
 

 

 

Abstract 

 

The mechanism of attention control is best described by 

biased-competition theory (BCT), which suggests that a 

top-down goal state biases a competition among object 

representations for the selective routing of a visual input 

for classification. Our work advances this theory by 

making it computationally explicit as a deep neural 

network (DNN) model, thereby enabling predictions of 

goal-directed attention control using real-world stimuli. 

This model, which we call Deep-BCN, is built on top of an 

8-layer DNN pre-trained for object classification, but has 

layers mapped to early visual (V1, V2/V3, V4), ventral 

(PIT, AIT), and frontal (PFC) brain areas that have their 

functional connectivity informed by BCT. Deep-BCN also 

has a superior colliculus and a frontal-eye field, and can 

therefore make eye movements. We compared Deep-

BCN’s eye movements to those made from 15 people 

performing a categorical search for one of 25 target 

object categories, and found that it predicted both the 

number of fixations during search and the saccade-

distance travelled before search termination. With Deep-

BCN a DNN implementation of BCT now exists, which can 

be used to predict the neural and behavioral responses of 

an attention control mechanism as it mediates a goal-

directed behavior—in our study the eye movements made 

in search of a target goal. 

 

1. Introduction 

Visual object detection is important both for automated 

systems and biological systems. For computers, object 

detection underlies an untold number of applications, 

ranging from smart homes to self-driving cars. For 

biological systems, object detection is a core cognitive 

necessity that undoubtedly shapes a species’ success, 

informing an animal when it is appropriate to fight or flee 

or forage. The importance of successful object detection 

has spawned separate but equally vast literatures. In 

computer vision, decades of vigorous research has 

culminated in international challenges aimed at improving 

automated object detection performance. A major advance 

of this literature is the development of increasingly precise 

and robust object detectors that can be passed over the 

pixels in an image or video. In biological vision, a half 

century of research by vision scientists, cognitive 

scientists, and neuroscientists produced massive literatures 

rich with data and theories. A major advance of this effort 

has been the development of a framework that is widely 

accepted among these researchers; that object detection is 

mediated by an attention control mechanism that biases the 

selective routing of visual inputs [1]. The computer vision 

and biological vision approaches to the object detection 

problem, although vastly different in their constraints, have 

an underlying similarity. Each assumes that object 

detection is a process of selectively analyzing local regions 

in an input, and repeating this analysis at multiple input 

locations. In computer vision this assumption takes the 

form of a moving-window object detector that is applied to 

all pixels in an image or, in a recent effort to improve 

efficiency, to only those pixels likely corresponding to 

objects [2]. In biological vision this assumption is 

epitomized by the metaphor of an attention “spotlight” that 

shifts from location to location, detecting objects in its 

path. Here we exploit this commonality and attempt using 

it to bridge these two richly evolved perspectives on the 

same object detection problem. We take this first step by 

melding an accepted behavioral framework for the primate 

attention control system with an artificial deep network 

architecture, and using this brain-inspired deep network to 

predict goal-directed behavior in humans.  

1.1. Attention in Computers 

The DNN literature is increasingly appealing to the 

concept of attention [3-6]. These networks learn how to 

weight the integration of visual inputs with trained internal 

representations in order to generate sequences of outputs. 

This sequential dynamic weighting mechanism has been 

shown to improve model performance across applications 

ranging from caption generation [5] to question answering 
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[7] and translation [8]. It has also been shown to improve 

multi-digit number recognition [4] by having a model 

attend to, and recognize, individual digits in a multi-digit 

string, thereby reducing the number of prediction classes 

to 10 (all the digits). Attention control has even been 

suggested as possibly replacing convolution and recurrent 

operations commonly used in current networks [8]. But the 

conceptualization of attention in these models maps only 

very loosely onto the detailed blueprint for how attention 

is implemented in the brain. Their architectures are also 

narrowly designed to perform specific tasks, making them 

lack what might be considered a general underlying 

attention mechanism. But if even a rough adoption of 

attention can prove useful across so many computer vision 

applications, what might models be able to do that adopt a 

more brain-inspired design?  

1.2. Attention in the Brain  

The core function of visual attention is to prioritize and 

select a subset of visual input for further processing, and 

the currently best theory for how this happens in the brain 

is Biased Competition (BC) ([9-15]. BC proposes that 

bottom-up visual information is weighted at various levels 

in a processing hierarchy by top-down modulations, with 

the goal of this biasing being to have task-relevant 

information win a neural competition for object 

recognition and the control of goal-directed behavior.  

Attentional biases can be both spatial [16, 17] and for 

the features of objects [18, 19]. The consequence of 

attention biasing a location in space is to cause information 

about an object appearing at that location to be selectively 

routed to higher visual areas. Mechanistically, this is 

accomplished by shrinking the effective receptive fields 

(RFs) of neurons to the attended object, as if that object 

was presented in isolation [20]. The behavioral expression 

of this selective routing of information is a facilitated 

interaction with an object, presumably because it has been 

recognized, and the consequent reduced ability to interact 

with unattended objects. Feature and object biases work 

similarly, except that the routed information relates to an 

object’s features rather than its spatial location. These 

biases therefore modulate neural responses in parallel, and 

are not limited to a single area of focus [21]. Feature 

biases are known to originate from pre-frontal cortex 

(PFC), and exert their influence via modulation of frontal 

eye field (FEF) activity [22], which in turn biases activity 

in mid-level visual areas. Object biases similarly originate 

in PFC, but exert their influence by feeding back to 

modulate activity in higher visual areas [23].  In big 

picture, BC proposes that a feature bias corresponding to 

an object goal introduces a spatial bias that selectively 

routes visual inputs through the visual pathways for the 

purpose of mediating classification of and interaction with 

the object. 

1.3. Models of Biased Competition  

Many models of visual attention share the conceptual 

framework of BC. Some of these models are largely 

mathematical, such as the Neural Theory of Visual 

Attention (NTVA) [24-26]. NTVA is a large-scale model 

of the brain areas comprising the attention network, and 

captures the top-down feature and spatial-biasing 

processes and the competition mechanisms theorized by 

BC. However, NTVA inputs probability distributions 

associated with features of object categories and does not 

extract these features from pixels or learn categories from 

image exemplars. It is therefore not a computational model 

according to at least one widely-accepted definition [27]. 

Other models are computational, and borrow heavily from 

methods developed in computer vision. Perhaps the best 

computational model of general attention is Selective 

Tuning (ST) [28, 29]. ST is another large-scale model 

employing multiple mechanisms, but its focus is on the 

neural modulation underlying selectivity and not the 

mapping between specific brain areas in the attention 

network and the prediction of explicit behavior in response 

to complex stimuli. Another class of attention models [30-

32] sticks closer to the neurophysiology of brain structures 

and attempts to capture the network dynamics missing 

from ST, but these models also tend to be smaller in scale, 

focusing on interactions between only a small subset of the 

brain areas in the attention network.  

1.4 Ventral Visual Processing and Convolutional Neural 

Networks 

The detection and interaction with visual objects in 

naturalistic tasks requires the formation and use of rich 

object category representations that activate in response to 

a visual input. This is true for both biological and 

computer systems. In primates this is accomplished by 

processing along the ventral visual pathway of cortical 

brain structures [33, 34]. The ventral, or “what”, pathway 

starts from the primary visual area, V1, in the occipital 

cortex and extends temporally to V2/V3, V4, Posterior 

inferotemporal (PIT), and ultimately Anterior 

inferotemporal (AIT) area in the inferotemporal cortex 

(IT). Processing along this ventral pathway endows 

primates with an ability to recognize objects and scenes 

[33, 35-37]. Moreover, this processing is hierarchical; 

neurons in early areas code for low-level visual features 

(e.g., orientation), and those in higher areas selectively 

code complex visual patterns and categories (e.g., faces).  

In computer vision, the best representations for 

mediating object detection are learned using artificial deep 

neural networks (DNNs). DNNs have been remarkably 

successful in their ability to recognize objects and scenes 
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[38, 39], easily surpassing previous methods, and this has 

resulted in them dominating the computer vision and 

machine learning literatures [39]. DNNs are a class of 

models, with perhaps the most popular being 

Convolutional Neural Networks (CNNs) [40]. CNNs were 

inspired by the hierarchical architecture of the mammalian 

cortex [40, 41], mainly the ventral pathway of visually-

responsive brain areas. A typical CNN processes an image, 

first through several convolutional layers, then through 

fewer fully-connected layers, and finally through a 

classification layer linked to some decision or action. The 

nodes of the convolutional layers consist of filters, with 

each taking as input the outputs of a subset of nodes at the 

lower layer. The hierarchical convolution of filters with an 

image mimics the parallel extraction of information over 

visual space performed by hypercolumns in the early 

visual areas [42]. The power of these deep networks lies in 

the feature representations learned across their layers, each 

richer than the one below, another property paralleling the 

organization of structures along the ventral pathway.  

Given their brain inspiration and stunning success, 

CNNs are beautifully suited to model ventral pathway 

processing in the primate brain. This exciting prospect has 

not gone unnoticed. Recent work has compared the 

selectivity and accuracy of representations built across a 

DNN’s layers to those of brain areas in the ventral 

pathway [43-49], where it was shown that the final layer of 

a CNN trained on object classification can predict neural 

responses in IT cortex [44, 45] and that both classification 

accuracy and filter selectivity in the intermediate network 

layers capture neural selectivity along the intermediate 

ventral pathway [43]. To date, however, there has been no 

attempt to design a DNN to reflect the brain connectivity 

and interactions between structures in the broader attention 

network.  

In this paper we take brain inspiration to the next level 

by integrating the principles of biased competition into the 

architecture of a DNN. This model, which we call Deep-

BCN (Deep Biased Competition Network) is the first 

DNN to use attention-inspired modulations of network 

activation to predict the goal-directed behavior of humans 

performing a task. The task that we chose is visual search, 

as this is the simplest and clearest example of a goal-

directed behavior (people looking for an instructed target 

object goal). The specific behaviors that we will predict 

are the eye movements made while people search, chosen 

because eye movements are observable behavioral 

expressions of individual shifts of attention [50]. Eye 

movements are also known to be guided to search targets 

under certain conditions [51, 52], with this target guidance 

being a measurable expression of the top-down feature 

biasing posited by BC theory. Our chosen combination of 

task and behavior are therefore well suited for evaluating 

Deep-BCN.    

 

2. Behavioral Methods 

The behavioral data used in this study were from [53], 

and that paper should be consulted for a detailed 

description of the methods. Briefly, 15 Stony Brook 

University undergraduates searched through arrays of 

common objects (Hemera Technologies) for each of 25 

target categories while their eye movements were recorded 

(EyeLink 1000, SR Research; tower-mount configuration). 

Figure 1: The categorical search experimental paradigm 

used by [53]. (b) The 125 category exemplars appearing as 

targets in the search images, and the 25 names designating 

the target category. Each of the 5 search set size conditions 

used a different target from the 5 target exemplars per 

category. 
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For each of these 25 categories, 5 highly typical exemplars 

were selected as targets to appear in the search displays 

[54]. Figure 1 shows these 25 target categories and the 

specific exemplars used as targets, as well as the 

experimental procedure. Search displays were constructed 

by randomly placing objects on a white background.  

These object arrays were used instead of realistic scenes so 

as to be able to manipulate the number of objects in the 

search image (set size) and to avoid the biasing of attention 

(gaze) by scene context, a topic beyond the scope of this 

initial study. Specifically, search images consisted of 5, 10, 

15, 20, or 25 objects (5 levels of set size), with the 

constraints that objects could not overlap and no object 

could appear within 2° of the display center, a location 

corresponding to starting fixation. Each search display 

subtended a 47° horizontal by 28° vertical visual angle, 

based on a 1680×1049 pixel image viewed at 57 cm (a 

distance fixed by chinrest). Half of these displays were 

target-present, meaning that one of the depicted objects 

was an exemplar from the designated target category, and 

the other objects were distractors. Distractors were 3,700 

objects from various categories, selected to comprise a 

disjoint set from the 25 target object categories.  The other 

half of the displays were target-absent, consisting entirely 

of distractors. Targets and distractors subtended an 

average visual angle of 3.5° by 3.5°, and no object 

appeared twice throughout the experiment.  

 Each trial began by cuing a participant with the name of 

the target category (2,500 ms), followed by a central 

fixation cross (500 ms) and finally by presentation of a 

search display. Participants indicated their target-present 

or target-absent judgment by pressing either the right or 

left triggers of a game pad, respectively. Accuracy 

feedback was not provided. There were 10 practice trials 

and 250 experimental trials, each corresponding to a 

unique search image, and the experimental trials were 

evenly divided into the 5 set sizes and target-present and 

target-absent conditions, leaving 25 trials per cell of the 

design.  

3. Model Methods 

Figure 2 shows the anatomy of Deep-BCN. Deep-BCN 

is a DNN whose structure and connectivity are informed 

by the known neurophysiology and anatomy of the visual 

attention network [23, 55]. Core to Deep-BCN is its layers 

extending ventrally (the lower boxes in Fig. 2) 

corresponding to the ventral pathway of brain areas (V1, 

V2/V3, V4, PIT, and AIT) known to be important for 

visual object recognition in primates. We model these 

ventral brain areas using the 8-layer CNN known as 

AlexNet [56]. AlexNet has 5 convolutional and 3 fully-

connected layers and is trained on recognizing 1000 object 

categories from the ImageNet dataset [57]. A pre-trained 

AlexNet was fine-tuned to recognize the 25 object 

categories from the behavioral experiment. This training 

dataset consisted of 1000 images of objects from each 

category and was gathered from ImageNet and other 

online sources. This fine-tuned AlexNet achieved an 88% 

level of recognition accuracy for the target objects used in 

the search displays when these objects were presented in 

isolation.  

3.1. Early Bottom-up Visual Processing 

The pipeline of Deep-BCN is as follows, loosely 

translated into hypothesized processing by the brain areas 

in the attention network. An image of a search display 

from the behavioral experiment is input to the fine-tuned 

network and processed by 5 feed-forward convolutional 

layers, corresponding to processing by early visual areas 

V1, V2/V3, and V4. Neurons in these areas are known to 

be selective to low-level visual features (e.g., orientation, 

color, intensity) and have antagonistic receptive field (RF) 

organizations similar to the responses from early layer 

convolutional filters trained for object classification [58, 

59]. The sizes of neuron RFs also increase with movement 

along the early ventral visual stream, with neurons in V1 

having the smallest RFs and neurons in V4 having larger 

RFs. This, too, parallels the architecture of a CNN, where 

filters at lower convolutional layers have a smaller RF size 

than those at higher layers  [59]. And perhaps most 

importantly for our study, neuron RFs organize themselves 

into what is known as a retinotopic map of visual space 

[60]. Convolutional processing maintains a comparable 

retinotopic spatial organization of the input image, and in 

Deep-BCN a coarse retinotopy is preserved up to the fifth 

convolutional “V4” layer. This V4 retinotopy is crucial to 

our model, as it is here that representations are spatially 

biased for the purpose of improving object detection.  

Another important property of primate retinotopic 

organization is that inputs are progressively blurred with 

increasing distance (or eccentricity) from a central region 

of visual space known as the fovea. Inputs arriving at our 

central vision are in high resolution, whereas those arriving 

in our peripheral vision are in lower resolution. In Deep-

BCN we capture this eccentricity-dependent coding of 

resolution using a grid of 17×11 networks (Fig 3a), each of 

which “sees” a differently-sized and differently-localized 

patch of the larger input image. Specifically, the input to 

the highest resolution central network was a 100×100 pixel 

crop of the input image surrounding Deep-BCN’s current 

fixation location, approximating a fovea that can be 

directed to only a single object. The sizes of image crops 

increased with distance away from the center, up to a 

maximum size of 450×450 pixels for networks farthest in 

the periphery (i.e., those covering the corners of the input 

image in this example). 
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Figure 3b shows samples of how the sizes of Deep-

BCN’s RFs change with distance from its fovea. Note that 

the size of the foveal RF limits the cropped region to only 

the fixated object (the teddy bear), while the larger 

peripheral RFs result in crops often depicting two or more 

objects. The consequence of this is that the features 

extracted from peripheral regions are often aggregated 

over multiple objects, leading to the poorer classification 

of any given one, while features extracted foveally will be 

limited to a single object and therefore will likely yield a 

higher classification confidence. Each of the 187 (11×17) 

networks in the grid is input a RF-cropped image patch 

and outputs a 13×13×256 tensor, which we will treat as 

13×13 pixel activation maps for each of 256 features. 

These eccentricity-dependent activation maps are then 

averaged to create a single activation map for each feature 

dimension. Taking the average of these 256 feature 

activation maps, then multiplying the foreground pixel 

values to isolate activity to the objects, gives us a V4 

(layer 5) activation map corresponding to Deep-BCN’s 

estimate of purely bottom-up spatial priority. According to 

BCT, it is the weighting of features in this combined 

priority map that can be biased by top-down control.   

Areas PIT and AIT are inferotemporal structures known 

to mediate object recognition in primates, and these 

correspond to layers 6 and 7 in Deep-BCN. The projection 

from V4 (layer 5) to PIT (layer 6) is modeled as fully 

connected, and this is also the case for the projection from 

PIT to AIT (layers 6 to 7). This implementation decision is 

informed by the fact that neurons in these IT structures 

have RFs covering much of the visual field, the end 

product of retinotopy largely disappearing in these late 

ventral visual areas. The consequence of this loss of 

retinotopy is that the nodes in Deep-BCN’s layers must 

compete for exclusive access to the RFs of nodes at the 

next higher level. This bottom-up competition selects a 

winning RF, and it is the location of this RF in space that 

determines the selective routing of visual inputs through to 

IT and, ultimately, the classification of that “attended” 

input as a category of object. This classification is 

performed by a classification layer (layer 8), presumably 

existing in the Dorsolateral PFC (DLPFC), which maps the 

outputs of the IT nodes to the 25 category nodes that have 

been learned by the network. Each category is a node in 

this layer, and it is through the connections between these 

DLPFC nodes and the rich representations formed in IT 

from earlier ventral processing that patterns in image 

inputs are classified by Deep-BCN. 

3.2. Top-down Attention Control and Selective Routing 

A top-down mechanism of attention control is essential 

for the production of any goal-directed behavior. Behavior 

Figure 2: Anatomy of Deep-BCN. Dashed boxes indicate 

layers of a CNN, with green coding convolutional layers 

and yellow coding fully-connected layers. Nodes in the last 

layer, labeled DLPFC, correspond to the 25 target 

categories learned by the network. The solid box labeled 

FEF selects a winner in the biased V4 activation. The solid 

box labeled SC indicates a non-DNN model from [53]. 

Blue arrows indicate feedforward connections and red 

arrows indicate feedback connections. Note that several 

other connections between these brain areas are known to 

exist but are not shown so as to clearly specify only those 

connections implemented in Deep-BCN. DLPFC = 

dorsolateral pre-frontal cortex, FEF = frontal eye field, SC 

= superior colliculus, and AIT and PIT = anterior and 

posterior inferotemporal cortex, respectively.  

Figure 3: An eccentricity-dependent network of networks. 

(a) The 187 regions input to the 11× 17 grid of networks 

used to tile the larger region of space corresponding to the 

full search image. (b) Subset of networks illustrating the 

increase in “receptive field” size that occurs with increasing 

eccentricity relative to the high-resolution central network.
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might exist in its absence, but it would be controlled 

purely by the input and not by the goal of performing a 

task. In the task of visual search, the DLPFC has been 

implicated in the creation of “templates” of goal states in 

visual working memory, for the purpose of biasing the 

bottom-up competition for neural resources and the 

selective routing of visual inputs for classification [61]. In 

Deep-BCN, the DLPFC nodes serve a dual function: they 

constitute the set of learned categories against which 

inputs will be evaluated, and they are the source of biases 

for specific target-object goals. Our assumption is that the 

word cue used in the categorical search paradigm would 

activate the corresponding DLPFC node in Deep-BCN, 

and this in turn would feed activation back down the 

ventral stream so as to modulate activity in the IT and V4 

layers. For the current first approximation of a systems-

level model of the attention control mechanism we 

implement only a subset of the feedback projections 

known to exist throughout the ventral pathway [55]. 

Specifically, we implement projections from DLPFC to IT, 

and from IT to V4. We did this because areas V4 and 

higher have been shown to be most instrumental for target 

selection within a biased-competition framework [62-64]. 

According to Deep-BCN, attention control is exerted by 

feedback from the fully-connected layers biasing the 

bottom-up V4 activations of the rich feature 

representations formed in the last convolutional layer.  

The top-down attention control signal is modeled using 

the same connections as in the feedforward projections, 

but using the gradient signal. In the supervised training of 

a DNN, the gradient signal is used to modify the weights 

between layers so as to move the classification response in 

the desired direction. Under Deep-BCN, the DLPFC node 

corresponding to the target goal exerts a gradient signal 

that changes the filter weightings so as to favor the 

prediction of the target category (implemented using Grad-

CAM [65]). Stated differently, the gradient signal 

originating from a classification node modulates the gain 

of the filters that respond best to features of the target goal. 

We combine this top-down bias with bottom-up processing 

by simply multiplying the gradient feedback weighting and 

the feedforward (bottom-up) activation, thereby biasing 

the competition between nodes at these layers in favor of 

the target’s features.  

Such gain modulation is widely studied under the topic 

of feature-based attention [21, 62, 63, 66], and in Deep-

BCN it is the reentrant interaction between FEF and V4 

[67] that resolves the competition for RFs. Note that the 

connections between FEF and V4 are not trainable, 

meaning that FEF is not a fully-integrated part of the 

ventral CNN. Rather, it is a relatively independent module 

that selects a winning routing window from the biased V4 

activation map. This feature biasing and competition 

resolution causes the selective routing of visual inputs at a 

region of space, and this leads to the constriction of IT RFs 

to that region and the possible detection of a pattern in 

those select inputs as a member of the cued object 

category. Classification is therefore attempted on the 

output of the most active network from the early visual 

processing grid.  

Finally, Deep-BCN has a fovea that it moves from 

location to location in the search image while attempting to 

detect the target object category, much like people do. We 

believe that the importance of this eye movement behavior 

in object detection success is often understated. This 

neglect is certainly apparent in BC studies of attention 

control during visual search [21]. But while not part of the 

core BC framework, eye movements are behavioral 

expressions of the same BC operations [21]. In the context 

of our behavioral search task, at any given fixation a new 

eye movement might be programmed to any of the objects 

Figure 4: Representative activation patterns in Deep-BCN 

underlying its shifts of gaze to a target goal. (a) Input is an 

image of an object array. Scanpaths from subjects (cyan) 

and the model (red) for a categorical “pants” search task. 

The subjects and model started each trial fixated at the 

center. (b) The bottom-up retinotopic activation in V4 in 

response to the input image. (c) The biased V4 activation 

map after multiplying the bottom-up activation and the top-

down activation feeding back from the “pants” frontal node. 

Note that modulation of the target-like features leads to 

increased activation at the locations of the target-like 

objects, seen most clearly for the exemplar of the pants 

target. 
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appearing in the search image. The locations of these 

objects therefore compete for selection, with the winning 

location determining the next saccade vector. This 

competition, often conceptualized and studied as priority 

maps [68], likely involves a whole other network of 

frontal-parietal structures [69, 70] that we grossly simplify 

here to just the FEF. Under Deep-BCN, this spatial bias is 

also the product of the DLPFC→IT→V4 feedback bias 

projecting from V4 to FEF (the feedforward connection 

between the two in Figure 2). One could think of this bias 

as indicating a target/non-target classification confidence 

score attached to the locations of the networks (in the grid 

of networks) covering the region of space subtended by the 

search image, and FEF activity corresponding to the 

selection of a winning network in the biased V4 activation. 

The FEF then communicates this bias to the superior 

colliculus (SC), a mid-brain structure implicated in the 

production of oculomotor behavior, where it combines 

with the biased retinotopic activity projecting from V4 

(Figure 2) to create in the SC a priority map for the 

express purpose of controlling saccades (often referred to 

as overt shifts of attention). The output of this behavior-

scale BC model is a sequence of eye movements, each one 

aligning the center of the eccentricity-dependent grid of 

networks with the location of the to-be-classified pattern. 

This behavior therefore serves a similar function as 

selective routing under a BC framework; rather than a 

purely neural gating of early visual inputs through to 

classification, now inputs are gated in the sense that high-

resolution foveal processing is being brought to bear on 

inputs at a select region of visual space. But regardless of 

whether this attention-controlled gating is covert or overt, 

both use the same cost function—the maximization of 

classification success. At the level of the SC, Deep-BCN 

uses MASC (Model of Attention in the Superior 

Colliculus) [53] to generate saccades. MASC inputs a 

priority map, here the equally-weighted integration of the 

descending V4 and FEF activity, and after processing 

informed by known collicular architecture and 

neurophysiology, outputs a coordinate coding the next 

fixation location (the original text should be consulted for 

details). Target-present searches were terminated when the 

model classified a fixated object as an exemplar of the 

target category with an 80% level of confidence, which 

was a parameter of our model. Search was terminated with 

a target-absent judgement if activation in the V4 layer fell 

below a set threshold, which was tuned to get the best fit to 

the behavioral data in the target-absent condition.  

4. Results 

In an initial qualitative evaluation of Deep-BCN we 

wanted to determine two things: does its attention control 

mechanism select reasonable “human-like” image 

locations to route its visual inputs (as opposed to patently 

artificial movements of spatial attention), and is the bias 

originating from its learned target categories sufficiently 

large to affect activity at the V4 layer after its back-

projection from the DLPFC nodes?  

The answer to the first question is clear from Figure 4a, 

which shows representative eye movement behavior from 

Deep-BCN and participants superimposed over the object 

array being searched. The target category of “pants” was 

designated to subjects using a word cue appearing 

immediately before the search display, and was designated 

to Deep-BCN by activation of its DLPFC node 

corresponding to its “pants” category. Far from being 

artificial, Deep-BCN shifted its attention to reasonable 

image locations in the search for its goal. Indeed, had its 

behavior not been coded in a different color it would likely 

be indistinguishable from the subject behavior shown in 

cyan. Figure 5 gives a clearer sense of how a 

representative scanpath of attention shifts from the model 

compared to six randomly selected scanpaths of individual 

participants searching the same image, this time for a 

“glove” target. Once again, Deep-BCN’s scanpath of eye 

movements agreed well with those of subjects, both in 

terms of their number and in their trajectory. Such 

qualitative similarities are an often overlooked but 

important dimension to consider in a model evaluation of 

this type; it may be the case that a model generates 

reasonably good agreement to human behavior in terms of 

various quantitative metrics, but distinctly poor agreement 

when the scanpaths of the two are visualized and 

compared. Deep-BCN passed this initial test.  

As for the question of whether Deep-BCN’s behavior 

reflects a V4 bias, this answer is given in the comparison 

between Figure 4b and Figure 4c for a “pants” search 

target. Specifically, Figure 4b shows bottom-up retinotopic 

activity from V4 before it has been biased from the 

DLPFC “pants” node. Note that activity corresponding to 

Figure 5: Representative scanpaths from Deep-BCN (red) 

and subjects (cyan) for a categorical “glove” search task.  
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the pants object is less than the activity elicited by some of 

the non-targets. Figure 4c shows this same bottom-up V4 

activity combined with the top-down DLPFC bias. Now 

the pants are more active. This difference is due to the fact 

that feature maps are weighted equally in the unbiased case 

(Fig. 4b) but are weighted using the gradient signal from 

the “pants” node in the biased case (Fig. 4c). This 

demonstrates that Deep-BCN is able to capture the core 

component of BCT, a biasing of the visual input for the 

purpose of achieving a behavioral goal.  

Turning to a more quantitative evaluation, analysis of 

the behavioral data revealed patterns that are now classic 

in the visual search literature. As shown in Figure 6, search 

became more difficult with increasing set size, evidenced 

by an increase in the number of gaze fixations and the total 

distance traveled by gaze during search (summed saccade-

vector-length distance). The cyan functions show the 

behavioral means for the number of fixations and distance-

travelled metrics, grouped by set size and images in which 

an exemplar of the target category was present (6a) or 

absent (6b). For both metrics, behavior was analyzed up to 

the button press terminating the target-present or target-

absent trial. These patterns are the behavioral ground truth 

for attention control against which Deep-BCN was 

evaluated. Because Deep-BCN also makes eye movements 

in its search for a target, its behavior in response to the 

same images can be grouped into the same conditions and 

evaluated using the same metrics, thereby enabling a direct 

comparison to participant behavior. As shown, Deep-BCN 

not only predicted the effect of set size on both number of 

fixations and distance travelled, it also predicted the effect 

of target presence/absence and its interaction with set size 

(search was more affected by increasing set size in the 

target-absent images compared to the target-present). 

Although the two behavioral metrics are highly correlated, 

both capturing the same breakdown in the ability of the 

attention control mechanism to selectively route inputs 

from image locations corresponding to the target category 

goals, the fact that Deep-BCN captured so well the effects 

of set size and target presence/absence on this breakdown 

is nevertheless impressive, even more so because it did this 

by virtue of its inclusion of basic biased-competition 

components of the primate attention control mechanism. 

5. Discussion  

The computer vision literature is recognizing the 

importance of including a mechanism of attention control 

into its methods. Here we took the core tenets of biased-

competition theory, that attention control is the top-down 

biasing of visual inputs for the purpose of achieving some 

behavioral goal, and built these into a deep neural network 

model that we call Deep-BCN. Deep-BCN contributes to 

the computer vision literature in making far more explicit 

the concept of attention control. To the extent there is 

value in the inclusion of an attention mechanism in 

computer vision methods, this value may increase as the 

implemented mechanism of attention more closely matches 

the mechanism implemented in the brain. One direction for 

future work will be to conduct a model comparison to see 

whether deep networks engineered after the primate brain 

outperform comparable state-of-the-art object detectors 

that are less brain-inspired, thus informing the value of 

neuroengineering computational methods. Deep-BCN 

contributes to the behavioral vision literature in being the 

first deep network model of a goal-directed behavior, 

specifically the eye movements leading up to the target 

detection decision in a search task. We believe that Deep-

BCN’s success in predicting this goal-directed human 

behavior stems from its BCT-inspired design. But Deep-

BCN is just a gross first-approximation attempt to design 

into a DNN a mechanism of attention control, and another 

important direction for future work will be to see whether 

more brain-inspired designs will lead to even better 

predictions of goal-directed human behavior. 

Figure 6: Comparison of Deep-BCN and participants’ mean 

eye movement behavior in the categorical search dataset. (a) 

Plots showing the number of fixations and distance traveled 

to the target (summed saccade distance) for Deep-BCN (red) 

and all participants (cyan) as a function of set size for the 

target-present images. (b) Similar plots for the target-absent 

images. For both metrics, data is shown up to participants 

ending a trial with a target present/absent button press 

response or the model meeting its target present/absent 

termination criteria. Error bars plot the SEM.  
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