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Abstract

The hierarchical architecture of deep convolutional neu-

ral networks (CNN) resembles the multi-level processing

stages of the human visual system during object recognition.

Converging evidence suggests that this hierarchical orga-

nization is key to the CNN achieving human-level perfor-

mance in object categorization [22]. In this paper, we lever-

age the hierarchical organization of the CNN to investigate

the spatiotemporal dynamics of rapid visual processing in

the human brain. Specifically we focus on perceptual de-

cisions associated with different levels of visual ambiguity.

Using simultaneous EEG-fMRI, we demonstrate the tempo-

ral and spatial hierarchical correspondences between the

multi-stage processing in CNN and the activity observed in

the EEG and fMRI. The hierarchical correspondence sug-

gests a processing pathway during rapid visual decision-

making that involves the interplay between sensory regions,

the default mode network (DMN) and the frontal-parietal

control network (FPCN).

1. Introduction

Understanding the neural correlates of rapid object

recognition requires a comprehensive delineation of the

neural cascades in time and in space. Specifically, a dis-

tributed brain network must temporally coordinate its activ-

ity during rapid decision-making. Perceptual decisions ac-

tivate both sensory processing as well as high-level frontal

control both of which can potentially interact with the mo-

tor system to generate behavior [9]. Under circumstances

when there is inadequate sensory evidence in the stimu-

lus, ambiguity arises in the decision process. The brain

must potentially employ more complex processing that is

not simply feed-forward, and instead utilize feedback path-

ways to integrate prior biases for choice [20]. In addition,

processing related to directed attention is likely to switch

the brain’s processing between internal goals and external

cues, and this can depend on the amount of sensory evi-

dence received [15]. Thus there are several spatiotemporal

processes occurring in a coordinated manner that lead to our

ability to decide and act.

Simultaneous EEG and fMRI measurements make it

possible to non-invasively observe spatiotemporal dynam-

ics of the human brain while subjects make simple or com-

plex decisions. EEG provides millisecond time-resolved

measurements of the brain activity in response to external

stimuli or change of brain states. Complementary to EEG,

fMRI provides millimeter spatial-resolved measurements of

hemodynamic activity across the whole brain. In this paper

we leverage these multimodal neuroimaging measurements

with recent advances in computational models for visual ob-

ject recognition, the goal being to gain new insights into the

spatiotemporal network-level processing underlying rapid

perceptual decision-making.

Deep convolutional neural networks (CNN) have been

the state-of-the-art for automated object recognition tasks

for several years and are now able to achieve performance

comparable to humans on such recognition tasks [14].

These models’ structure contain a hierarchy of layers

through which input images are fed to produce the resulting

classification. Considering the similarities in structural or-

ganization and performance between these networks and the

human brain, we hypothesize that comparisons between the

layer representations of CNN and the spatiotemporal repre-

sentations of the brain under the same task will shed light

on the otherwise opaque workings of the human brain dur-

ing rapid decision making. Specifically, we capitalize on

a computational framework termed representational simi-

larity analysis (RSA) which enables the comparison across

measures of modalities by transforming the measurement

of each different modality into a common similarity space

that represents the activity pattern of the brain in response

to the experimental stimuli [13]. Relating the layer activa-

tions of CNN to the spatiotemporal dynamics of the brain

in response to the same set of experimental stimuli reveals a

hierarchical correspondence between the CNN and the brain

both in space and time. We find that this hierarchical corre-

spondence further implicates a dynamical attention switch-
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ing neural mechanism during decision ambiguity.

2. Related Work

Leveraging recent advances in computer vision, a num-

ber of studies have demonstrated the organizational similar-

ity between the feature representation in human visual path-

way and convolutional neural networks. Güçlü et al. [7, 8]

built predictive models from the layer representations of

CNN to predict the BOLD responses to natural image and

movie stimuli. In line with the work by Eickenberg et

al. [6], their findings showed that the hierarchical feature

representation of the CNN is in congruence with the repre-

sentation organization in both the dorsal and ventral visual

pathways of the human brain. To enable the integration of

information from multiple sources of brain measurements,

several studies used RSA [13] to compare the representa-

tional similarity across modalities (EEG, MEG, fMRI, com-

putational models and behavioral measurements). For ex-

ample, Cichy et al. [3] showed the spatial and temporal hier-

archical correspondence between the human brain and CNN

in visual object categorization via a comparison across

MEG, fMRI and CNN. Later, they investigated the rep-

resentation in scene recognition between MEG and CNN,

specifically relating the temporal dynamics in the MEG to

multi-stage scene processing in the CNN [2]. Lastly, Kher-

adpisheh et al. [11] compared the representational similarity

between human behavioral measures and different neural

network models to study the viewpoint invariance in object

recognition.

Most of these works have focused on establishing the

hierarchical organization correspondence between the fea-

ture representations in CNN and in human visual path-

ways, however, none investigated the similarity between the

CNN and human brain during a perceptual decision making

where subjects were actively engaged in a decision process

regarding the choice of a potentially ambiguous or noise

image of an object category. Previous studies [19, 16, 20]

have shown that the mapping from sensation to action in-

volves a coordination of a cascade of neural events. In par-

ticular, the process taps into the attentional allocation and

executive control functions of the brain and hence will re-

cruit high-level brain regions in addition to sensory pro-

cessing regions. Therefore, in this work, by comparing

the simultaneously recorded EEG and fMRI with the CNN

in representational space, we attempt to obtain temporally

and spatially resolved brain dynamics during rapid object

recognition in which the decision ambiguity was varied and

dynamic switching between internal and external attention

was potentially observable.

3. Methods

3.1. Stimuli and Experimental Paradigm

The stimulus image set consisted of a set of 30 face, 30

car, and 30 house images. The phase coherence of the im-

ages was degraded at a high coherence (50%) level and at a

low coherence (35%) level using the weighted mean phase

algorithm [5]. The phase coherence modulates the amount

of sensory evidence in the stimuli and thus influences the

decision ambiguity. Twenty-one subjects participated in the

study. Subjects performed an event-related three-choice vi-

sual categorization task. On each trial, an image of a face,

car, or house was presented for 100 ms. Subjects reported

their choice of the image category by pressing one of the

three buttons on an MR-compatible button response pad.

Each subject participated in four runs of the categorization

task. In each run, there were 180 trials (30 per condition; 6

conditions: face high, car high, house high, face low, car

low, and house low). Therefore, simultaneous EEG and

fMRI data from 720 trials (240 of each category and 360

of each coherence) were acquired for each subject during

the entire experiment. We excluded data from three sub-

jects in our analysis because of missing stimulus sequence

information. More details in data recording and experiment

design can be found in [16, 20]. Figure 1 illustrates the

experimental design.

Figure 1. Illustration of the Face vs. Car vs. House visual catego-

rization task. The phase coherence of the stimulus image modu-

lates the decision ambiguity.

3.2. Training Image Set for CNN

The training image dataset consisted of 6,000 images of

three object categories. Face images were acquired from the
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LFW dataset [10]. House images were acquired from the

MIT Places database [23]. Car images were acquired from

the Stanford Cars dataset [12]. We selected 2,000 house

images, 2,000 car images, and 1,000 face images from the

datasets. We also generated 1,000 artificial face images

from 100 of the natural face images via a 3D morphable

model [1]. The artificial face images were designed to look

similar to the face stimulus images presented to human sub-

jects and thus including them in the training set improves

the generality of CNN on the stimulus image set. We con-

verted all images to grayscale and resized them to 224×224.

Moreover, we augmented the training set by including the

degraded images at 35% and 50% phase coherence levels

for all categories. This yields a total of 18,000 images in the

training set for CNN. The validation set containing 6,300

images and the test set containing 8,000 images were cre-

ated in the same manner. Figure 2 shows some representa-

tive images used for CNN training.

Figure 2. Representative face, car and house images in the training

set. The artificial face images were designed to look similar to face

images presented to human subjects and included in the training

set to make CNN more generalizable to the stimulus image set.

3.3. CNN Architecture and Training

We used a deep convolutional neural network (CNN) ar-

chitecture as described in [14] (VGG-16). In our design,

the CNN consists of the convolutional base of VGG-16 and

2 fully connected (FC) layers as shown in Figure 3. We

divided the convolutional portion of this network into five

subgroups (layer 1-6). The first two groups consist of two

convolutional layers followed by a max pooling layer and

the following three groups consist of three convolutional

layers followed by a max pooling layer. Each of these conv

layers uses the rectified linear unit (ReLU) as its activa-

tion function. The first FC layer has 1024 hidden units and

the ReLU activation function. Dropout was applied to this

layer with the probability of retaining a hidden unit being

p = 0.5. The final three-unit FC layer has a softmax ac-

tivation function that outputs the class label for face, car

and house. The training process consisted of two stages. In

stage 1, we froze the weights in all convolutional layers and

only trained the weights in two fully connected layers. We

used RMSprop algorithm to minimize the cross-entropy ob-

jective function with a mini-batch size of 30, learning rate

of 2 × 10
−5, and 10 training epochs. In stage 2, we fine-

tuned the weights in all convolutional layers and the fully

connected layers using the same optimization scheme but

with a much smaller learning rate of 1 × 10
−7 for only 2

training epochs to avoid overfitting.

Figure 3. The architecture of the CNN consists of the convolu-

tional base from a pre-trained VGG-16 and two fully connected

layers. The last layer outputs a 3-class label.

3.4. Representational Similarity Analysis (RSA)

We used the RSA to characterize the relationship be-

tween the temporal (EEG) and spatial (fMRI) representa-

tions of the brain and the layer representations of CNN dur-

ing the rapid decision-making process [4, 3]. Specifically,

for each modality, we computed a representational simi-

larity matrix (RSM) with a dimension of 180 × 180 cor-

responding to the number of stimulus images. Each entry

in the RSM denotes the distance between two stimulus im-

ages. The more similar two images are, the less distance

they are away from each other. In this study, we used Pear-

son correlation as a distance measure between each pair of

the 180 images. Figure 4 shows the overview of the analysis

methods.

EEG RSM. To obtain temporally resolved EEG RSMs, we

computed the RSM at different time windows in a slid-

ing window fashion spanning from 0 ms to 1000 ms post-

stimulus onset. Each window has a 10 ms width and an

overlap of 5 ms with the adjacent ones. For each time

window, we first averaged the multi-channel EEG activity

across all the time points in the window, yielding a 41 × 1

feature vector corresponding to each stimulus image. We

then averaged the 41 × 1 feature vectors across 4 trials of

the same stimulus as the final EEG feature used for the com-

putation of the distance measure in the RSM. For each pair

of images, we calculated the Pearson correlation between
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Figure 4. Illustration of RSA between CNN layer activations and EEG-fMRI recordings. Constructing RSMs from CNN, EEG and fMRI

enables comparisons across layer, time and space.

them, yielding a 180 × 180 EEG RSM at each time win-

dow.

fMRI RSM. To obtain spatially resolved fMRI RSMs, we

used a volume-based searchlight approach implemented in

CoSMoMVPA toolbox [17]. In this approach, the whole

brain volume is randomly divided into a number of spheres

(searchlight). Each searchlight is a 3mm-radius sphere cen-

tering on a voxel. Each searchlight contains approximately

40 neighboring voxels, yielding a multidimensional voxel-

pattern fMRI feature vector for each stimulus. Since BOLD

activity is a lagged hemodynamic response following each

stimulus onset, we first performed a temporal deconvolu-

tion [21] on the BOLD data to generate a trial-level voxel

response for each stimulus, from which we can then con-

struct voxel feature vector for each stimulus. Similar to the

computation of EEG RSM, for each subject, we averaged

the trial-level voxel responses for each stimulus and com-

puted the fMRI RSM at each searchlight cluster, yielding a

spatially localized RSM across the whole brain.

CNN RSM. To obtain the layer-wise RSM, we extracted

the filter activation vector in response to each stimulus im-

age at each layer. For each convolutional subgroup, we first

concatenated all filter activations (all convolution layers and

max-pooling layer), then we performed a dimension reduc-

tion using Principal component analysis (PCA) on the con-

catenated activation vector to retain 95% of the total vari-

ance. For the fully connected layer, we only performed

a PCA dimension reduction on the filter activation vector.

We then computed the layer-wise RSM using the filter acti-

vation vectors of each pair of stimulus images. In total, we

obtained 6 layer RSMs for the 5 convolutional subgroups

and the first fully connected layer. The output layer was

excluded in this analysis since it only outputs a binary se-

quence that indicates a 3-class label.

EEG vs. CNN. To establish the temporal correspondence

between the layer representations of the CNN and the EEG,

we calculated, for each subject, the Pearson correlation be-

tween the layer RSM with each of the EEG RSMs at all

time windows, yielding a time course of the correlation for

each layer. Subject-wise time course of the correlation be-

tween EEG and CNN for each layer was averaged to obtain

the group-level time course. The significance of the corre-

lation at each time window was determined using a permu-

tation test where we randomly flipped the sign of the time

course for each subject 10,000 times to obtain an empiri-

cal null distribution of the group-level correlation at each

time window. We then used a cluster-mass correction [18]

at p < 0.05 to account for multiple comparisons across time

windows. The peak latency of the time course for each layer

was selected as the time of the maximum correlation score
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around 200 ms post-stimulus onset. We also computed R2

between the peak latency and the layer number as a linear

measure of the temporal hierarchy across CNN layers. The

significance of the R2 score was determined using a similar

permutation procedure.

fMRI vs. CNN. To establish the spatial correspondence be-

tween the layer representations and the fMRI, we calculated

the correlation between the layer RSM and each searchlight

RSM across the whole brain for each subject. The subject-

wise spatial correlation map of each layer was then aver-

aged to obtain the group-level spatial correlation map. The

significance of the spatial maps were determined using a

similar permutation procedure with a threshold free cluster

enhancement (TFCE) cluster correction to account for mul-

tiple comparisons in space at p < 0.05.

4. Results

4.1. CNN Performance

We evaluated the performance of the CNN on both the

test image set and the stimulus image set. Our goal of train-

ing the CNN is to not only maximize the performance on the

stimulus images but also to achieve the performance most

similar to the subjects’ behavioral performance. The CNN

classification accuracy on the test image set (8,000 images)

was 98.83%, which indicates a model that captures robust

representations with good generalization. Then we evalu-

ated the performance of CNN on the stimulus image set.

For the 90 high coherence images, the accuracy of CNN was

100%. For the 90 low coherence images, the accuracy was

64.44% (93.33% on house images, 76.67% on car images,

and 23.33% on face images). Table 1 lists the comparison

of the performance between human subjects and the CNN.

Although the overall CNN performance on the stimulus im-

ages is comparable to the human performance (94.00% at

the high coherence, 58.00% at the low coherence), it is

worth noting that, at the low coherence level, human sub-

jects achieved their highest accuracy on the face category,

suggesting a face perceptual bias, which was previously re-

ported by Tu et al. [20] and shown being a result of network

integrations in the brain. The CNN, however, achieved the

highest accuracy on the house category. This is understand-

able since there is no ecological reason, as there is for hu-

mans, for the CNN to be biased towards faces. Higher ac-

curacy for houses by the CNN is likely explainable by the

simple fact that houses have much more linear structure and

power in oriented spatial frequencies that are easier to rep-

resent and learn in a CNN model.

4.2. Temporal Correspondence Between CNN and
EEG

For each CNN layer, we computed the Pearson corre-

lation between the layer RSM and the EEG RSM across

Human High coherence Low coherence

Face 96.14% 61.31%

Car 92.35% 53.10%

House 93.91% 60.25%

CNN High coherence Low coherence

Face 100% 23.33%

Car 100% 76.67%

House 100% 93.33%

Table 1. Accuracy of the CNN and human subjects on the stimulus

image set

all time windows. The group-average temporal evolution

of the correlation for all layers is shown in Figure 5A. All

layers showed a significant correlation with the EEG rep-

resentation around 200 ms except for layers 1 and 2. The

increasing trend of peak latencies (R2
= 0.85, p = 0.007)

across CNN layers as shown in Figure 5B suggests a hierar-

chical correspondence between the temporal representation

of the brain decision processing and the CNN multi-stage

processing.

4.3. Spatial Correspondence Between CNN and
fMRI

For each CNN layer, we computed the Pearson corre-

lation between the layer RSM and the search light RSM

across the whole brain volume. Figure 5C shows the group-

average spatial correlation of each CNN layer and the brain.

The low-level layers activate the sensory processing region

such as lateral occipital cortex (LOC) [19], while the high-

level layers correlate more with the attentional and exec-

utive control networks. The emergence of the DMN in

mid-level layers (layers 3 and 4) and its interaction with

the FPCN in high-level layers (layers 5 and 6) suggests a

dynamical switching of the internal and external attentional

processes during rapid decision making with perceptual am-

biguity [15].

5. Discussion

Perceptual decision-making is believed to involve acti-

vation of a distributed brain networks, engaging sensory

processing, attention allocation, working memory, decision

formation, action generation and decision monitoring. In

particular, when sensory evidence is ambiguous, the effi-

cient reallocation of attentional resources between percep-

tual input processing (external attention) and internal bias

and representation (internal attention) is likely important

for task performance. We observed a correlation between

the cascading layers in the CNN and spatial activations in

the brain: at low-level layers, the CNN correlated with sen-

sory processing regions; at the mid-level layers, the DMN

emerged and interacted with the FPCN, a regulator of at-
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Figure 5. A, Pearson correlation was computed between the layer RSM and EEG RSMs across all time windows. The horizontal lines

indicate significant time windows after cluster-correction at p < 0.05. B, The peak latency of each layer is around 200 ms. The peak

latency increases as layer number increases (R2
= 0.85, p = 0.007, permutation test). Error bar denotes standard error determined by a

bootstrap technique. C, For each layer, the Pearson correlation was computed between the layer RSM and fMRI searchlight RSMs across

the whole brain volume. Significant clusters were determined using a TFCE permutation test at p < 0.05, with Bonferroni correction

across 12 hemispheres.

tention; at the high-level layers, the FPCN and motor ar-

eas were observed, where these regions are typically re-

cruited to complete the decision processing. Interesting is

that this cascade suggests a dynamical switching of atten-

tion between the external and internal focuses during rapid

perceptual decision making with ambiguity. Future work

will investigate this by conducting EEG-fMRI experiments

which explicitly modulate a subject’s internal and external

attention during rapid decision making.

It is also worth discussing our methodology for training

a CNN to perform the 3-category classification on face, car,

house images that mapped to the task subjects did in our

experiment. These images, which are from Imagenet and

acquired in naturalistic settings, are very different from the

stimulus images presented to the human subjects during the

experiment (e.g. experiment images have grey background,

luminance, contrast and spatial frequency equated, while

naturalistic images used for the CNN are color and occur

in scenes with context and taken from arbitrary viewpoint).

In particular, the face stimuli used in the human experiment

differ greatly from natural face images as they were gen-

erated from a morphable 3D face model. In order to have

the CNN achieve human-level performance for this stimu-

lus set, we included the synthetic face images in its training

set. We used a small learning rate, a small number of train-

ing epochs and applied dropout on the FC layer to prevent

overfitting. We also found that the more we fine-tuned the

network on the natural image set, the worse the network per-

formance would generalize to the stimulus images. There-

fore, to increase the performance on the stimulus set match-

ing the experiment, we created a training dataset sufficiently

similar to the stimuli used in human experiment to train the

network. This suggests the representations learned by large

CNN models can be related to representations in biological

brain networks. However care must be taken to make sure

that the CNN models are tuned with a small amount of addi-

tional data to capture the particulars of the limited stimulus

set and task governing the experiment.
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