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Abstract

In this paper, we present a LinkNet-based architecture

with SE-ResNeXt-50 encoder and a novel training strategy

that strongly relies on image preprocessing and incorporat-

ing distorted network outputs. The architecture combines a

pre-trained convolutional encoder and a symmetric expand-

ing path that enables precise localization. We show that

such a network can be trained on plain RGB images with a

composite loss function and achieves competitive results on

the DeepGlobe challenge on building extraction from satel-

lite images.

1. Introduction

Satellite imagery is an important class of imaging data

that has remained largely underutilized by modern com-

puter vision researchers. Government agencies such as

NASA or ESA and companies such as DigitalGlobe [15]

have access to terabytes of satellite images.

However, satellite imagery has not yet become the tar-

get of much research in computer vision and deep learning.

There are few large-scale publicly available datasets, and

data labeling is always a bottleneck for segmentation tasks.

The DeepGlobe Challenge at CVPR 2018 is designed to

bridge this gap, bringing high-quality and at the same time

labeled satellite imagery.

In this work, we have made an attempt to get accurate in-

stance level prediction for the building detection task while

addressing challenging examples to the loss function.

Name Band Name Band

Coastal 400 - 450 nm Red 630 - 690 nm

Blue 450 - 510 nm Red Edge 705 - 745 nm

Green 510 - 580 nm Near-IR1 770 - 895 nm

Yellow 585 - 625 nm Near-IR2 860 - 1040 nm

Table 1. Multispectral channels of the WorldView-3.

2. Dataset and Evaluation Metric

Satellite images for the Building Extraction Challenge

were selected from the SpaceNet dataset [8]. Images have

30cm per pixel resolution and have been gathered by the

WorldView-3 satellite [1]. The organizers chose several

cities such as Las Vegas, Paris, Shanghai and Khartoum.

Apart from traditional RGB images, SpaceNet also con-

tains 8 additional spectral channels that are listed in Table 1.

The training set contains 10593 11-bit 650× 650 images in

TIFF format, and each of the two test sets contains 3526
images. This sets include all of the above-mentioned cities.

Every image in the training set is accompanied by building

labels provided as polygons on the image.

For quality estimation, the Building Extraction Chal-

lenge uses the F1 score by a proposed buildings which have

IoU (Intersection over Union) with ground truth greater than

0.5.

3. Methods

3.1. Model architecture

We used a modified version of LinkNet [5] as the basic

underlying model for the building segmentation problem.
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Figure 1. Modification of LinkNet with SE-ResNeXt-50.

The network architecture is shown on Figure 1: it consists

of an encoder that extract multi-scale features and a decoder

with skip-connections from the encoder for a more accurate

localization of object boundaries.

In our solution, we propose to use the SE-ResNeXt-50

architecture [12] pre-trained on the ImageNet 1000 classes

subset [9] as the encoder.

This architecture achieves high accuracy in classification

and does not require much memory, which allows to keep

the batch size high enough for batch normalization to be

applicable.

The decoder consists of five blocks, each of which is a

3 × 3 convolution, a transposed convolution that increases

the size of the feature map by a factor of two, and a more 3×
3 convolution. After each of these elements in the block, we

applied batch normalization [14] and ELU non-linearity [7].

The input of each block receives the sum of the result of the

previous block and the corresponding feature map from the

encoder compressed by a 1× 1 convolution.

The final output is obtained by applying the last 3 × 3
convolution. We used He normal initialization [11] for the

weights in the network.

3.2. Loss function

As the loss function we used a weighted sum of the bi-

nary cross-entropy BCE combined with the Lovász hinge

loss LH [3] and MSE for watershed energy:

Loss = α · BCE + β · LH + γ ·MSE. (1)

Adding LH into BCE loss allows to increase the connec-

tivity of pixels within the object area, and also accelerates

the convergence of the model. However, for large values of

β, the separation of closely located objects degrades.

Based on local validation, we chose the optimal values

of loss parameters: α = 0.8, β = 0.2, γ = 10.

3.3. Separating the buildings

One of the most important problems specific for the

building detection challenge is separation: basic segmen-

tation models find it hard to separate different buildings

that are close to each other. To cope with this problem,

we added weights for the pixels in the binary cross-entropy

loss, which has led to significant improvements in separa-

tion. For the weight ω(x) of a pixel x, we build on the

weight map proposed for U-Net [16]:

ωUNet(x) = ωc(x) + ω0e
−

1

2σ2
(d1(x)+d2(x))

2

. (2)
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Figure 2. A heatmap of weights ω(x) in an example of closely

located buildings.

City Las Vegas Paris Shanghai Khartoum Total

Without watershed 0.8816 0.7535 0.6081 0.5564 0.7572

With watershed 0.8765 0.7544 0.6359 0.5707 0.7607

With watershed + TTA 0.8805 0.7687 0.6440 0.5838 0.7679

Table 2. Multispectral channels of the WorldView-3.

But unlike [16], we also increased weights for the areas

inside the masks, which makes the boundaries more rectan-

gular (a desired effect since we are looking for buildings).

In addition to these weights, we increased weights of the

areas located on narrow strips of land separating individual

buildings. Problematic separating walls were found with

the following simple algorithm: (i) given a mask M , apply

morphological closing with a disk of radius rd pixels; de-

note the result as M̄ ; (ii) distort M̄ back by rd pixels, get-

ting ¯̄M similar to M but with narrow borders eliminated;

(iii) subtract ¯̄M from M̄ , getting the map of narrow sepa-

rating borders B.

After this transformation, we assign weight map to the

BCE loss as

ω(x) = ωc(x) + ω0e
−

1

2σ2
(d1(x)+d2(x))

2

+ w0
d3

2rd
, (3)

where ωc is the weight of the class, d1 is the distance to the

boundary of the nearest building, d2 is the distance to the

boundary of the second nearest building, d3 is the distance

from the narrow separating borders to the border, ω0, σ and

rd are hyperparameters. In our final model, we used ωc = 1,

ω0 = 10, σ = 5, rd = 5. This change to the basic formula

from [16] increased the F1 score on local validation; we

illustrate this idea with a sample heatmap of the weights

presented at Figure 2.

3.4. Preprocessing and training

Satellite images provided in the competition already

have a sufficiently fine resolution of 30cm per pixel, but

some of them had a very dense buildings arrangement,

which made it difficult to separate buildings. We already

described an approach to this problem with loss function

weights above, but besides that we also increased the res-

olution of all images by a factor of two, which allowed us

to build more detailed masks. This transformation also al-

lowed the encoder to capture small details better, since the

architecture of SE-ResNeXt-50 decreases resolution very

rapidly with 2-step convolution and max-pooling at the very

beginning.

The network was trained on 256×256 crops. We normal-

ized the input images, and applied standard augmentations:

rotations by multiples of 90 degrees, flips, random scaling,

random shift, changes in brightness and contrast. For input

RGB images we used batch size 32. Images for every batch

were sampled with probabilities proportional to the weights.

The weight for each image τ(I) was initialized in units and

updated after every epoch. For an image I we updated the

weight τ(I) smoothly:

τk+1(I) = (1− α) · τk(I) + α · LCrop(I), (4)

where ωk is the previous weight value, LCrop(I) is the value

of the loss function on the current crop of image I , and α is

a hyperparameter; we used α = 0.2. This sampling method

has allowed us to focus on images that presented the greatest

challenges for segmentation.

We trained the network for 120 epochs using SGD [17]

with Nesterov momentum equal to 0.95. The initial learning

rate was set to 0.01 and reduced by a factor of 0.1 whenever

the value of the loss function on the validation set did not

drop significantly for 5 epochs.

As the output of the network we predict building masks

accompanied with watershed energy and normalized L2 dis-

tance to the edge of the corresponding building. To separate

falsely united building predictions, we used this energy with

a threshold of 0.25 to isolate seeds for the watershed algo-

rithm [2]. As the “landscape” for the watershed algorithm,

we used the negative distance transform of the binary mask.

Binarization of masks was performed with a threshold of

0.5. All found polygons with an area of less than 110 pixels

were discarded.

4. Results

The resulting solution, even without the use of ensem-

bles, achieved a relatively high F1 score in such cities as

Las Vegas and Paris, but the results were more modest in

other cities; see Table 2 for a breakdown across the cities on

the local validation set.

Due to the dense positioning and small size of buildings,

accurate detection is difficult (see Figure 3 for an example).

Moreover, in some of the images outlines of the buildings

are hard to distinguish from the general background even

manually, which also leads to errors in segmentation.

For further work, we suggest to use multispectral im-

ages to alleviate this problem; however, in our experiments
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Figure 3. Example of building detection: original image (top left),

ground truth mask (top right), predicted buildings (bottom left),

building probability map (bottom right).

with additional channels during the competition we did not

achieve any quality improvements. Other attempts to mod-

ify the architecture also have not resulted in any improve-

ments in F1 score; in particular, we have tried to use the

Atrous Spatial Pyramid Pooling module [6] and Squeeze-

and-Excitation Blocks [13] in the decoder. However, some

modifications have made it possible to accelerate conver-

gence.

Therefore, we can conclude that in order to obtain an

even better result, special attention in this kind of segmenta-

tion problems should be given to qualitative post-processing

and methods of instance segmentation such as, for example,

Mask R-CNN [10] or Discriminative Loss Function [4].

5. Conclusions

In this work, we have presented a building extraction ap-

proach from satellite imagery based on SE-ResNeXt-50 and

LinkNet architecture. The characteristic features of our so-

lution that most significantly contributed to the overall seg-

mentation quality include:

(i) prediction energy to get better seeds for the watershed

algorithm;

(ii) weight distribution for the loss function that allowed

our solution to separate nearby buildings with mor-

phological prepossessing;

(iii) the Lovász-Softmax loss function specifically de-

signed to optimize IoU-based metrics together with

the cross-entropy loss that makes it more robust.
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