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Abstract

In this paper, we propose an efficient architecture for se-
mantic image segmentation using the depth-to-space (D2S)
operation. Our D2S model is comprised of a standard CNN
encoder followed by a depth-to-space reordering of the final
convolutional feature maps. Our approach eliminates the
decoder portion of traditional encoder-decoder segmenta-
tion models and reduces the amount of computation almost
by half. As a participant of the DeepGlobe Road Extraction
competition, we evaluate our models on the corresponding
road segmentation dataset. Our highly efficient D2S models
exhibit comparable performance to standard segmentation
models with much lower computational cost.

1. Introduction

Semantic segmentation refers to classifying the pixels of
images or videos according to specific categories of objects
or background regions known as stuff [4]. Like many other
areas of computer vision, research on semantic segmen-
tation has received a tremendous performance boost with
the emergence of deep learning in recent years. All recent
semantic segmentation models follow a general encoder-
decoder type of architecture where the encoder front-end of
the network extracts the features necessary for a particular
task, and the decoder back-end of the network approximates
the segmentation map from these salient features.

FCN [23] is the earliest example of an encoder-decoder
style semantic segmentation network. This architecture is
built by converting the fully connected (FC) layers at the
backend of traditional image classification architectures like
AlexNet [15] or VGG [25] into fully convolutional layers
with 1 x 1 convolution followed by upsampled or frac-
tional convolution or deconvolution to generate the pixel-
level segmentation map. Skip connections from the higher
resolution layers at the convolutional front-end are added
for better information gain or performance in both FCN
and U-Net [21]. Next comes the SegNet [3] or deconvo-
lutional network [ 18] architectures, where for upsampling,

max-pooling indices are used with the stack of simple con-
volutional layers. In SegNet, FC layers or equivalent convo-
lution layers are omitted in order to reduce both the memory
requirements and computational complexity of the network.
Our network design has some similarities to both FCN and
SegNet. First, like SegNet, we do not use any FC layers or
their equivalent. Moreover, our network uses 1 x 1 convolu-
tion like FCN, but with a much smaller size. Unlike FCN or
SegNet, we do not use any deconvolution operation, rather
a rearrangement of the feature grid is done by a depth-to-
space operation with negligible computational cost.

Recent state-of-the-art segmentation approaches follow
the traditional approach of requiring some sort of decoder
back-end. The DeepLab models [5, 7] use atrous convolu-
tions [28] in the backend of the CNN models to generate
comparatively higher resolution coarse score maps (1/8"
of the original image) instead of using max-pooling. They
also use spatial pyramid pooling [10] with the atrous con-
volution of variable rates for better multi-scale prediction
as well as fully connected CRF [14] to finetune the bilin-
early upsampled score maps. Overall this results in a com-
plex, multi-stage pipeline where CNN and CREF are trained
separately, though the latest version of the model[6] omits
CRF post-processing. RefineNet [16] uses a multi-path re-
finement architecture as its decoder. Each refinement block
fuses high-level, and low-level feature maps using residual
convolution layers and bilinear upsampling for shape ad-
justment. Also, the authors use the residual sequence of
pooling for efficient fusion of multi-scale, pooled predic-
tion. The pyramid scene parsing network (PSPNet) [29]
uses pyramid pooling on the feature map of the ResNet
equipped with dilated or atrous convolution for global con-
text aggregation. The authors also added a branch in the
middle of the ResNet to propagate auxiliary loss for faster
convergence. The large kernel paper [19] uses larger con-
volution kernels to empirically cover larger receptive field
[30]. Large symmetric kernels are broken down into a few
asymmetric kernels to reduce the computational complex-
ity. Finally, recent literature focused on road mapping from
aerial images combine the power of deep learning for pixel-
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Figure 1. D2S models with ResNet50 (top) and VGG16-BN (bottom) backbones. Because of the differences in the shape of the final output
layer, the placement of the rearrangement or depth-to-space block is different for these models. The last one or two convolution operations

incur a negligible computational cost due to the small number of channels (2).

level segmentation with graph-based optimization for the
extraction of road topology [17, 8]. All of these related
works on semantic segmentation share the common feature
of including a decoder sub-network composed of different
variations of convolutional and/or upsampling blocks.

In this paper, we challenge the basic assumption that a
decoder sub-network is needed to approximate a segmenta-
tion map from encoder-generated feature maps. We hypoth-
esize that, at least for relatively easy segmentation tasks,
such as binary segmentation, the computationally-complex
decoder procedure can be replaced by a simple depth-to-
space rearrangement of the output of the final convolution
layer, without loss of segmentation accuracy. We call this
type of encoder with depth-to-space (D2S) spatial reorder-
ing the D2S network. From an efficiency perspective, our
D28 architecture needs only half of the computation to learn
the same task.

The idea of depth-to-space reordering that we use in our
paper to replace long-range decoders is identical to the sub-
pixel convolution for image super-resolution [24]. Depth-
to-space operations have also been used before for bench-
marking different decoding approaches [27], but in a differ-
ent way. In that work, multiple instances of the depth-to-
space reordering operation are used for 2 x 2 upsampling
in between the convolution layers in the decoder, whereas
in our D2S model we use a single depth-to-space block as a
replacement for a large stack of convolution layers.

We incorporate our D2S idea as a participant in the
DeepGlobe Road Extraction challenge. For the competi-
tion, our focus is to use a novel and efficient approach in-
stead of an ensemble of sophisticated models. We evaluate
our approach on the road extraction dataset. Our D2S model
based on the ResNet50 encoder achieves 60.60% mean in-
tersection over union (IoU) whereas the top entry has loU
of 65.60% on the validation set (at the time of writing). This
small difference with the best entry validates our hypothe-
sis that for at least easy segmentation problems, encoder-
only architectures without any decoder might be a reason-
able and efficient model of choice.

2. Method

With most current segmentation networks, such as FCN,
DeepLab, or RefineNet, the predicted score map has a lower
resolution than the input image. For SegNet, the shape of
the input image and output segmentation map are the same
with the same amount of computation in both encoder and
decoder. For that reason, SegNet incurs twice the computa-
tional cost of the encoder alone.

In comparison, our architectural design allows pixel-
wise prediction naturally. We train the network in such
an arrangement where the neighborhood pixel contribu-
tions are stored along the depth dimension and then just re-
ordered. One apparent drawback might be that the model
will have artifacts in the final prediction map because the
contextual mapping task in the neighborhood of the predic-
tion map is interrupted. However, we did not see any such
problems in practice, likely because the network learns to
overcome the spatial disruption while training end-to-end.

2.1. Architecture

We employ Resnet50 [11] and VGG16 [25] with batch
normalization [12] as the backbone or encoder of our net-
work with minor differences due to the difference in the di-
mension of the output of the final convolution layer in these
models. The complete architectures for both versions are
depicted in Figure 1.

We use a similar D2S reordering as proposed previously
for the image super-resolution problem[24]. The domain of
image super-resolution is a mapping task from the image
space to itself with greater detail in the output space. Also,
there is no encoder-decoder type of architectures; rather the
raw image is taken as a dense feature map and a simple stack
of convolution layers are used to produce the corresponding
high-resolution version. Thus, the D2S transformation for
super-resolution is an arguably more natural operation com-
pared to our case, where we use this block right at the end
of the encoder sub-network. In that sense, although we use
a similar encoder type of network, it works as a decoder
directly from the image space. This decoding task refers
to mapping the RGB image pixels into the binary pixel
space considering a semi-global context. Theoretically, the
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Figure 2. (Left to Right) Sample image; Segmentation maps generated by ResNet50-D2S, VGG16-BN-D2S, and Segnet models, respec-

tively.

Table 1. Results of our D2S models compared to SegNet as a base-
line on the validation set.

Model Pixel IoU
ResNet50-D2S 0.6060
VGG16-BN-D2S 0.5897
SegNet [3] 0.5612

amount of context covered depends on the depth of the net-
work. Moreover, we incorporate two-dimensional dropout
[26] after each max-pooling for the VGG model and after
each block except the last one for the ResNet model for im-
proved performance. For the VGG based model, we use
1 x 1 convolution to obtain the depth necessary for pixel-
level mapping (Figure 1, bottom).

3. Experiments

In this section, we provide a brief description of the
dataset, the implementation and training details of our mod-
els, and results achieved on the validation set in the leader-
board compared to SegNet as a baseline.

3.1. Dataset

At the time of writing, the DeepGlobe Road Extrac-
tion dataset is only open for the participants of the “Deep-
Globe Road Extraction” challenge [9]. The dataset consists
of 6226 and 1243 training and validation images, respec-
tively, each of resolution 1024 x 1024. This dataset is a
binary image segmentation problem, where the road pixels
are marked as foreground and the rest of the objects and

stuff are background. One of the challenges of this dataset
is that it is highly imbalanced in terms of the number of pix-
els per class, i.e. roads are thin lines within the images and
therefore occupy few pixels as compared to the background.

3.2. Training and Implementation

We train all of our models with ImageNet [22] pre-
trained encoders. In the beginning, we started training with
224 x 224 patches extracted from around the true positives
in the ground truth due to the scarcity of the foreground
(road pixels) in the images. However, empirically we found
that having the full context of the image, i.e., training with
the whole image at once helped to improve the model’s per-
formance.

We use PyTorch [20] as the deep learning framework.
All the models are finally trained with full resolution im-
ages, and their color jittered versions with the batch size
varying in the range of [3,8]. The models are trained on
NVIDIA TITAN Xp GPUs and an NVIDIA Quadro P6000
workstation. We use the Adam optimizer [ | 3] with an initial
learning rate of 0.0001 which is later reduced based on the
training statistics. Codes and pre-trained models are pub-
licly available. '

3.3. Results

Table 1 lists the pixel-level intersection over union (IoU)
[9] for three different models on the validation set in the

"https://github.com/littleaich/deepglobe2018
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competition leaderboard. We provide the performance met-
ric for a standard SegNet architecture to benchmark our
D2S models for a couple of reasons. First, the front-end
of our VGG-D2S model is a replica of the SegNet en-
coder, which is the set of convolution layers of the VGG16
model with batch normalization. Therefore, it is more
straightforward to compare the symmetric decoder of Seg-
Net against our spatial rearrangement strategy. Second,
SegNet has been reliably employed for binary image seg-
mentation problems with substantial accuracy in recent
works [2, 1].

From Table 1, we find the D2S models to have compara-
ble performance to the SegNet architecture. Figure 2 shows
two sample images and their corresponding segmentation
maps generated by the three models. From this figure, it is
also evident the qualitative performance of the models are
quite similar.

Moreover, at the time of writing, the top entry in the
leaderboard had IoU of 0.6560 which is ~ 5% better than
our best model. We anticipate that like other featured com-
petitions, the top entries in this competition comprise an en-
semble of different approaches, whereas our result is gen-
erated using only the D2S models described in this pa-
per. Therefore, we conclude that for segmentation prob-
lems containing only a few classes, heavy-decoder models
like SegNet can be reliably replaced by our efficient D2S
architecture without significant loss in performance.

4. Conclusion

In this paper, we propose an efficient image segmenta-
tion network, called D2S, that uses only a convolutional
encoder along with spatial reordering of the final feature
maps. Empirically, we show that for relatively easier image
segmentation problems, such as binary segmentation, the
D2S models give comparable performance to the standard
models. Although we only evaluate our model on a simpler
problem, this kind of depth-to-space architecture may also
be useful in more complex tasks, which we plan to explore
in future research.
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