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Abstract

Road detection from aerial images is a challenging task

for humans and machines alike. Occlusion, the lack of vi-

sual cues and slim class borders for other road-like struc-

tures (such as pathways or private alleys) make the problem

inherently ambiguous, requiring logic that goes beyond the

input image. We propose a three-stage method for the task

of road segmentation - first, an ensemble of multiple U-Net

like CNNs generate binary road masks. Second, another

CNN learns to refine roads segmentations based on the fu-

sion of the road maps from the first stage. Third, missing

links are added based on the inferred graph to improve seg-

mentation.

1. Introduction
Although, remarkable improvements have been made in

semantic segmentation of remote sensing imagery, the prob-

lem is far from being solved. Thanks to the advances of

deep convolutional neural networks ([6], [19], [2]) and large

labeled datasets [10], obtaining good object segmentations

has come down to training a single CNN.

The U-net architecture [17], based on an encoder-

decoder scheme with skip connections, has been extensively

used for image segmentation, yielding state-of-the-art re-

sults with minimal alterations [12].

We leverage the road segmentation from the initial aerial

image and extract road vectors using a smoothing-based

optimization algorithm that reasons about missing connec-

tions, further improving the road topology.

2. Related work
Road segmentation from aerial image has been exten-

sively studied in the literature ([9], [15], [7]). Given the

inherent ambiguity of the problem, there can never be a per-

fect solution - educated guesses need to be made in order to

determine the most probable road layout.

∗Equal contribution

Pixelwise semantic segmentation is generally a first step.

Given an RGB or multispectral image, a binary road mask

is produced. State-of-the-art methods use multi-stage deep

convolutional neural networks ([12], [13]).

Most of the times, we are interested in a map - that

is, roads vectors. For this purpose, several methods have

been proposed that aim to generate a road graph. Some

start with the skeletonized version and add all the pixels as

nodes [14], others attempt to simplify the road structure us-

ing road junctions, generating a sparse graph [4], resulting

in a similar representation as OpenStreetMap [16].

Other methods propose a CNN-based, iterative graph

construction method [1]. Starting from a point known to

be on the road, it receives the RGB image centered on that

point. It decides either to walk a fixed distance at an an-

gle inferred by the CNN or step back to the previous node.

Although the authors claim it finds 45% more junctions, it

does not have a dedicated junction finder and since it is a

patch-based, local algorithm, it has issues with both high

curvature and long, straight roads.

3. Proposed Method

We propose a three-stage method for roads extraction

(segmentation and vectors). Firstly, we independently train

various U-net-like networks on the task of roads segmen-

tation and intersections detection. Next, we combine these

partial predictions, along with the RGB input and feed them

to another network to produce a new road segmentation

map. Road vectors are obtained using our smoothing-based

optimization module. In the third stage, we use both road

segmentation and road vectors to add missing links (espe-

cially around intersections).

Road segmentation. We train various U-net-like archi-

tectures for the task of road segmentation. We reduce the

spatial resolution of our input using (2, 2) max-pooling op-

erations. After each downsampling layer we double the

number of learned features, in the same manner as [18]. We

equally reduce the spatial resolution of the input by a factor
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Figure 1. Overview of our method. In the first stage, we train different road segmentation networks. The generated road maps, along

with the RGB and detected intersections are concatenated and fed to another U-net-like architecture trained for road segmentation. This

improved segmentation map is used for road vectors generation. In the last stage, we add missing links to the segmentation map using the

previously generated road vectors.

of 8. In order to capture multi-scale information within the

network, we adjust the field-of-view of deeper filters by us-

ing chained dilated convolutions with various dilation rates

(referred as Atrous Spatial Pyramid Pooling in [3]). We

experiment with different dilation rates for each network.

The core network has a bottleneck of 6 dilated convolutions

with progressively increasing rates (1, 2, 4, 8, 16, 32). Af-

terwards, the decoder branch is built in the same manner as

in U-net. We upscale the feature maps and add skip con-

nections until we reach the size of the input. From now on,

we will refer to this model as Max dilation 32. We build

2 more variants, adding one dilated convolution with rate

of 48 (termed Max dilation 48) and another, with two more

convolutions with dilation rates of 48 and 64 (Max dilation

64). Each convolutional layer is followed by batch normal-

ization [8] and ReLU non-linearity.

Intersection detection. Our experiments (see Figure

2) showed that segmentation masks are weak around road

junctions. Therefore, we trained a separate network for in-

tersections detection to correct such mistakes. We have col-

lected the ground truth for training this network from the

road ground truth, by using a heuristic method based on

skeletonization - branched points having at least three ram-

ifications spawning for at least 150 meters were considered

intersections. Having the point locations, we trained a net-

work to place a dot centered on each. Due to the small

distance between certain intersections, we have chosen a 10

meters-wide dot as label. This resulted in a small number of

overlapping dots, and thus accurate intersection location on

the testing set. We trained Max dilation 32 using roads mask

as input and also using the RGB image and roads combined.

We report the results of intersection detection in Table 3.

3.1. Road refinement with optimization

We propose a two-stage refinement algorithm. First, we

generate road vectors using the binary segmentation and an

optimization algorithm. Second, we post-process the graph

in order to add the missing links.

Faced with occlusion, humans typically take a distance-

based guess whether there should be a connection between

two road links or not. Since the purpose of a road network

is to provide connectivity in order to facilitate land access, it

would make little sense to end a secondary road just before

connecting to a main road.

In order to improve road connectivity (and overall seg-

mentation performance), we use the binary mask from the

CNN as input for our optimization algorithm. Starting from

sampled points, it reasons about links by scoring each con-

nection and moving points to find the best fit.

We have chosen smoothing-based optimization [11] for

this task. The method can maximize a non-negative func-

tion, for which the only requirement is the ability to be eval-

uated at a given point. Our scenario is simple: given a point

or midpoint on a road link, find the best position in order to

match the binary mask.

The SBO-based method returns a road graph, given a
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Figure 2. Qualitative results of stage 3 of our method (adding missing links). (A) RGB input, (B) binary mask from CNN, (C) plotted road

vectors from SBO, (D) final segmentation with missing links added to the road vectors.

minimum road link length. However, due to the scor-

ing method (IoU) and significant road segment differences,

we noticed this slightly reduces overall performance, even

though it improves topological accuracy and significantly

reduces storage requirements. For the final submission, we

decided to keep only the non-overlapping links from the

graph.

3.2. Adding missing links

Having generated the graph, several links are still miss-

ing, mostly due to occlusion. A module is needed to connect

the roads based on distance or texture information. At this

stage, we use the graph nodes generated by the SBO algo-

rithm to infer an improved road layout, based on the added

links (see Figure 2). This would be a challenging task using

classical methods, such as distance transform, since some

connections could be easily missed without knowing the

graph structure and possible connection points. For exam-

ple, connecting a road to itself sounds like a bad idea, but it

might occur in occluded roundabouts.

4. Experiments
DeepGlobe Dataset [5]. The training set comprises of

6226 images spanning a total of 1632 km2. A validation

set of 1243 images (covering an area of 362 km2) was pro-

vided in the first round of the competition. Another 1101

images were chosen for testing and released in the second

round. They cover a total land area of 288 km2. The images

were collected by DigitalGlobe’s satellites at a spatial res-

olution of 50cm. The novelty of this dataset consists in the

road labels, of various width, provided for each image in the

training set. The task is to detect road pixels present in each

satellite image from the validation and test set (without any

road labels). The evaluation metric used in this competition

is mean Intersection over Union (IoU) [5].

Training in iterations. For the first round of the com-

petition, we used 5603 randomly sampled images (≈ 90%)

from the original training set to train our models. The re-

maining 623 images were used for validation. This is itera-

Table 1. Round 1. Roads segmentation results on the official vali-

dation set, 1243 images. The results were given by the submission

site.

Model Iteration IoU

Validation

Max dilation 32 1 0.5924

2 0.5975

Max dilation 48 1 0.6039

2 0.6058

tion 1 of our training process. We trained both our Max di-

lation 32 and Max dilation 48 networks. After convergence,

we used the predictions of each network on the validation

set as labels and trained the networks again. For the second

iteration, we keep the same splitting ratio of 90%-10%. In

the second iteration, the models were trained on 6722 im-

ages and validated on 747. We report the IoU scores of each

iteration on the validation set in Table 1.

Further on, in our experiments, we used the original

ground truth labels mixed with the predictions provided by

our Max dilation 32 network, in iteration 1, on the valida-

tion set. In Table 2 we report the segmentation results pro-

duced by our networks after the second iteration.

One intriguing particularity of this dataset is the variable

road width. We tried to assess the impact of thickness on

detection performance. Therefore, we trained another Max

dilation 32 network, using constant width roads (≈ 4 me-

ters), generated from the skeletonized version of the ground

truth. We extended the road width experiments after the

submission - see section 5.1 and Table 6.

Building ensembles. For the second iteration, we used

the networks trained in stage 1 and combined them using

two different approaches. Ensemble 1 is built by summing

over the results. For our second ensemble, we train a new

Max dilation 32 network, by fusing the RGB satellite im-

age with the outputs of all our networks from Ensemble 1.

Different from the previous ensemble is the presence of the

intersection map. The first ensemble tends to predict roads
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Figure 3. Qualitative results of roads segmentation using our ensembles. (A) RGB input, (B) Ground truth, (C) Ensemble 1, shown as

sum of 4 CNN outputs: Max dilation 32 - blue, Max dilation 48 - green, Max dilation 64 - red, Max dilation 32, same width thin - grey.

(D) Ensemble 2, the output of Stage 2. This example depicts numerous problems, such as: wrong or missing label, prolonged roadside

occlusion, ample road width variations. It also highlights the gains of multiple dilation rates and fixed width training.

Table 2. Roads segmentation results. Results reported on 5603

training images and 623 validation images, randomly selected

from the original training set, for which ground truth was provided.

Model Our Training Our Validation

IoU F1 IoU F1

Max dilation 32 0.6432 0.7824 0.6483 0.7883

Max dilation 48 0.6577 0.7913 0.6601 0.7957

Max dilation 64 0.6591 0.7919 0.6640 0.7966

Table 3. Intersection segmentation results. We report IoU scores

for our training and validation split.

Input Our Training Our Validation

Roads only 0.5627 0.5517

RGB + Roads 0.7112 0.6492

Table 4. Roads segmentation results using our ensembles.

Model Our Training Our Validation

IoU F1 IoU F1

Ensemble 1 0.6356 0.7749 0.6345 0.7769

Ensemble 2 0.7287 0.8506 0.6920 0.8239

Ensemble 1+2 0.6514 0.7882 0.6412 0.7829

thicker than the label, therefore we experimentally deter-

mined that eroding the roads with 2 pixels (on both sides)

yielded best results. Ensemble 2 was trained using the same

setup as our previous models. The second ensemble learns

the label distribution and has no need for additional pro-

cessing. We only binarized the results at a fixed threshold

of 128. Our best results were thus obtained using Ensemble

2 (as shown in Table 4 and Table 5).

4.1. Road thickness

Label thickness is an important aspect for detection -

thin roads and large pavement areas generally yield poor

detection performance. Furthermore, training with variable

width can exacerbate the problem, resulting in even more

Table 5. Round 2. Roads segmentation results on the official test-

ing set, 1101 images. The results were provided by the submission

site. Results reported after adding the missing links.

Model IoU Testing

Baseline [5] 0.545

Ensemble 1 0.5788

Ensemble 2 0.5862

Ensemble 1+2 0.5785

Table 6. Road thickness study using Max dilation 32 model. Re-

sults reported on 5603 training images and 623 validation images,

randomly selected from the original training set.

IoU Our

Training

IoU Our

Validation

Same width Thin (≈ 4m) 0.6282 0.6123

Variable width
Thin (original) 0.6432 0.6483

Thick (2x thin) 0.7254 0.6889

missed thin roads. In order to investigate the impact of this

issue on detection, we trained an additional network with

thicker roads. As confirmed by Table 6, roads as thick con-

nections are better than having a variable or thin road that

misses out road segments.

5. Conclusions

We propose a three stage approach for road segmenta-

tion. First, a multi-stage CNN produces multiple road seg-

mentation maps. Second, their outputs are fused using an-

other CNN and road vectors are generated from the binary

mask. Third, based on the road vectors and the binary seg-

mentation, we add missing links to improve the overall seg-

mentation mask.
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