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Abstract

In this paper, we propose an efficient architecture for se-

mantic image segmentation using the depth-to-space (D2S)

operation. Our D2S model is comprised of a standard CNN

encoder followed by a depth-to-space reordering of the final

convolutional feature maps. Our approach eliminates the

decoder portion of traditional encoder-decoder segmenta-

tion models and reduces the amount of computation almost

by half. As a participant of the DeepGlobe Road Extraction

competition, we evaluate our models on the corresponding

road segmentation dataset. Our highly efficient D2S models

exhibit comparable performance to standard segmentation

models with much lower computational cost.

1. Introduction

Semantic segmentation refers to classifying the pixels of

images or videos according to specific categories of objects

or background regions known as stuff [4]. Like many other

areas of computer vision, research on semantic segmen-

tation has received a tremendous performance boost with

the emergence of deep learning in recent years. All recent

semantic segmentation models follow a general encoder-

decoder type of architecture where the encoder front-end of

the network extracts the features necessary for a particular

task, and the decoder back-end of the network approximates

the segmentation map from these salient features.

FCN [23] is the earliest example of an encoder-decoder

style semantic segmentation network. This architecture is

built by converting the fully connected (FC) layers at the

backend of traditional image classification architectures like

AlexNet [15] or VGG [25] into fully convolutional layers

with 1 × 1 convolution followed by upsampled or frac-

tional convolution or deconvolution to generate the pixel-

level segmentation map. Skip connections from the higher

resolution layers at the convolutional front-end are added

for better information gain or performance in both FCN

and U-Net [21]. Next comes the SegNet [3] or deconvo-

lutional network [18] architectures, where for upsampling,

max-pooling indices are used with the stack of simple con-

volutional layers. In SegNet, FC layers or equivalent convo-

lution layers are omitted in order to reduce both the memory

requirements and computational complexity of the network.

Our network design has some similarities to both FCN and

SegNet. First, like SegNet, we do not use any FC layers or

their equivalent. Moreover, our network uses 1×1 convolu-

tion like FCN, but with a much smaller size. Unlike FCN or

SegNet, we do not use any deconvolution operation, rather

a rearrangement of the feature grid is done by a depth-to-

space operation with negligible computational cost.

Recent state-of-the-art segmentation approaches follow

the traditional approach of requiring some sort of decoder

back-end. The DeepLab models [5, 7] use atrous convolu-

tions [28] in the backend of the CNN models to generate

comparatively higher resolution coarse score maps (1/8th

of the original image) instead of using max-pooling. They

also use spatial pyramid pooling [10] with the atrous con-

volution of variable rates for better multi-scale prediction

as well as fully connected CRF [14] to finetune the bilin-

early upsampled score maps. Overall this results in a com-

plex, multi-stage pipeline where CNN and CRF are trained

separately, though the latest version of the model[6] omits

CRF post-processing. RefineNet [16] uses a multi-path re-

finement architecture as its decoder. Each refinement block

fuses high-level, and low-level feature maps using residual

convolution layers and bilinear upsampling for shape ad-

justment. Also, the authors use the residual sequence of

pooling for efficient fusion of multi-scale, pooled predic-

tion. The pyramid scene parsing network (PSPNet) [29]

uses pyramid pooling on the feature map of the ResNet

equipped with dilated or atrous convolution for global con-

text aggregation. The authors also added a branch in the

middle of the ResNet to propagate auxiliary loss for faster

convergence. The large kernel paper [19] uses larger con-

volution kernels to empirically cover larger receptive field

[30]. Large symmetric kernels are broken down into a few

asymmetric kernels to reduce the computational complex-

ity. Finally, recent literature focused on road mapping from

aerial images combine the power of deep learning for pixel-
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Figure 1. D2S models with ResNet50 (top) and VGG16-BN (bottom) backbones. Because of the differences in the shape of the final output

layer, the placement of the rearrangement or depth-to-space block is different for these models. The last one or two convolution operations

incur a negligible computational cost due to the small number of channels (2).

level segmentation with graph-based optimization for the

extraction of road topology [17, 8]. All of these related

works on semantic segmentation share the common feature

of including a decoder sub-network composed of different

variations of convolutional and/or upsampling blocks.

In this paper, we challenge the basic assumption that a

decoder sub-network is needed to approximate a segmenta-

tion map from encoder-generated feature maps. We hypoth-

esize that, at least for relatively easy segmentation tasks,

such as binary segmentation, the computationally-complex

decoder procedure can be replaced by a simple depth-to-

space rearrangement of the output of the final convolution

layer, without loss of segmentation accuracy. We call this

type of encoder with depth-to-space (D2S) spatial reorder-

ing the D2S network. From an efficiency perspective, our

D2S architecture needs only half of the computation to learn

the same task.

The idea of depth-to-space reordering that we use in our

paper to replace long-range decoders is identical to the sub-

pixel convolution for image super-resolution [24]. Depth-

to-space operations have also been used before for bench-

marking different decoding approaches [27], but in a differ-

ent way. In that work, multiple instances of the depth-to-

space reordering operation are used for 2 × 2 upsampling

in between the convolution layers in the decoder, whereas

in our D2S model we use a single depth-to-space block as a

replacement for a large stack of convolution layers.

We incorporate our D2S idea as a participant in the

DeepGlobe Road Extraction challenge. For the competi-

tion, our focus is to use a novel and efficient approach in-

stead of an ensemble of sophisticated models. We evaluate

our approach on the road extraction dataset. Our D2S model

based on the ResNet50 encoder achieves 60.60% mean in-

tersection over union (IoU) whereas the top entry has IoU

of 65.60% on the validation set (at the time of writing). This

small difference with the best entry validates our hypothe-

sis that for at least easy segmentation problems, encoder-

only architectures without any decoder might be a reason-

able and efficient model of choice.

2. Method

With most current segmentation networks, such as FCN,

DeepLab, or RefineNet, the predicted score map has a lower

resolution than the input image. For SegNet, the shape of

the input image and output segmentation map are the same

with the same amount of computation in both encoder and

decoder. For that reason, SegNet incurs twice the computa-

tional cost of the encoder alone.

In comparison, our architectural design allows pixel-

wise prediction naturally. We train the network in such

an arrangement where the neighborhood pixel contribu-

tions are stored along the depth dimension and then just re-

ordered. One apparent drawback might be that the model

will have artifacts in the final prediction map because the

contextual mapping task in the neighborhood of the predic-

tion map is interrupted. However, we did not see any such

problems in practice, likely because the network learns to

overcome the spatial disruption while training end-to-end.

2.1. Architecture

We employ Resnet50 [11] and VGG16 [25] with batch

normalization [12] as the backbone or encoder of our net-

work with minor differences due to the difference in the di-

mension of the output of the final convolution layer in these

models. The complete architectures for both versions are

depicted in Figure 1.

We use a similar D2S reordering as proposed previously

for the image super-resolution problem[24]. The domain of

image super-resolution is a mapping task from the image

space to itself with greater detail in the output space. Also,

there is no encoder-decoder type of architectures; rather the

raw image is taken as a dense feature map and a simple stack

of convolution layers are used to produce the corresponding

high-resolution version. Thus, the D2S transformation for

super-resolution is an arguably more natural operation com-

pared to our case, where we use this block right at the end

of the encoder sub-network. In that sense, although we use

a similar encoder type of network, it works as a decoder

directly from the image space. This decoding task refers

to mapping the RGB image pixels into the binary pixel

space considering a semi-global context. Theoretically, the
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Figure 2. (Left to Right) Sample image; Segmentation maps generated by ResNet50-D2S, VGG16-BN-D2S, and Segnet models, respec-

tively.

Table 1. Results of our D2S models compared to SegNet as a base-

line on the validation set.
Model Pixel IoU

ResNet50-D2S 0.6060

VGG16-BN-D2S 0.5897

SegNet [3] 0.5612

amount of context covered depends on the depth of the net-

work. Moreover, we incorporate two-dimensional dropout

[26] after each max-pooling for the VGG model and after

each block except the last one for the ResNet model for im-

proved performance. For the VGG based model, we use

1 × 1 convolution to obtain the depth necessary for pixel-

level mapping (Figure 1, bottom).

3. Experiments

In this section, we provide a brief description of the

dataset, the implementation and training details of our mod-

els, and results achieved on the validation set in the leader-

board compared to SegNet as a baseline.

3.1. Dataset

At the time of writing, the DeepGlobe Road Extrac-

tion dataset is only open for the participants of the “Deep-

Globe Road Extraction” challenge [9]. The dataset consists

of 6226 and 1243 training and validation images, respec-

tively, each of resolution 1024 × 1024. This dataset is a

binary image segmentation problem, where the road pixels

are marked as foreground and the rest of the objects and

stuff are background. One of the challenges of this dataset

is that it is highly imbalanced in terms of the number of pix-

els per class, i.e. roads are thin lines within the images and

therefore occupy few pixels as compared to the background.

3.2. Training and Implementation

We train all of our models with ImageNet [22] pre-

trained encoders. In the beginning, we started training with

224× 224 patches extracted from around the true positives

in the ground truth due to the scarcity of the foreground

(road pixels) in the images. However, empirically we found

that having the full context of the image, i.e., training with

the whole image at once helped to improve the model’s per-

formance.

We use PyTorch [20] as the deep learning framework.

All the models are finally trained with full resolution im-

ages, and their color jittered versions with the batch size

varying in the range of [3, 8]. The models are trained on

NVIDIA TITAN Xp GPUs and an NVIDIA Quadro P6000

workstation. We use the Adam optimizer [13] with an initial

learning rate of 0.0001 which is later reduced based on the

training statistics. Codes and pre-trained models are pub-

licly available. 1

3.3. Results

Table 1 lists the pixel-level intersection over union (IoU)

[9] for three different models on the validation set in the

1https://github.com/littleaich/deepglobe2018
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competition leaderboard. We provide the performance met-

ric for a standard SegNet architecture to benchmark our

D2S models for a couple of reasons. First, the front-end

of our VGG-D2S model is a replica of the SegNet en-

coder, which is the set of convolution layers of the VGG16

model with batch normalization. Therefore, it is more

straightforward to compare the symmetric decoder of Seg-

Net against our spatial rearrangement strategy. Second,

SegNet has been reliably employed for binary image seg-

mentation problems with substantial accuracy in recent

works [2, 1].

From Table 1, we find the D2S models to have compara-

ble performance to the SegNet architecture. Figure 2 shows

two sample images and their corresponding segmentation

maps generated by the three models. From this figure, it is

also evident the qualitative performance of the models are

quite similar.

Moreover, at the time of writing, the top entry in the

leaderboard had IoU of 0.6560 which is ∼ 5% better than

our best model. We anticipate that like other featured com-

petitions, the top entries in this competition comprise an en-

semble of different approaches, whereas our result is gen-

erated using only the D2S models described in this pa-

per. Therefore, we conclude that for segmentation prob-

lems containing only a few classes, heavy-decoder models

like SegNet can be reliably replaced by our efficient D2S

architecture without significant loss in performance.

4. Conclusion

In this paper, we propose an efficient image segmenta-

tion network, called D2S, that uses only a convolutional

encoder along with spatial reordering of the final feature

maps. Empirically, we show that for relatively easier image

segmentation problems, such as binary segmentation, the

D2S models give comparable performance to the standard

models. Although we only evaluate our model on a simpler

problem, this kind of depth-to-space architecture may also

be useful in more complex tasks, which we plan to explore

in future research.
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