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Abstract

We introduce a biomimetic simulation framework for hu-

man perception and sensorimotor control. Our framework

features a biomechanically simulated musculoskeletal hu-

man model actuated by numerous skeletal muscles, with two

human-like eyes whose retinas contain spatially nonuniform

distributions of photoreceptors. Its prototype sensorimo-

tor system comprises a set of 20 automatically-trained deep

neural networks (DNNs), half of which comprise the neuro-

muscular motor control subsystem, whereas the other half

are devoted to the visual perception subsystem. Directly

from the photoreceptor responses, 2 perception DNNs con-

trol eye and head movements, while 8 DNNs extract the per-

ceptual information needed to control the arms and legs.

Thus, driven exclusively by its egocentric, active visual per-

ception, our virtual human is capable of learning efficient,

online visuomotor control of its eyes, head, and four limbs

to perform a nontrivial task involving the foveation and vi-

sual persuit of a moving target object coupled with visually-

guided reaching actions to intercept the incoming target.

1. Introduction

Biological vision has inspired computational approaches

that mimic the functions of neural circuits, such as artificial

neural networks. Recent breakthroughs in machine learning

with (convolutional) neural networks have proven effective

in computer vision; however, the application of Deep Neu-

ral Networks (DNNs) to sensorimotor systems has received

virtually no attention in the vision field.

Sensorimotor functionality in biological organisms

refers to the acquisition and processing of sensory input and

the production of appropriate motor output responses to per-

form desired tasks. In this paper, we introduce a biomimetic

simulation framework for investigating human perception

and sensorimotor control. Our framework is unique in that it

features a biomechanically simulated human musculoskele-

tal model that currently includes 823 skeletal muscle ac-

tuators. Our virtual human actively perceives its environ-

ment with two eyes, whose retinas contain photoreceptors

arranged in spatially nonuniform distributions.

The prototype visuomotor control system of our human

model consists of a set of 20 automatically-trained, fully-

connected DNNs that operate continuously and synergisti-

cally, half of which comprise the neuromuscular motor con-

trol subsystem, while the other half are devoted to the visual

perception subsystem, as shown in Fig. 1. Directly from

the photoreceptor responses, 2 perception DNNs in the per-

ception subsystem (top half of Fig. 1) control eye and head

movements, while 8 DNNs extract the perceptual informa-

tion needed to control the arms and legs.1 Thus, driven

exclusively by its egocentric, active visual perception, our

virtual human is capable of learning efficient, online visuo-

motor control of its eyes, head, and four limbs to perform

nontrivial tasks involving the foveation and visual pursuit of

a moving target object coupled with visually-guided reach-

ing actions to intercept the incoming target.

Our prototype visuomotor control system is unprece-

dented both in its use of a sophisticated biomechanical hu-

man model, as well as in its use of modern machine learning

methodologies to control a realistic musculoskeletal system

and perform online visual processing for active, foveated

perception through a modular set of DNNs that are auto-

matically trained from data synthesized by the model itself.

2. Related Work

Terzopoulos and Rabie [12] proposed a biomimetic ac-

tive vision system with foveated perception and visuomo-

tor control for biomechanically-simulated virtual animals.

They also applied their “animat vision” visuomotor system

to virtual humans, demonstrating vision-guided bipedal lo-

comotion and navigation [9].

In computer graphics, Yeo et al. [14] presented a vi-

suomotor system for an anthropomorphic virtual char-

acter capable of visual target estimation tasks and re-

alistic ball catching actions, although their character is

purely kinematic rather than biomechanically simulated,

and it predicts the trajectories of thrown balls from their

known positions and velocities in 3D space without any

1 In the motor subsystem (bottom half of Fig. 1), two DNNs control the

216 neck muscles that balance the head atop the cervical column against

the downward pull of gravity and actuate the cervicocephalic biomechani-

cal complex, thereby producing controlled head movements, and 8 DNNs

control each limb; in particular, the 29 muscles in each of the two arms and

the 39 muscles in each of the two legs. See [8] for the details.
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Figure 1: The sensorimotor system architecture, whose con-

trollers include a total of 20 DNNs. In the perception subsystem

(top), each retinal photoreceptor casts a ray into the virtual world

(a), which computes and returns the irradiance at that photorecep-

tor. (b) The arrangement of the photoreceptors (black dots) on the

left (b)L and right (b)R foveated retinas. Each eye outputs an Op-

tic Nerve Vector (ONV). (c) The two (yellow) perception DNNs

(1,6) input the ONV and produce outputs that drive the move-

ments of the eyes (e) to foveate visual targets. The eight (green)

perception DNNs (d)—i.e., (d)L (7,8,9,10) for the left eye and

(d)R (2,3,4,5) for the right eye—also input the ONV and output

the observed limb-to-target discrepancy estimates. In the motor

subsystem [8] (bottom), the (orange) neck voluntary neuromuscu-

lar DNN (f) (11) inputs the average response of the left (c)L and

right (c)R foveation DNNs along with the current activations of

the 216 neck muscles and produces outputs that actuate the cer-

vicocephalic complex. The four (blue) limb voluntary neuromus-

cular DNNs (g),(h) (13,15,17,19) input the average response of the

left (d)L and right (d)R perception DNNs along with the current

activations of the 29 arm or 39 leg muscles and produce outputs

that actuate the limbs. The remaining reflex neuromuscular DNNs

(f),(g),(h) (12,14,16,18,20) play a stabilizing role [8].

biologically-inspired visual processing. The same is true

for the earlier visuomotor system described by Lee and Ter-

zopoulos [7], which was nevertheless incorporated into a

biomechanically-simulated model with neuromuscular con-

trol not unlike the one described in the present paper.

The virtual animals and humans demonstrated in [12, 9]

are equipped with foveated eyes implemented as coax-

ial virtual cameras capable of eye movements. Using

polygon-shaded computer graphics rendering through the

GPU pipeline, these virtual eyes capture retinal images as

composited multiresolution pyramids supporting foveal and

peripheral perception, albeit with a small number of uni-

formly pixelated pyramidal levels. Our retinal model is sig-

nificantly more biomimetic. Unlike the uniform, Cartesian

grid arrangement of most artificial imaging sensors, visual

sampling in the primate retina is known to be strongly space

variant [10]. The density of cones decreases radially from

the fovea toward the periphery. The log-polar photorecep-

tor distribution model is commonly used in space-variant

image sampling [5, 2, 13]. Given its fundamentally nonuni-

form distribution of photoreceptors, our virtual retina cap-

tures the light intensity in the scene using raytracing [11],

which emulates how the human retina samples scene radi-

ance from the incidence of light on its photoreceptors.

3. Biomechanical Human Model

Fig. 2 shows the musculoskeletal system of our anatom-

ically accurate human model. It includes all of the rele-

vant articular bones and muscles—103 bones connected by

joints comprising 163 articular degrees of freedom, plus a

total of 823 muscle actuators embedded in a finite element

model of the musculotendinous soft tissues of the body.2

Each skeletal muscle is modeled as a Hill-type uniaxial con-

tractile actuator that applies forces to the bones at its points

of insertion and attachment. The human model is numeri-

cally simulated as a force-driven articulated multi-body sys-

tem (refer to [6] for the details).

Each muscle actuator is activated by an independent,

time-varying, efferent activation signal a(t). Given our hu-

man model, the overall challenge in neuromuscular motor

control is to determine the activation signals for each of its

823 muscles necessary to carry out various motor tasks. For

the purposes of the present paper, we mitigate complexity

by placing our virtual human in a seated position, immobi-

lizing the pelvis as well as the lumbar and thoracic spinal

column vertebra and other bones of the torso, leaving the

cervical column, arms, and legs free to articulate.

Additional details about our biomechanical human mus-

culoskeletal model and the 10 neuromuscular controllers

comprising its motor subsystem (see Footnote 1 and the

2For the purposes of the research reported in the present paper, the

finite element soft-tissue simulation, which produces realistic flesh defor-

mations, is unnecessary and it is excluded to reduce computational cost.
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(a) (b) (c) (d)

Figure 2: The biomechanical model, showing the musculoskeletal system with its 103 bones and 823 muscle actuators.

lower half of Fig. 1) are presented elsewhere [8]. The re-

mainder of this short paper develops the perception subsys-

tem, which is illustrated in the top half of Fig. 1.

4. Eye and Retina Models

Eye model: We modeled the eyes by taking into consid-

eration the physiological data from an average human.3 As

shown in Fig. 1(e), we model the virtual eye as a sphere

of radius of 12mm, that can be rotated with respect to its

center around its vertical y axis by a horizontal angle of

θ and around its horizontal x axis by a vertical angle of φ.

The eyes are in their neutral positions looking straight ahead

when θ = φ = 0◦. At least for now, we model the eye as

an idealized pinhole camera with aperture at the center of

the pupil and with horizontal and vertical fields of view of

167.5◦.

We can compute the irradiance at any point on the hemi-

spherical retinal surface at the back of the eye using the

well-known raytracing technique of computer graphics ren-

dering [11]. Fig. 3 illustrates the retinal “imaging” process.

Sample rays from the positions of photoreceptors on the

hemispherical retinal surface are cast through the pinhole

and out into the 3D virtual world where they recursively in-

tersect with the visible surfaces of virtual objects and query

the virtual light source(s) in accordance with the standard

Phong local illumination model. The irradiance values re-

turned by these rays determine the light impinging upon the

photoreceptors.

Photoreceptor placement: To simulate biomimetic

foveated perception, we position the photoreceptors on the

hemispherical retina according to a noisy log-polar distri-

bution. On each retina, we include 3,600 photoreceptors

3The transverse size of an average eye is 24.2 mm and its sagittal size is

23.7 mm. The approximate field of view of an individual eye is 30 degrees

to superior, 45 degrees to nasal, 70 degrees to inferior, and 100 degrees to

temporal. When two eyes are combined, the field of view becomes about

135 degrees vertically and 200 degrees horizontally.

(a) (b)

Figure 3: (a) Rays cast from the positions of photoreceptors

on the retina through the pinhole aperture and out into the

scene by the raytracing procedure that computes the irradi-

ance responses of the photodectors. (b) All the cast rays as

the seated virtual human looks forward with both eyes.

(a) Left retina (b) Right retina

Figure 4: Location of the photoreceptors (black dots) on

the left retina (a) and right retina (b) according to the noisy

log-polar model.

situated at dk, for 1 ≤ k ≤ 3,600, such that

dk = eρj

[

cos θi
sin θi

]

+

[

N (µ, σ2)
N (µ, σ2)

]

, (1)

where 0 < ρj ≤ 40, incremented in steps of 1, and

0 ≤ θi < 360◦, incremented in 4◦ steps, and where N

is additive IID Gaussian noise of mean µ = 0 and variance

σ2 = 0.0025, which places the photoreceptors in slightly

different positions on the two retinas. Fig. 4 illustrates the

arrangement of the photoreceptors on the left and right reti-
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(a) t0

◮

(b) t1

◮

(c) t2

◮

(d) t3

Figure 5: Time sequence (a)–(d) of photoreceptor responses in the left retina during a saccadic eye movement that foveates

and tracks a moving white ball. At time t0 the ball becomes visible in the periphery, at t1 the eye movement is bringing the

ball towards the fovea, and the moving ball is being fixated in the fovea at times t2 and t3.

nas. Other placement patterns are readily implementable,

including more elaborate procedural models [1] or photore-

ceptor distributions empirically measured from biological

eyes, all of which deviate dramatically from the uniformly-

sampled Cartesian pixel images commonly used in vision

and graphics.

Optic nerve vectors: The foveated retinal RGB “image”

captured by each eye is output for further processing down

the visual pathway, not as a 2D array of pixels, but as a 1D

vector of length 3,600×3 = 10,800, which we call the Optic

Nerve Vector (ONV). The raw sensory information encoded

in this vector feeds the perceptions DNNs that directly con-

trol eye movements and extract perceptual information that

is passed on to the neuromuscular motor control DNNs in

the motor subsystem that control head movements and the

reaching actions of the limbs.

5. Sensorimotor System

Fig. 1 overviews the sensorimotor system, showing its

perception and motor subsystems. The figure caption de-

scribes the information flow and the functions of its 20 DNN

controllers (labeled 1–20 in the figure). The details of the

eyes (Fig. 1(e)) and their retinas (Fig. 1(b)) were presented

in the previous section. We will now discuss in greater de-

tail the 10 perception DNNs (labeled 1–10 in Fig. 1).

The perception subsystem includes two types of fully-

connected feedforward DNNs that input the sensory in-

formation provided by the 10,800-dimensional ONV. The

first type controls the eye movements, as well as the head

movements via the neck neuromuscular motor controller.

The second type produces arm-to-target 3D error vectors

[∆x,∆y,∆z]T that drive the limbs via the limb neuromus-

cular motor controllers. Both types are described in the next

two sections.

5.1. Foveation DNNs (1,6)

The first role of the left and right foveation DNNs is

to generate changes in the gaze directions that drive sac-

cadic eye movements to foveate visible objects of interest,

thereby observing them with maximum visual acuity, as is

Figure 6: The fully-connected feedforward perception

neural network architecture. The network shown is for

foveation eye movements.

illustrated in Fig. 5 for a white ball in motion that enters the

field of view from the lower right, stimulating several pe-

ripheral photoreceptors in the upper left peripheral region

of the retina. The eye almost instantly performs a saccadic

rotation to foveate the visual target. Fine adjustments com-

parable to microsaccades are observed during fixation.

The second role of these two DNNs is to control head

movement, which is accomplished simply by driving, with

the average of their outputs, the aforementioned neck neu-

romuscular motor controller (DNNs 11,12) (Fig. 1(f)). The

kinematic eye movements are tightly coupled with the dy-

namic head movements that facilitate fixation and visual

tracking.

Network architecture: As Fig. 6 shows, the input layer

to this DNN comprises 10,800 units, to accommodate the

dimensionality of the ONV, the output layer has 2 units, ∆θ
and ∆φ, and there are 6 hidden layers.4 The DNN uses the

rectified linear unit (ReLU) activation function, and its ini-

tial weights are sampled from the zero-mean normal distri-

bution with standard deviation
√

2/fan in , where fan in is

the number of input units in the weight tensor [3]. We em-

ploy the mean-squared-error loss function and the Adaptive

Moment Estimation (Adam) [4] stochastic optimizer with

4We conducted experiments with various DNN architectures, activation

functions, and other parameters to determine suitable architectures for our

purposes.
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(a) t0

◮

(b) t1

◮

(c) t2

Figure 7: Retinal images during an arm reaching motion

that deflects a moving ball. The photoreceptors are simulta-

neously stimulated by the fixated red ball and by the green

arm entering the eye’s field of view from the lower right

(upper left on the retina).

learning rate η = 10−6, step size α = 10−3, forgetting

factors β1 = 0.9 for gradients and β2 = 0.999 for second

moments of gradients, and overfitting is avoided using an

early stopping condition.

Training data synthesis and network training: We use

our virtual human model to train the network, as follows:

We presented a white sphere within the visual field. By

raytracing the 3D scene, the photoreceptors in the retinas of

each eye are stimulated, and the visual stimuli are presented

as the RGB components of the respective ONV. Given this

ONV as input, the desired output of the network is the an-

gular differences ∆θ and ∆φ between the actual gaze direc-

tions of the eyes and the known gaze directions that would

foveate the sphere. Repeatedly positioning the sphere at

random locations in the visual field, we generated a large

training dataset of 1M input-output pairs. The backpropaga-

tion DNN training process converged to a small error after

80 epochs, which triggered an early stopping condition (no

improvement for 10 successive epochs) to avoid overfitting.

5.2. Limb Perception DNNs (2,3,4,5 & 7,8,9,10)

The role of the left and right limb (arm and leg) per-

ception DNNs is to estimate the separation in 3D space be-

tween the position of the end effector (hand or foot) and the

position of a visual target, thus driving the associated limb

motor DNN to extend the limb to touch the target. This is il-

lustrated in Fig. 7 for a fixated red ball and a green arm that

enters the eye’s field of view from the lower right, stimulat-

ing several peripheral photoreceptors at the upper left of the

retina.

Network architecture: The architecture of the limb per-

ception DNN is identical to the foveation DNN in Fig. 6,

except for the size of the output layer, which has 3 units,

∆x, ∆y, and ∆z, to encode the estimated discrepancy be-

tween the 3D positions of the end effector and the visual

target.

Data synthesis and training: Again, we use our virtual

human model to train the four limb networks, as follows:

(a)

◮

(b)

◮

(c)

(d)

◮

(e)

◮

(f)

Figure 8: Frames from a simulation of the biomechanical

virtual human sitting on a stool, demonstrating active visual

perception and simultaneous motor response; in particular,

a left-arm reaching action (a)–(c) and a left-leg kicking ac-

tion (d)–(f) to intercept balls shot by a cannon. Each incom-

ing ball is perceived by the eyes, processed by the percep-

tion DNNs, foveated and tracked through eye movements

in conjunction with muscle-actuated head movements con-

trolled by the cervicocephalic neuromuscular motor con-

troller, while visually guided, muscle-actuated limb move-

ments are controlled by the left arm and left leg neuromus-

cular motor controllers.

We present a red ball in the visual field and have the trained

foveation DNNs foveate the ball. Then, we extend a limb

(arm or leg) towards the ball. Again, by raytracing the 3D

scene, the photoreceptors in the retinas of each eye are stim-

ulated and the visual stimuli are presented as the RGB com-

ponents of the respective ONV. Given this ONV as its input,

the desired output of the network is the 3D discrepancy, ∆x,

∆y, and ∆z, between the known 3D positions of the end ef-

fector and the visual target. Repeatedly placing the sphere

at random positions in the visual field and articulating the

limb to reach for it in space, we again generated a large

training dataset of 1M input-output pairs. The backprop-

agation DNN training process converged to a small error

after 388 epochs, which triggered the early stopping con-

dition to avoid overfitting. As expected, due to the greater

complexity of this task, the training speed is significantly

slower than that of the foveation DNN.

6. Experimental Results

Fig. 8 shows a sequence of frames from a simulation

demonstrating the active sensorimotor system. A cannon

shoots balls towards the virtual human, which it actively

perceives with its eyes and reaches out with its arms and

legs to intercept. Its 20 DNNs operate continuously and

synergistically. The ONVs from the retinas are processed

by the pair of foveation DNNs, enabling the foveation and

visual tracking of the incoming balls through eye move-
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ments coupled with cooperative head movements that fol-

low the gaze direction. The head movements are ac-

tuated by the neuromuscular cervicocephalic motor con-

troller, which is fed by the average of the foveation DNN

outputs. Naturally, the head movements are much more

sluggish than the eye movements due to the considerable

mass of the head. Simultaneously, visually-guided by the

outputs from the four pairs of limb perception DNNs, the

neuromuscular limb motor controllers actuate the arms and

legs such that they extend to intercept the incoming balls,

deflecting them out of the way. Thus, the biomechanical

musculoskeletal human model continuously controls itself

to carry out this nontrivial sensorimotor task in an online,

(virtual) real-time manner, and no balls shot at it are missed.

7. Conclusion

We have introduced a simulation framework for investi-

gating biomimetic human perception and sensorimotor con-

trol. Our framework is unique in that it features an anatom-

ically accurate, biomechanically simulated virtual human

model that is actuated by numerous contractile skeletal

muscles. Our contributions in this paper include the fol-

lowing primary ones:

1. The development of a biomimetic, foveated retina

model, which is deployed in a pair of human-like eyes

capable of realistic eye movements, that employs ray-

tracing to compute the irradiance captured by a multi-

tude of nonuniformly arranged photoreceptors.

2. Demonstration of the performance of our sensorimo-

tor system in tasks that simultaneously involve eye

movement control for saccadic foveation and pursuit

of visual targets in conjunction with appropriate dy-

namic head motion control, plus visually-guided dy-

namic limb control to produce natural arm and leg ex-

tension actions that enable the virtual human to inter-

cept the moving target objects.

7.1. Future Work

Our current eye models are idealized pinhole cameras.

We plan to create a more realistic model of the eye that in-

cludes a finite-aperture pupil capable of dilation and con-

striction to control the incoming light, as well as a model of

the lens of the eye that would refract the cast rays passing

through it and, via active lens deformation, be capable of

focusing the image onto the retina, thus synthesizing depth

of field phenomena.

Our current eye models are also purely kinematically ro-

tating spheres. We plan to implement a fully dynamic eye

model in which the sphere has the typical 7.5 gram mass of

the human eyeball and is actuated by the set of 6 extraocular

muscles, including the 4 rectus muscles that actuate much

of the θ, φ movement of our kinematic eyeball, but also the

2 oblique muscles that induce torsion in the gaze direction,

around the eye’s z axis.

Our vision system generates saccadic eye movements to

foveate interesting objects in a variety of different scenarios.

Hence, our model can be valuable in human visual attention

research, a topic that we wish to explore in future work.

The jobs of the DNNs that must estimate from their ONV

inputs the discrepancy between the 3D positions of the end

effector and visual target are made difficult by the fact that

3D depth information is lost with projection onto the 2D

retina and, in fact, the estimation of depth discrepancy is

currently quite poor. This limitation provides an opportu-

nity to explore binocular stereopsis with an enhanced ver-

sion of our foveated perception model. For this, as well

as for other types of subsequent visual processing, we will

likely want to increase the number of photoreceptors, ex-

periment with different nonuniform photoreceptor organi-

zations, and automatically construct 2D retinotopic maps

from the 1D ONV inputs.
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