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Abstract

Perceptual judgment of image similarity by humans re-

lies on rich internal representations ranging from low-level

features to high-level concepts, scene properties and even

cultural associations. Existing methods and datasets at-

tempting to explain perceived similarity use stimuli which

arguably do not cover the full breadth of factors that affect

human similarity judgments, even those geared toward this

goal. We introduce a new dataset dubbed Totally-Looks-

Like (TLL) after a popular entertainment website, which

contains images paired by humans as being visually simi-

lar. The dataset contains 6016 image-pairs from the wild,

shedding light upon a rich and diverse set of criteria em-

ployed by human beings. We conduct experiments to try

to reproduce the pairings via features extracted from state-

of-the-art deep convolutional neural networks, as well as

additional human experiments to verify the consistency of

the collected data. Even though we create conditions to

artificially make the matching task increasingly easier, we

show that machine-extracted representations perform very

poorly in terms of reproducing the matching selected by hu-

mans. The results suggest future directions for improve-

ment of learned image representations. Data and code

will be available at https://sites.google.com/

view/totally-looks-like-dataset.

1. Introduction

Human perception of images goes far beyond objects,

shapes, textures and contours. Viewing a scene often elic-

its recollection of other scenes whose global properties or

relations resemble the currently observed one. This relies

on a rich representation in image space in the brain, entail-

ing scene structure and semantics, as well as a mechanism

to use the representation of an observed scene to recollect

similar ones from the profusion of those stored in mem-

ory. In this work, we explore how representations based

on deep neural networks fare on the challenge of similar-

ity judgment between pairs of images from a new dataset,

dubbed ”Totally-Looks-Like” (TLL); See Figure 1. It is

based on a website for entertainment purposes, which hosts

pairs of images deemed by users to appear similar to each

other, though they often share little common appearance,

if judging by low-level visual features, Including objects,

scenes, patterns, animals, and faces across various modal-

ities (sketch, cartoon, natural images). Though not very

large, the diversity and complexity of the images capture

various aspects of human perception of image similarity,

beyond current datasets. We evaluate the performance of

several state-of-the-art models on this dataset, cast as a task

of image retrieval. We compare this with human similarity

judgments, forming not only a baseline for future evalua-

tions, but also revealing specific weaknesses in the strongest

of the current learned representations, pointing the way for

future research. Human experiments validate the consis-

tency of the data. Though in some experiments we allow fa-

vorable conditions for the machine-learned representations,

they still often fall short of correctly predicting the human

matches. Other lines of work also measure and analyze dif-

ferences between human and machine perception, including

[9, 4, 1, 8, 12]. These all show that human similarity mea-

surements can be predicted quite well with modern, deep-

learned representations. The proposed dataset shows where

these methods fall short; our dataset is smaller in scale than

most of them, but features images from the “wild”, requir-

ing similarities to be explained by features ranging from

low-level to abstract scene properties. In this context, the

proposed dataset does not contradict the systematic evalua-

tions performed by prior art, but rather complements them

and broadens the scope to see where modern image repre-
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Figure 1: The Totally-Looks-Like dataset: pairs of perceptually similar images selected by human users. The pairings shed

light on the rich set of features humans use to judge similarity. Examples include (but are not limited to): attribution of facial

features to objects and animals (a,b), global shape similarity (c,d), near-duplicates (d), similar faces (e), textural similarity

(f), color similarity (g)

sentations still lack.

2. Dataset

The data for the reported experiments is collected from

a popular website called TotallyLooksLike1. The website

describes itself simply as “Stuff That Looks Like Other

Stuff”. For the purpose of amusement, users can upload

pairs of images which, in their judgment, resemble each

other. Such images may have any content, such as company

logos, household objects, art-drawing, faces of celebrities

and others (cf. Figure 1). Little do most of the visitors of the

website realize that it is in fact a hidden treasure: humans

encounter an image in the wild and recall another image

which not only do they deem similar, but so do hundreds

of other site users (according to the votes). This provides a

dataset of thousands of such image pairings, collected from

the wild, that may aid to explore the cognitive drive behind

judgment of image similarity. Beyond this, it contains sam-

ples of images that one recollects when encountering oth-

ers, allowing exploration in the context of long-term visual

memory and retrieval [5]. The collected dataset, Totally-

Looks-Like (TLL), is a snapshot of 6016 image-pairs down-

loaded from the website in Jan. 2016, with permission from

the web-site’s administrators to make it publicly available

for research purposes. We refer to the images in each pair

as the “left” and the “right” images, or more concisely as

1http://memebase.cheezburger.com/

totallylookslike

< Li, Ri >, i ∈ 1 . . . N where N is the size of the dataset.

3. Experiments

We wish to test to what degree similarity metrics based

on generic machine-learned representations are able to re-

produce the human-generated pairings in the TLL dataset.

We frame this as an image retrieval task, where different

deep-learned representations, both generic ([10, 3, 11, 6, 2]

and learned for face recognition2 are tested. This is done

in two settings. In the first (”full retrieval”), all images are

used as candidates and the distance (ℓ2 or cosine distance,

depending on the type of representation) is used to rank the

images. In the second (”associative recall”), a small sub-

set of images is sampled randomly (or according to some

other criteria) and the computed features are used again to

re-rank the images, to simulate a process of ”associative re-

call”, where a small, relevant subset of images is brought

forth by some mechanism to be used as image candidates.

This is to make the comparison more akin to human recol-

lection, as humans likely do not perform exhaustive search

but rather associate an observed image with a small subset

of those stored in memory. It is an easier scenario compared

to the full-retrieval one, simulating a state where a recall of

a relevant dataset were available. The performance on the

full retrieval task on a subset of the dataset which included

roughly 1800 images using representations based on vari-

ous deep-learned features in shown in Figure 2. The sub-

2https://github.com/ageitgey/face_recognition
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Figure 2: Retrieval performance by various learned rep-

resentations in the TLL dataset. Left: all images. Right:

showing recall only for the top 1 (first place), 5, 10, 20 im-

ages.

set was obtained by removing near-duplicate images (using

both face and generic features) which rendered the dataset

ambiguous. The performance on the simulation of ”associa-

tive” memory is shown in Table 1 (a), where 10 runs were

done for each condition (m, number of randomly picked

images). The variance was negligible in these experiments,

always ≤ %1.

3.1. Human Experiments

To compare humans against the machine-learned fea-

tures, as well as verify the TLL dataset consistency, we

performed human experiments on 120 images chosen us-

ing different criteria. The task was to select the best

match given a query image and 5 putative candidates where

the “correct” match is always present; we had 12 par-

ticipants (ages 28-39) perform the experiment in-lab and

20 participants via Amazon Mechanical Turk (20). The

120 queries were split to 6 different conditions, involving

whether the dataset includes only images of faces (TLLd)

or not (TLLobj , mixed faces and other images). Based on

this different distractor images are selecte for the humans.

The distractor images are either chosen randomly or by sort-

ing images based on their distance to the query images using

generic features (densenet121), face features or generic fea-

tures extracted from the face area. The results of the the ma-

chine and different human participants under different dis-

tractor types are indicated in Table 1 (b). Though not quite

perfect, there is large consistency between the human work-

ers on AMT and the users that uploaded the original TLL

images. The performance of the lab-tested humans seems

to be higher on average than the AMT workers, hinting that

either the variability in human answers is rather large or that

the AMT results contain some noise. Indeed, the number of

votes given to each of the five options reveals trend to select

the first option the most; the number of times each option

was selected was 627, 522, 465, 395, 391; option 1 selected
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Figure 3: (a) Probability of agreement between human

users on the AMT experiment. Humans tend to be highly

consistent in their answers. (b) user agreement ratio vs. cor-

rect matching with TLL.

30% more times than the expected probability. Neverthe-

less, we see quite a high agreement rate throughout the ta-

ble.

Human vs Machine Performance: the average human

performance is generally lower when distractors are se-

lected non-randomly, as expected. This is especially true

for face images, where deep-learned features are used to se-

lect the distractor set; here AMT humans achieve around

60% agreement with the TLL dataset. This is not very sur-

prising, as deep-learned face representations have already

been reported to surpass human performance several years

ago [7]. This may suggest that for faces, distractor images

brought by the automatic retrieval seemed like better can-

didates to the humans than the original matches. The rela-

tively high machine performance in the “random” cases is

due to random distractors which were likely no closer in

feature-space than the nearest neighbors of the query. We

further show the consistency among human. We count for

each query the frequency of each answer and test how many

times humans agreed between themselves. In 87% of the

cases, the majority of users (at least 11 out of 20) agreed

on the answer. The most frequent event, (30%) was a to-

tal agreement of all users: 20 out of 20 repeated the same

answer to the question. The Pearson correlation coefficient

between user agreement and a correct match in TLL was

0.94. The plot of agreement percentage frequency is shown

in Figure 3 (a). This large agreement is not in contradiction

to the lower rates of success in reproducing the TLL results,

because the TLL dataset was generated by a different pro-

cess of unconstrained recollection, rather than forced choice

as in our experiments. Figure 3 (b) shows the relation be-

tween user agreement ratios and the distribution of correctly

answered images.

4. Conclusion

Deep-learned representations were shown to fall quite
short of predicting the TLL image pairings, showing that
human similarity perception is still not fully predicted by
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m % correct

1 100.00

2 73.35

3 61.54

4 54.30

5 50.49

10 37.99

(a)

TLLobj TLLd

random† generic random face face-generic generic

human(lab) 83.3 70 82.5 63.3 64.5 83.3

human(AMT) 84 68.25 90.25 59 60.5 74.5

machine 20 20 25 0 0 5

(b)

Table 1: (a) Modeling Associative Recall: percentage of correct matches using conv-net derived features for the TLL dataset

when a random sample of m images including the correct one is used. For 10 images, the performance is less that 50%. (b)

man-versus-machine image matching accuracy for the perceptual similarity task. †The relatively high accuracy for “random”

is because a small subset is selected which contains the correct answer, highly increasing the chance for correct guessing.

modern models. Despite some noise in the AMT data the
statistics still clearly show humans to be quite consistent
in choosing image pairs, even when faced confusing dis-
tractors. Emulating easier scenarios for machines (Table 1
(a)) yielded slightly improved results, but still far from re-
producing the consistency observed among humans. One
could argue that fine-tuning the machine learned represen-
tation with a subset of images in this dataset will reduce the
observed gap. However, we believe that generic enough vi-
sual features should be able to reproduce the same similarity
measurements without being explicitly trained to do so, just
as humans do. Moreover, the set of various features em-
ployed by humans is likely rather large; previous attempts
to reproduce human similarity measurements resulted in
datasets much larger than the proposed one, though they
were narrower in scope (cf [9]). This raises the question of
the size of dataset required to close this gap in performance.
We hypothesize that the set of features humans use for im-
age comparison is not fixed, but conditional on the content
of each pair of images. An ongoing work is to develop
methods to apply such conditional computations to improve
image based reasoning and representations. Acknowledge-
ment This research was supported by several sources, via
grants to the senior author, for which the authors are grate-
ful: Air Force Office of Scientific Research USA (FA9550-
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