. The collection of eigentriples

can then be formed as (un, λn,vn), n ∈ {1, 2, ...,W}.

The SVD of the visibility matrix instance can be written as

a sum of rank-one bi-orthogonal elementary matrices Xw,

w ≤ W as Σ(tn) = X1 + ...+XW .

2.2. Clustering via Graph Laplacian Matrix

Spectral clustering has recently emerged in machine

learning, pattern recognition and computer vision as a

promising modern clustering algorithm [1]. The method-

ology is essentially forming a distance matrix from a pre-

determined similarity measure between components. Then

a matrix of leading eigenvectors is derived from the distance

matrix, which is used by the k-means algorithm to cluster

the components.

The algorithmic steps can be summarised as follows [17,

12, 1].

2nd step: Forming Graph Laplacian Matrix

Form an affinity matrix X
A ∈ R

W⇥W where each (i,j)-

element is described by X
A
i,j =

kXi−Xjk√
kXikkXjk

.

A graph Laplacian matrix L can be formed as L =

D
− 1

2X
A
D

− 1

2 where D is a diagonal matrix defined by

Dj,j =
P

i X
A
i,j .

3rd step: Eigendecomposition

Define Y ∈ R
W⇥k, d ∈ {1, 2, ...,W − 1} to be a matrix

governed by k leading eigenvectors of L in its columns, and

re-normalise its rows to have unit length.

4th step: Cluster via K-means

Given that each row of Y represents a point in R
k, seperate

the components Xw for w = {1, 2, ...,W} into k clusters

using k-means clustering, which is followed by assigning

the component Xw to a distinct cluster that w0th row of Y

belongs to.

The AWGN assumption implies that noise components

have arbitrary structures and hence the respective vertices

are very often far from each other. Instead, actual cluster of

our interest has multiple components within. We therefore

detect the outliers, i.e., noise components, to subtract from

the noisy visibility instance.

Let Inoise denote the set of indices where noise compo-

nents like in. The denoised visibility matrix Σ̂ can then be

computed as Σ̂(tn) = Σ(tn)−
P

i2Inoise
{Xw}i.

The above steps are repeated and the denoised visibility

matrix is estimated by Σ̂ = 1/N
PN

n=1
Σ̂(tn), and finally,

the denoised image is inferred using Σ̂.

3. Experimental Results

We now show how effectively the scheme performs in

noise reduction through simulation on LOw Frequency AR-

ray by illustrating how much the least-squares images has

been cleared up. Fig.1 shows how remarkably close the de-

noised image is to the true image, the one without the pres-

ence of noise. The residual obtained after removing the true

least-squares is almost clear, showing it captures it really

well.

4. Conclusions

We showed the possibility of significant noise reduction

in radio interferometers where the algorithm was shown to

perform beyond what we even anticipated.

We inferred that a detailed analysis on the singular spec-

trum permits us to successfully eliminate the vast majority

of noise from the observations followed by the spectral clus-

tering. A more sophisticated analysis based on SSA helped

us to build a rigorous framework to construct our learning

algorithm.

An application to modern radio interferometers validated

our claim and showed that the heuristic arguments are in

agreement with simulation. Simulation results bear out that

our approach offers good accuracy even with far less sam-

pling time, potentially saving time and energy. A funda-

mental contribution was to show that even using less data,

sky estimate can still be recovered very accurately.
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Figure 1. The white circles denote sources. Denoised least-square

estimates of the sky are provided over 5ms and 0.5ms of obser-

vation, respectively in (a) and (d). The residuals after subtract-

ing the true estimates are given in (b) and (e) in the presence and

absence denoising, respectively for 5ms and 0.5ms of measure-

ment duration. We observe that identification of true sources is

far easier and artefacts are significantly reduced when denoising

is used. When fewer time samples are used (10 times smaller in

the case of Fig.1(d)), the performance remains good, illustrated by

the residual Fig.1(e) which is vastly superior to the residual in the

absence of noise in Fig.1(f). This suggests we can drastically re-

duce the observation time (and thus the amount of data), and still

obtain good estimates. Such a result has potentially profound con-

sequences for the power consumption, engineering, use cases and

phased-array design.
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