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Abstract

In this work we propose an audio-visual model for pre-

dicting temporal saliency in videos, that we validate and

evaluate in an alternative way by employing fMRI data.

We intend to bridge the gap between the large improve-

ments achieved during the last years in computational mod-

eling, especially in deep learning, and the neurobiological

and behavioral research regarding human vision. The pro-

posed audio-visual model incorporates both state-of-the-art

deep architectures for visual saliency, which were trained

on eye-tracking data, and behavioral findings concerning

audio-visual integration in multimedia stimuli. A new fMRI

database has been collected for evaluation purposes, that

includes various videos and subjects. This dataset may

prove useful not only for saliency but for other computer

vision problems as well. The evaluation of our model us-

ing the new fMRI database under a mixed-effect analysis

shows that the proposed saliency model has strong cor-

relation with both the visual and audio brain areas, that

confirms its effectiveness and appropriateness in predicting

audio-visual saliency for dynamic stimuli.

1. Introduction

Nowadays, the breakthrough in the area of deep learn-

ing is revolutionizing many fields in the area of computer

vision. The extensive usage of Convolutional Neural Net-

works (CNNs) has boosted the performance throughout the

majority of tasks in computer vision, such as object detec-

tion or semantic segmentation [60, 34, 23]. One of the ma-

jor downsides of deep network approaches is their need for

large-scale training datasets. In image domain, many ap-

proaches employ pre-trained network architectures trained

on ImageNet [32] for object classification, or SALICON

[31] for static saliency estimation. However, the progress

of CNN architectures, design, and representation learning

in the video domain is much slower, and the performance of

deep learning methods remains comparable with non-deep

ones. The main difficulties arise both from the lack of large-

scale video datasets, and the way of integrating temporal

information in a deep architecture, i.e., the best method of

temporal aggregation in video (recurrent vs convolutional).

Among the video domain related problems, dynamic

saliency estimation is most closely related to brain neural

responses, since various stages of biological vision systems

involve spatio-temporal processing, and nature has a ten-

dency to represent information in optimal ways. Visual

saliency is a bottom-up process and is based on the sensory

cues of a stimulus that make certain image or video regions

more conspicuous. During the last years, various computa-

tional approaches have been developed for visual saliency

estimation in the spatial domain. Several among them have

already incorporated advances from the deep learning re-

search. In parallel, spatio-temporal models for saliency esti-

mation in video stimuli have also appeared, but their perfor-

mance remains slightly better or only competitive compared

to the best static saliency approaches [6, 68].

Generally, the modeling of video saliency can be ap-

proached by two different representations: The first con-

sists of spatio-temporal saliency maps employed for the

task of dynamic fixation prediction in videos. In the sec-

ond representation, the produced spatio-temporal maps are

mapped to a 1D map yielding time-varying saliency curves.

These curves can be used in a video summarization task,

since they can be viewed as an indicator function that de-

scribes the interestingness of each frame in a video se-

quence [14, 13]. In our work, we take advantage of the ex-

isting approaches for eye-fixation prediction, especially the

deep models trained on big eye-tracking databases, and pro-

pose a method that transforms the produced saliency maps

to 1D temporal saliency curves.

Multisensory interaction and integration in the human

brain manifest themselves in multiple ways and in multi-

ple contexts [66, 42]. There is considerable evidence that

human attention is influenced by multimodal and specially

audio-visual information [44, 45]. In addition, video data

are in general multimodal, containing visual, audio and

semantic streams, and of particular interest is the estima-

tion of a multimodal temporal saliency curve that models

human attention during a video viewing. The works of

[14, 36] proposed a multimodal framewise saliency model
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based on visual, audio and text cues which has been inte-

grated in a multimodal system for movie summarization.

Moreover, [63] proposed a behaviorally validated 2D audio-

visual saliency model that is able to explain behavioral ex-

periments in video stimuli. In our study we propose fusion

strategies in order to integrate the audio information in a

temporal audio-visual model, where visual saliency is mod-

ulated by audio saliency. We are interested not only in de-

veloping such a model, but also in validating its plausibility

with human data.

Towards this goal, in parallel with research in computa-

tional modeling and machine learning, brain imaging tech-

niques such as functional Magnetic Resonance Imaging

(fMRI), can serve as a noninvasive tool to monitor neural

activity during external stimulation, thus illuminating the

structural and functional architecture of the human brain.

Recently, there has been a shift towards more complex and

naturalistic stimuli, such as real-life images, video and au-

dio excerpts. The attempt to study such real-life stimuli

aims at understanding their representation in the human

brain, and ultimately at linking low-level features with the

high-level semantic information they convey, in order to

propose and improve computational models for many com-

puter vision tasks [39]. The presentation of videos with

simultaneous acquisition of fMRI data provides a semi-

natural setup to infer the complex mechanisms employed by

the human brain to represent and comprehend such stimuli,

while at the same time posing a challenge to develop effi-

cient as well as cognitively plausible computational designs

to model the underlying neural processes.

In this work we try to bridge the gap between the huge

progress in the computational approaches for computer vi-

sion, and the neurobiological and psychophysical evidences

about human vision obtained by analyzing fMRI data. Our

goal is to build an audio-visual temporal saliency model

and validate its plausibility through fMRI data. This val-

idation aims at confirming that our model indeed captures

the behavior of human audio-visual attention when exposed

to audio-visual stimuli. The validation process essentially

corresponds to investigating whether fMRI data exhibit ac-

tivation in the areas that care expected to get activated when

humans are exposed to specific stimuli.

One interesting question is to what extent human individ-

uals have the same perception of identical stimuli presented

to them and whether the neural representations they create

are fundamentally different or share the same structure. If

the latter proves to be the case, brain imaging data could

be used to augment computational models and further the

deep learning representation of multimedia in accordance

to human perception. For this purpose we have collected

a large amount of fMRI data using video stimuli viewed

by multiple persons. This dataset could be useful for many

computer vision problems related to the video domain such

as dynamic saliency, object and action recognition or movie

summarization. In addition, due to the fact that the pro-

posed dataset contains both multiple videos and subjects,

with a proper statistical analysis we could generalize our

observations from the specific samples to the entire under-

lying population.

The contributions of the paper can be summarized as fol-

lows:

• First, we propose an audio-visual temporal saliency

model, in the form of a temporal saliency curve in-

stead of the most commonly used saliency map, for

predicting saliency in videos. This approach is based

on the modification of state-of-the-art methods for vi-

sual saliency, and additionally it incorporates audio in-

formation using different fusion schemes (Section 3).

• Second, a new fMRI database has been collected, that

contains both multiple video stimuli and multiple sub-

jects. This dataset can be useful for evaluating and im-

proving many computational methods for video-based

computer vision tasks, and also for understanding how

these methods are related to processes in human brain

(Section 4).

• Third, the proposed audio-visual temporal saliency

model is evaluated using the collected fMRI dataset,

and the results indicate that this model has strong cor-

relation with both the visual and audio brain areas. In

addition, unlike previous studies [4, 51] where only

one movie was employed, we apply a mixed effect

analysis, which gives stronger confidence and allows

the generalization of our results to the general popula-

tion. (Sections 5 and 6).

2. Related Work

2.1. Visual Saliency Models

Visual saliency constitutes one of the most important

problems in both cognitive and computer vision, and many

methods have been developed for saliency prediction, espe-

cially for still images, i.e. spatial-only methods [62, 6, 5].

Regarding spatio-temporal saliency, less work has been

done compared to spatial-only, and in most cases the ex-

isting spatio-temporal models are an extension of spatial

ones, by incorporating additional dynamic visual features.

For example, in [28, 27, 21] differences between the spa-

tial orientation maps are employed as temporal features for

saliency detection in videos, while [7, 71, 24, 41] take ad-

vantage of features statistics computed on dynamic stimuli.

In [35] a perceptually based spatio-temporal computational

framework for visual saliency estimation is presented, based

on quadrature Gabor filters in three dimensions. In [57] the

authors extend their self-resemblance method by employing
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3D local steering kernels for action and saliency detection

in videos. In another class of approaches, saliency is es-

timated in the frequency domain by employing the quater-

nion Fourier transform for color, intensity and motion fea-

tures [19, 20].

During the very last years, a large amount of works ap-

proach the problem of visual saliency by employing deep

neural networks. Some approaches are based on the adapta-

tion of pretrained CNN models for visual recognition tasks

[37], while in [50] both shallow and deep CNN are trained

end-to-end for saliency prediction. In [26], multiscale infor-

mation is employed for training CNN networks by optimiz-

ing common saliency evaluation metrics while the work of

[30] showed that losses based on probability distance mea-

sures may be more suitable for saliency rather than standard

loss functions for regression. In [3] the authors proposed a

two-stream CNN network based on RGB images and opti-

cal flow maps for dynamic saliency prediction. In [38], gaze

transitions are learned from RGB, optical flow and depth in-

formation in order to improve saliency estimation in videos.

2.2. Audio­Visual Integration in Saliency

However, our daily experience as well as systematic be-

havioral experiments indicate the strong audio-visual in-

teractions that draw our audio-visual attention. Well-

known examples of strong audio-visual interactions are the

McGurk effect [43], or the bouncing ball illusion [59]. Sev-

eral attempts to model audio-visual attention exist in the lit-

erature, but most of them are application-specific or use spa-

tial audio in order to fuse it with visual information, e.g., in

robotic applications. A computational audio-visual saliency

model that predicts attention in an audiovisual scene, i.e.,

where the eye are be fixated, has for the first time been

presented in [54] and has been developed to guide a hu-

manoid robot. In this model, estimation of visual saliency is

based on the Itti et al. approach [29], while for audio, only

the spatial properties of the sources are integrated. Simi-

larly, in [52], the auditory saliency map is also estimated

via source localization and then fused with visual saliency

via a product operation. The model proposed in [55] is also

based on source localization, but also on Bayesian surprise

for auditory saliency map generation, and on a phase-based

approach for visual saliency. For a slightly different appli-

cation, the audiovisual model introduced in [15, 14] aims

primarily to summarize movies or videos. This work has

been further improved in [36]. Both models aim at predict-

ing when, and not where, attention would be drawn in a dy-

namic scene. All the above mentioned models are primarily

application-oriented and despite having possibly been in-

spired by cognitive science, no effort has been made to val-

idate their behavior in comparison to behavioral findings.

Coutrot and Guyader [10, 11] as well as Song [61] have

tried to more directly validate their models with humans

with their findings indicating that, in movies, eye gaze is at-

tracted by talking faces and music players. The model pre-

sented in [63] focuses on predicting audio-visual saliency in

videos, by appropriately combining existing auditory and

visual saliency models in order to form an audio-visual

saliency model that is also behaviorally validated. Subse-

quently, the audio-visual model is compared against find-

ings from behavioral experiments.

2.3. FMRI analysis on Multimedia Data

The most reliable validation strategy for all computa-

tional saliency methods is through comparison with actual

human data. Several contributions have so far been made to-

wards linking computational frameworks to brain activation

data. Such efforts aim at establishing new methods of com-

bining and interpreting the two types of data [8, 46, 12], at

assessing the biological plausibility of widespread percep-

tual models [4, 72] or at augmenting the latter by integrat-

ing high-level information encoded inside the human brain

[25, 40]. Another study proposes that whenever different

individuals are exposed to the same audiovisual stimulus,

the internal brain representations they form should be simi-

lar, since they encode information (features) of the stimulus

itself. Thus, brain regions involved in audiovisual process-

ing should have similar time responses across individuals,

in contrast to others [22].

3. Audio-Visual Model for Temporal Saliency

As briefly described in the introduction, our goal is

to create an audio-visual saliency model, able to predict

temporal saliency. For this purpose, we employ existing

saliency models that have been proposed for the fixation

prediction problem, and have been trained with large-scale

eye-tracking databases. In our approach we modify and ex-

tend these methods in order to deal with the problem of

audio-visual temporal saliency prediction in videos, with-

out any additional training. We essentially intend to transfer

the knowledge from the eye-tracking databases to a closely

related problem. The main important parts and parameters

of our model that have to be defined and designed are the

following: 1) the decision of where the static and the tem-

poral components of the visual saliency model will be fused

(using 2D saliency maps or 1D saliency curves), 2) the type

of the fusion scheme and, 3) how audio information will

be integrated in the audiovisual model. The employed ap-

proach is depicted in Fig. 1, and is analyzed further in the

following sections.

3.1. Visual Model for Temporal Saliency

For the visual saliency modeling, we follow a hybrid ap-

proach that incorporates a state-of-the-art CNN network for

static saliency, and an optical flow estimation as the tempo-

ral saliency component. We did not employ a fully deep-
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Figure 1: Overview of the audio-visual temporal saliency model: a) fusion in the level of saliency maps, b) fusion in the level

of saliency curves.

based spatio-temporal network, such as [68], because we

needed to maintain the two components separately, in order

to investigate the different fusion approaches and incorpo-

rate the audio information as well.

3.1.1 Static Component

For the static component we used the publicly available

deep model from [50]. The architecture of this network is

identical to a VGG-M network. However, the authors have

replaced the three fully connected layers with convolutional

layers in order to make the network structure suitable for

the task of saliency estimation. In addition, a deconvolu-

tion layer is employed as the final layer in order to resize

the output to the image size. The network was trained on

9000 images from SALICON dataset using an Euclidean

loss function. The output of the network constitutes the

static saliency map MS , with values in [0, 1].

3.1.2 Temporal Component

For temporal saliency, we extract warped optical flow maps

using the implementation of [67], which is based on the

TVL1 optical flow algorithm [70]. Then, a temporal mov-

ing averaging filter over ten successive frames is applied to

smooth and remove the noise from optical flow estimation

in x and y directions independently. Afterwards, we apply

Difference-of-Gaussians (DoG) filtering to the optical flow

magnitude as in [53]. Since the resulting saliency map has

small values with a few noisy spikes, we use logarithm in

order to suppress these sharp peaks. Finally, we normal-

ize the temporal saliency map MT with its maximum value

across all video frames.

3.1.3 From 2D Visual Saliency Map to 1D Saliency

Curves

In our task we need to transform the 2D saliency map to an
1D saliency curve. The simple spatial averaging across each

frame is not suitable, since saliency maps contain many zero
values in non-salient areas that affect the saliency curve. For
this reason, we apply spatial averaging only on the salient
regions of the saliency map. First, we define the operator
B : RE → {0, 1}E that transforms the saliency map into a
binary image by applying the Otsu’s threshold [49], where
E denotes the image domain, i.e., a video frame of size m×
n. Then we take the 1D saliency curve C(t) by applying
the mapping G : RE → R on the saliency map M(x, y, t):

C(t) = G(M(x, y, t)) =

∑
x,y

B(M(x, y, t)) ·M(x, y, t)
∑

x,y
B(M(x, y, t))

(1)

Finally, we apply a median filter of length 151 frames to

the saliency curve C(t) and normalize its values in [0, 1].

3.1.4 Fusion Schemes

For the fusion of the visual saliency components, we have

experimented with two widely used functions: average and

max, which correspond to different approaches in feature

integration. Using the max, we search for regions or seg-

ments that are salient in at least one component, while by

using the mean we need large saliency values in both com-

ponents. Also, fusion can be applied at 2 different levels:

a) the saliency map level or b) the saliency curve level after

applying the transformation (1).
In the first case, the result remains a 2D saliency map
MST (x, y, t) from which the visual saliency curve CST (t)
is computed:

Aver. : MST (x, y, t) = (MS(x, y, t) +MT (x, y, t))/2 (2)

Max : MST (x, y, t) = max(MS(x, y, t),MT (x, y, t)) (3)

CST (t) = G(MST (x, y, t)) (4)

In the second case, fusion is performed between the
obtained 1D saliency curves CS(t) = G(MS(x, y, t)),
CT (t) = G(MT (x, y, t)):

Aver. : C̃ST (t) = (CS(t) + CT (t))/2 (5)

Max : C̃ST (t) = max(CS(t), CT (t)) (6)
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In Fig. 1a we see that the audio-visual saliency map is

more correlated with the temporal visual component due to

the enhancement from the audio saliency values. On the

other case (Fig. 1b) the audio saliency curve modulates the

temporal visual curve, which afterwards is fused with the

static curve.

3.2. Auditory Saliency Model

Auditory saliency refers to the subset of the attention

mechanisms that are responsible for the perception of sound

information. The aim of the study of auditory saliency is to

build a time-varying curve that resonates with the brain ac-

tivation invoked to the listener of an the audio stream.

For audio saliency estimation, we employ Kayser et

al. model [33], which is a behaviorally-inspired model

and structurally identical to Itti et al. visual saliency

model [29, 28], but has a different interpretation, as it in-

tegrates the concept of time. This model’s input is a time-

frequency representation of the signal, i.e., a spectrogram.

The output is a saliency map, which depicts the evolution

of auditory saliency over time and across frequencies. The

extracted features are the intensity, temporal contrast, and

frequency contrast, in various scales. Analogously to Itti et

al. model, auditory saliency is estimated on the spectrogram

image based on three low-level features: intensity, tempo-

ral contrast, and frequency contrast. As mentioned before,

Kayser et al. model is behaviorally-inspired and thus, each

feature is extracted with filters modeling findings from au-

ditory physiology: intensity filter corresponds to receptive

fields with only an excitatory phase, frequency contrast fil-

ters to receptive fields with an excitatory phase and simul-

taneous side band inhibition and temporal contrast ones to

such with an excitatory phase and a subsequent inhibitory

one. These filters are modeled as Gabor filters with suit-

able orientations. A similar procedure of filtering and nor-

malizing follows feature extraction and leads to a final 2-D

saliency map.

3.3. Audio­Visual Fusion

In order to fuse the two modalities, which are inher-

ently two non-comparable modalities with different dy-

namic ranges, we employ the following approach. First,

regarding auditory saliency processing, as it was mentioned

earlier, Kayser et al. model output is a 2D saliency map

depicting saliency over time and frequencies. Since we are

only interested in the time evolution of auditory saliency,

we take the maximum saliency value on the map for each

time instance, and thus obtain a 1D auditory saliency curve,

denoted by SCA. Subsequently, we exploit findings from

neuroscience and relative behavioral experiments [64, 65, 9]

that indicate that audiovisual integration is tolerant to an

amount of asynchrony of maximum 200ms between audio

and visual information. We integrate this finding by appro-

priately filtering auditory saliency via a Hanning window H

of 200ms length centered at the current time instance [63].

Thus, we obtain a 1D curve that has incorporated this au-

diovisual temporal window of integration effect. The final

auditory saliency curve is modeled as:

CA(t) =
1

2N + 1

N∑

ℓ=−N

SCA(t+ ℓ)H(ℓ),

where t is the video time index, ℓ is the audio sample index,

and 2N + 1 the length of the window H .

The most important part of this model is the fusion be-

tween the auditory saliency curve and the visual saliency

map. First, our fusion approach relies on the hypothesis

that since audio features are dynamic/temporal, they influ-

ence only the dynamic/temporal visual saliency features.

This hypothesis has also been verified through many ex-

periments [18, 69, 56, 58, 47], such as the bouncing ball

illusion [59]. Inspired by these findings, we fuse auditory

saliency with temporal visual saliency. Specifically, fusion

is applied between auditory saliency and each individual

temporal feature of visual saliency separately. We combine

these saliencies in a simple multiplicative manner, inspired

by [52], where a similar approach has been followed. In

their case, they deal with spatial audio, thus they have an

auditory and a visual map with the same dimensions that

combine by point-wise multiplication. In our case, audio is

non-spatial, thus the resulting audio-temporal components

for the 2D map and 1D curve representations are given by:

MTA(x, y, t) = (1 + CA(t)) ·MT (x, y, t) (7)

CTA(t) = (1 + CA(t)) · CT (t), (8)

where CT (t) = G(MT (x, y, t)). After temporal-audio fu-

sion, the spatial visual component is also integrated appro-

priately, according to the visual methods fusion strategy

(Eqn. 2-6) in order obtain the audio-visual saliency map

MSTA(x, y, t) and curves CSTA(t), C̃STA(t).

4. FMRI Movie Database

4.1. Experimental Design and Data Collection

For the fMRI data collection we decided to employ

movie videos from COGNIMUSE database [73, 1]. The

“COGNIMUSE database” is a new multimodal video

dataset annotated with sensory and semantic saliency,

events, cross-media semantics, and emotion. It can be used

for training and evaluation of salient event detection and

summarization algorithms, for classification and recogni-

tion of audio-visual and cross-media events, as well as for

emotion tracking. Thus, the extension with fMRI data will

be useful for many areas in computer vision and multime-

dia since researchers can take advantage of this additional
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data in order to evaluate and design better computational

models. Specifically, we have elected to present 20 minutes

for each one of the five films: “Chicago” (CHI), “Crash”

(CRA), “The Departed” (DEP), “Gladiator” (GLA), “Lord

of the Rings - the Return of the King” (LOR) on the grounds

that we have observed adequate discernible fluctuations in

the corresponding annotated saliency curves. Each film ex-

cerpt was viewed by six different participants and the cor-

responding data has been collected.

The MRI images were acquired with a 3T Philips

Achieva TX MRI scanner using gradient-echo EPI se-

quences (Time to Repetition – TR = 2 s, Field Of View

– FOV of 192×240 mm2, 36 sequential bottom-up trans-

verse slices, voxel size 3×3×3 mm3). Subjects were lying

inside the scanner while the film excerpt was being back-

projected on a semi-opaque material and they viewed the

video through a mirror attached to the equipment. Head-

phones designated for usage inside MRI scanners were used

for the audio stream.

4.2. fMRI Data Preprocessing

The SPM Toolbox [2] was used to preprocess the fMRI

data and fit a General Linear Model (GLM). Raw data are

spatially realigned (motion correction), temporally interpo-

lated to compensate for acquisition delay, normalized to

standard MNI space1and smoothed with an 8 mm wide

Gaussian kernel. Following the preprocessing stage, high-

pass filtering of 128 seconds cutoff is applied to the voxel

time-series to remove low-pass physiological components

such as respiration and heart beat. fMRI residual tempo-

ral autocorrelation was modeled as an autoregressive pro-

cess AR(1) and integrated in the GLM estimation. Partici-

pants that had spontaneous movement above 4mm or 1 de-

gree where excluded, unless transient movement could be

removed by interpolation (scrubbing). We were thus left

with 4, 6, 6, 5 and 5 participants for CHI, CRA, DEP, GLA

and LOR respectively.

5. FMRI Analysis for Saliency Validation

5.1. Saliency Regressor Construction

As described in [51], in order to construct regressors

suitable for the low-resolution fMRI time-series, based on

saliency curves we need to sub-sample the curves from 25

values per second (per frame) to one value per 2 seconds

(MRI scanner TR). The curves further need to be convolved

with the standard haemodynamic response function (HRF),

a low-pass function that introduces a time blurring and is

considered to adequately model the transfer function of a

voxel seen as a time-invariant linear system.

1Standard coordinate space for MRI data, based on the anatomical atlas

by Montreal Institute of Neurology

(a) Visual Features (b) Audio-Visual Features

Figure 2: Results of GLM fit for visual and audio-visual

features (F-test). Projection on transverse slices MNI z=-6,

z=0, z=6 and z=10.

5.2. Mixed­effects Model for FMRI

In a manner similar to [51], the computationally con-

structed regressors are used to fit a General Linear Model

(GLM) for each voxel independently. However, contrary

to the previous works of [4, 51], which had been limited

by the amount of data available to a fixed-effects approach,

here we employ a mixed-effects model [48]. This approach

is commonly accepted and widely used, since it accounts

for variation across participants (inter-subject variation). It

thus allows for generalization of results for the entire under-

lying population and is not restricted to the specific sample

at hand. A mixed-effects model comprises of fixed-effect

models fitted to the data of each participant individually

(first level analysis) which are then combined in a random-

effects group level model (second level analysis).

More specifically in SPM a “summary statistic” proce-

dure is followed [17], whereby contrasts of effects of in-

terest (in our case effects of regressors comprising features

or saliency) are computed for each participant individually

and then the corresponding statistical maps are used to fit

an overall random effects model including all participants.

Because T-contrasts are more reliable to take to the second

level, when constructing regressors for the feature models,

we manually orthogonalize features consecutively with re-

spect to all the previous ones, so that b estimators will not

be biased and we then use corresponding T-contrasts.

Also, in order to account for possible variation across

movies that might induce a bias in the estimation, we also

included in the group level model an extra regressor en-

coding the 5 different movies as a random effect. In the

group level model, for feature models an F-contrast (based

on F-statistics) was performed on b to test the overall vari-

ance of the observed data that could be explained by the

model comprising the feature regressors. For saliency mod-

els, comprising only one regressor of interest, we use T-
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(a) Visual Saliency - Average (b) Visual Saliency - Max

(c) Audio-Visual Saliency - Aver-

age

(d) Audio-Visual Saliency - Max

Figure 3: Results of GLM fit for visual and audio-visual

saliency with different fusion schemes in the level of

saliency maps (t-test). Projection on transverse slices MNI

z=-6, z=0, z=6 and z=10.

contrasts, which have the additional advantage of being di-

rectional (i.e. differientiate between positive and negative

correlations) in contrast to F-contrasts which only measure

the amount of variance explained. For voxels whose p-value

satisfies the p-FWE = 0.05 threshold, corrected for multiple

comparisons (family-wise error correction), the model re-

gressors associated with the F- or T-contrast are considered

to have a good predictability of the voxel time-series [16].

6. Evaluation

Results are presented in the form of thresholded statisti-

cal maps [51] that are produced by the GLM analysis. In the

figures that follow, we have elected to present axial slices

with z=-6, z=0, z=6 and z=10 (MNI space coordinates),

which allow for a good and concise view of both the vi-

sual and the auditory cortex and can facilitate a comparison

between the visual and the audiovisual saliency (or feature)

models. The color scale runs from red to white, the latter

corresponding to the highest predictability.

(a) Visual Saliency - Average (b) Visual Saliency - Max

(c) Audio-Visual Saliency - Aver-

age

(d) Audio-Visual Saliency - Max

Figure 4: Results of GLM fit for visual and audio-visual

saliency with different fusion schemes in the level of

saliency curves (t-test). Projection on transverse slices MNI

z=-6, z=0, z=6 and z=10.

6.1. Evaluation of Visual and Auditory Features

In Fig. 2 we present the results regarding the 3 differ-

ent features curves (static visual saliency, temporal visual

saliency, auditory saliency) which have the expected pat-

tern. The works of [4, 51] have pointed the brain areas

that are activated when a visual or audio stimuli is attended.

More specifically, when only visual features are employed

we are able to predict only the responses of voxels in the

visual cortex while adding the auditory feature activation

in the auditory cortex is also present. With this analysis

we were able to validate the appropriateness of these three

independent subsystems for the task of temporal saliency

prediction.

6.2. Evaluation of Audio­Visual Model for Tempo­
ral Saliency

Afterwards, we proceed to the evaluation of the proposed

audio-visual temporal saliency model. In order to validate

the proposed fusion and integration schemes we expect to

have the same behavior as in the previous analysis by em-
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Table 1: Location of activation peaks for visual saliency

model (fusion in curves level with max function) 2.

MNI Coordinates Hemisphere Functional or T-value

X Y Z [Anatomical] area

-42 -73 -2 Left V5/MT 14.23

-18 -85 -8 Left V3 ventral 12.69

39 -73 -11 Right V4 ventral 11.58

45 -67 1 Right V5/MT 11.01

-33 -82 -8 Left V4 dorsal 10.98

-42 -28 10 Left Area TE 1.1 8.69

-39 -31 13 Left Area TE 1.1 8.67

Table 2: Location of activation peaks for audio-visual

saliency model (fusion in curves level with max function).

MNI Coordinates Hemisphere Functional or T-value

X Y Z [Anatomical] area

-45 -76 -2 Left V4 ventral 16.69

-21 -82 -8 Left V3 ventral 12.22

48 -67 1 Right V4 ventral 12.07

36 -73 -8 Right V5/MT 11.72

-9 -91 -5 Left V1 10.87

-39 -31 13 Left Area TE 1.1 10.70

-48 -31 16 Left Area TE 1.1 10.67

-42 -28 10 Left Area TE 1.1 10.43

ploying only one curve rather than independent features se-

ries. In Figs 3,4 we present the results regarding the visual

and audio-visual models for the two different fusion levels

respectively.

Looking at the figures, we can clearly see that although

the results in the visual cortex are almost identical between

the visual and the audiovisual model, the latter also has vis-

ible clusters of activation in the auditory cortex, especially

where we apply fusion at the curve level. Traces of activa-

tion within the auditory cortex can be found in the visual

saliency model as well, which are, however, limited both in

extent and peak magnitude. We should also bear in mind

that the visual and auditory modality in natural stimuli (i.e.

not deliberately manipulated) are often correlated in the first

place, which has an innate effect on our results.

Regarding the level where fusion is performed, it seems

that fusion at the curve level works better for the task of

temporal saliency prediction than fusion of the saliency

maps which are extensively employed in the task of fixation

prediction. In addition, when we compare the two fusion

schemes we see that the nonlinear fusion with max works

slightly better than the average, since it gives more focused

activation in the visual and auditory cortex areas.

In Tables 1,2 we present the locations of the top activa-

tion peaks for the visual and audio-visual saliency models

respectively, for fusion at the curve level with max func-

tion. Comparing the two tables, we can observe that they

are quite similar. Also, peaks within the auditory cortex

can be found both in the audio-visual as well as in the vi-

sual model. However, one can notice the difference in the

Table 3: Visual vs. audio-visual saliency model: % of vox-

els of each visual or auditory area that shows significant

association (fusion in curves level with max function) 3.

Visual area % for Visual Model % for AV Model

V1 5.90 7.50

V2 1.40 1.80

V3 ventral 12.10 13.60

V3 dorsal 0.25 1.00

V4 ventral 23.40 24.30

V4 dorsal 32.10 35.80

V5/MT 96.50 98.60

Auditory area % for Visual Model % for AV Model

TE 1.0 19.2 (L only) 63.25

TE 1.1 51.5 76.40

TE 1.2 0 4.6 (L only)

TE 3 1.00 (R only) 1.2 (R only)

T-statistic value, which is much higher for the audio-visual

model.

Table 3 depicts the voxel percentage of each visual or

auditory area that shows significant association, which can

be considered as a measure for the overall sensitivity of the

proposed saliency models. We highlight the fact that the

overall detection is significant higher for the auditory areas

when the audio-visual model is employed, while detection

in the visual areas remains high for both models.

7. Conclusion

In this work we proposed an audio-visual approach for

tracking the temporal saliency in video as well as an alter-

native way for validation using fMRI data. We developed

a computational audio-visual saliency model by employ-

ing deep learning architectures that are originally proposed

for the task of fixation prediction, where we additionally

incorporated several behavioral findings related to audiovi-

sual integration. In addition, we collected a fMRI database,

which contains both different videos and subjects, that may

become useful for many computer vision problems related

to the video domain. The fMRI-based evaluation showed

that the proposed audio-visual model has high correlation

with the brain responses and both the visual and auditory

cortex are localized. As future work, we intend to extend the

audio-visual saliency model by designing a deep architec-

ture that will be trained jointly by employing audio-visual

data. We also plan to take advantage of the fMRI data in or-

der to find feature embeddings that will augment the current

deep methods with the human brain information.
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