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Abstract

Saliency prediction even for videos is traditionally as-

sociated with fixation prediction. Unlike images, however,

videos also induce smooth pursuit eye movements, for ex-

ample when a salient object is moving and is tracked across

the video surface. Nevertheless, current saliency data sets

and models mostly ignore pursuit, either by combining it

with fixations, or discarding the respective samples. In this

work, we utilize a state-of-the-art smooth pursuit detector

and a Slicing Convolutional Neural Network (S-CNN) to

train two saliency models, one targeting fixation predic-

tion and the other targeting smooth pursuit. We hypothe-

size that pursuit-salient video parts would generalize better,

since the motion patterns should be relatively similar across

data sets. To test this, we consider an independent video

saliency data set, where no pursuit-fixation differentiation is

performed. In our experiments, the pursuit-targeting model

outperforms several state-of-the-art saliency algorithms on

both the test part of our main data set and the additionally

considered data set.

1. Introduction

Saliency modelling can be beneficial for various com-

puter vision and engineering applications [4]. In the case

of dynamic stimuli, further consideration has to be given to

the means of our perception: eye movements.

In general, humans shift their eyes in order to maintain

a sufficient understanding of their constantly changing en-

vironment, since our eyes can see fine detail only where the

image falls on a small part of the retina (ca. 1%) – the fovea.

While image viewing mostly consists of fixations and sac-

cades, video stimuli introduce smooth pursuit (SP) as well.

This is a relatively slow (compared to saccades) motion of

the eye, while the pursuit target is kept foveated [11]. Gen-

erally, SP cannot be performed without a target, setting it

apart from fixations, which will be numerous even if the ob-

server is presented with a blank screen. Additionally, sev-
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Figure 1. Saliency metrics typically evaluate against fixation on-

sets, detected by a traditional approach [6] (green line). These

have an approximately equal frequency across videos. When a

more principled approach to separating smooth pursuit from fixa-

tions [1] is applied, a great variation in the proportion of fixation

(red line) and pursuit (blue line) emerges. The clips (on the x-axis)

are sorted according to their pursuit sample shares.

eral aspects of human perception are improved during SP

[15, 18].

SP has been largely neglected in automatic eye move-

ment analysis, especially for natural scenes, where the stim-

ulus and its potential moving SP targets are not known a pri-

ori. A recently introduced offline algorithm for SP detection

[1] substantially improved performance for this challenging

scenario. However, it requires the gaze traces of multiple

observers for its operation, since the core idea is finding

similarities of gaze trajectories of several observers at once.

The selectivity of pursuit can be visualized by examining

the shares of all recorded gaze samples that are labelled as

SP and as fixations, respectively. For a randomly selected

subset of 50 Hollywood2 test videos, Figure 1 displays the

fixation-SP balance, which varies greatly between different

clips. We can hypothesize that SP is more stimulus-driven

(since it requires a target), and the salient events that induce

pursuit should “stand out” more. All this points to the need

of systematically separating the two eye movement types in

the context of saliency prediction and analysis.

In our work, we combined advances in automatic eye

movement detection [1] with an existing large-scale data set

(Hollywood2 [12]) to learn models that specifically target

predicting either fixations or SP. We then tested our models

12082



against several recent literature models on a part of the test

set and an independent data set (CITIUS-R [10]).

2. Related work

Saliency data sets in the literature ignore the issue of

pursuit-fixation separation, either not mentioning SP [7,

12], or relying on eye trackers (which in turn do not con-

sider SP) to detect fixations [2, 10]. DIEM [13] explicitly

combines fixation and SP into generic foveations. Gaze-

Com [6] uses a relatively simple approach to separate the

fixations from SP, which is shown to be insufficient by the

recently published manual annotations [19].

The saliency models, being developed in connection

with certain data sets, similarly disregard SP: Not one of

the literature models we encountered even mentions pur-

suit. The models themselves are usually separated into two

groups: The bottom-up approach to video saliency is of-

ten explored via compression-domain algorithms (e.g. [9]),

or more traditional pixel-domain ones (e.g. [10]). The top-

down approach is represented by models that incorporate

high-level object concepts explicitly [12], or rely on deep

learning to implicitly learn those (e.g. [3]).

In this work, we train a recent deep learning architecture

[16] to predict either fixations or pursuit and demonstrate

that SP-oriented training has the potential to make result-

ing models more generalizable. Compared to the state of

the art, our models show improved performance on both

fixation- and SP-saliency prediction on Hollywood2, and a

traditional saliency data set CITIUS-R.

3. Our approach

3.1. Data sets

We used the Hollywood2 data set [12], since it is one

of the largest video saliency sets that are publicly available,

and it would be suitable as the source of training data for

our deep model. This set contains ca. 5.5 hours of video

data (training and test sets combined), viewed by 16 ob-

servers. The diverse clips contain camera motions, zoom

level changes, and scene cuts. We used the full 823-clip

training set for training (90%) and validation (10%). A ran-

dom test subset of 50 clips (same as in Figure 1) was used

for testing all the compared models. We resized all the clips

to 640× 360 for consistency.

We processed all the eye tracking recordings to detect

pursuit and fixation samples with the toolbox in [19] (the

implementation of [1]). The entire Hollywood2 training set

contains a total of 4.5 million unique detected SP samples

(i.e. coordinates within videos: frame number, x and y pixel

coordinates) and over 10 million fixation samples.

Figure 2 displays an example scene from one of the

data set clips, together with its empirical saliency maps for

frame 70 frame 75 frame 100 frame 105

video
frame

fixations
(humans)

pursuit
(humans)

S-CNN SP
(ours)

GBVS

OBDL-MRF-O

Example predictions

S-CNN FIX
(ours)

Figure 2. Frame examples from “actioncliptest00416” (1st row),

with respective empirical ground truth fixation-based saliency

(2nd row) and SP-based saliency (4th row) frames. Dynamic

frames (first two columns) are dominated by SP; relatively static

frames (last two columns) mostly contain fixations. Predictions by

our models are in the 3rd and the 5th rows, by GBVS and OBDL-

MRF-O – in 6th and 7th rows. All predicted frame sequences are

identically histogram-equalized for visual comparison.

both fixations and smooth pursuit, and the same frames in

saliency maps predicted by different models.

CITIUS [10] contains both real-life stimuli and synthet-

ically generated clips. In our evaluation, we only consider

the real part (CITIUS-R; ca. 7 minutes, 22 observers), since

we train for the data of the same domain. The eye tracking

data contains only fixation data, but the stimuli are dynamic,

with ample potential for SP targets.

3.2. Slicing CNN saliency model

We adopted the slicing convolutional neural network (S-

CNN) architecture from [16]. In order to achieve temporal

integration during video processing, this architecture rotates

the feature tensors after initial individual frame-based fea-

ture extraction (see Figure 3). This way, time (frame in-

dex) is one of the axes of the network’s subsequent convo-

lution operations. This approach to sequence processing is

an alternative to using handcrafted motion descriptors, 3D

CNNs, or recurrent architectures.

We used one of the three branches of the whole net-

work in [16], as memory constraints only allow training one

branch at a time. We chose the branch where the temporal

integration stage contains convolutions in the xt plane of

the feature tensors. This xt-branch demonstrated the best

individual results in [16], and the horizontal axis seems to

be more important for human vision [14].

Our model performs binary classification of video RGB

subvolumes 128px× 128px× 15frames, outputting the

probabilities of the central pixel of the subvolume belonging
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Figure 3. The xt branch of the S-CNN architecture for binary

salient vs not salient video subvolume classification. The middle

block is responsible for temporal integration: The three convolu-

tional layers operate in the xt plane.

to the positive (salient) or the negative (not salient) classes.

The described model was trained twice: Either fixa-

tion or SP locations were considered salient. We sampled

50,000 salient locations each time. The negative samples

(also 50,000) were drawn uniformly from the whole set

of pixels of the training set (except for the locations used

as salient class examples). This way, our pursuit-oriented

model S-CNN SP and our fixation-oriented S-CNN FIX are

trained under similar conditions to predict two different

concepts. For validation, we used 10,000 subvolumes: 5000

salient subvolumes and 5000 not salient.

The convolutional layers of our model were initialized

with pre-trained VGG-16 [17] weights. We trained the

models with a batch size of 5 for 50,000 iterations with

stochastic gradient descent (momentum of 0.9, learning rate

10
−4, divided by 10 every 20,000 iterations).

The saliency maps were generated by taking the positive

class probability of every 10th pixel (along x and y axes),

and up-scaling these low-resolution maps to 640× 360.

4. Evaluation

As reference video saliency models, we use a pixel-

domain GBVS [8], a range of compression-domain OBDL-

models [9] (both through the framework provided by [9]),

and AWS-D [10]. We tested ten OBDL model variations,

but present the results only for the one performing best

on both data sets (OBDL-MRF-O). On Hollywood2, we

also evaluated the Mathe [12] model, which combines static

(low-, mid- and high-level) and motion features.

We used three baselines, where possible – Centre Base-

line (a square Gaussian reshaped to fit the aspect ratio

of each video), Permutation Baseline (the “true” saliency

map of another random video against the ground truth of

the evaluated clip), and One Human Baseline (the empir-

ical saliency map of one random observer vs. the overall

saliency map of the same clip). In all cases, random se-

lection was repeated five times. As CITIUS-R provides a

set of fixation locations for all observers together, the latter

baseline could not be tested there.

All empirical ground truth saliency maps were obtained

by counting the amount of positive (i.e. either SP or fixa-

tion) samples in each pixel, and applying a Gaussian filter

with the spatial σ equivalent to 1
◦ of visual angle – the ap-

proximate size of the fovea. The temporal σ was set to a

frame count equivalent of 1/3 s, so that the effect would be

mostly contained within 3σ = 1 s from the gaze sample.

We employ several typical metrics [5] that treat the

saliency distribution either in a location-based fashion –

AUC Borji, normalized scanpath saliency (NSS) – or as dis-

tributions – Kullback-Leibler divergence (KLD) and corre-

lation coefficient (CC).

5. Results and discussion

First, we evaluate both S-CNN FIX and S-CNN SP on the

50-clip test subset of Hollywood2 (see Table 1). Our mod-

els outperform all the literature reference models, achieving

highest results for all the reported metrics. Unsurprisingly,

the models that were trained for fixation and SP prediction

fare better in their respective domains. When we examine

the models’ performance on an independent CITIUS-R (see

Table 2), however, our S-CNN SP consistently shows perfor-

mance superior to that of the fixation-oriented S-CNN FIX,

and both compare favourably to the state of the art.

We hypothesize that when a model is trained to predict

pursuits, the learnt dynamic input signal properties can be

more stably transferred to other data sets, where motion is

important as well. Movement should augment both high-

and low-level saliency, potentially making the models that

explicitly learn to detect moving saliency areas more robust.

6. Conclusion

We have explored the possibility of taking eye movement

class into account when dealing with saliency prediction.

Our experiments and analysis show that (i) videos can have

highly varying SP-fixation balances, so it is a factor that

should be taken into consideration, and (ii) learning to pre-

dict a more selective and stimulus-driven eye movement –

pursuit – can help model generalization.
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