
Building Detection from Satellite Imagery using Ensemble of Size-specific

Detectors

Ryuhei Hamaguchi Shuhei Hikosaka

PASCO CORPORATION

{riyhuc2734, saykua3447}@pasco.co.jp

Abstract

In recent years, convolutional neural networks (CNNs)

show remarkably high performance in building detection

tasks. While much progress has been made, there are two

aspects that have not been considered well in the past: how

to address a wide variation in building size, and how to

well incorporate with context information such as roads.

To answer these questions, we propose a simple, but effec-

tive multi-task model. The model learns multiple detectors

each of which is dedicated to a specific size of buildings.

Moreover, the model implicitly utilizes context information

by simultaneously training road extraction task along with

building detection task. The road extractor is trained by dis-

tilling knowledge from another pre-trained CNN, requiring

no labels for roads in its training. Our experiments show

that the proposed model significantly improves the building

detection accuracy.

1. Introduction

Automatic detection of buildings from remote sensing

imagery has been a long-standing goal. The task is of

great importance because building maps provide basic in-

formation for various kinds of applications including mar-

keting, urban management, and popularity estimation. In

recent years, convolutional neural networks (CNNs) show

remarkably high performance in building detection tasks

[1, 7, 9, 10, 12, 14]. While much progress has been made,

there are two aspects that are not well considered.

One aspect is the variation in building size. Figure 1

shows a distribution of building sizes in a dataset used in

DeepGlobe competition [2]. In the figure, we can see the

wide variety in the building size. In most cases, large build-

ings and small buildings have very different visual appear-

ances (e.g., a large shopping mall and a small house). Fur-

thermore, due to limited spatial resolutions, small buildings

would not be the same as larger ones even if up-scaled. De-

spite such variations, previous works treat all buildings into

Small Medium Large

Figure 1. Distribution of building size in the dataset used in Deep-

Globe competition [2].

a single class and do not well consider the variation they

have.

To deal with the variation in this paper, we treat the

detection of buildings of different sizes as different tasks.

Specifically, we propose a multi-task model that learns size-

specific detectors for detecting each size of buildings. The

multi-task modeling is suitable for the task. At lower lev-

els, the detectors can share general features for all buildings

while at higher levels, they can concentrate on learning spe-

cific features for each kind of buildings.

The other aspect is the utilization of context informa-

tion. The context information around buildings is some-

times helpful. Especially, information about roads helps to

recognize buildings because of the co-occurrence between

them. Actually, in [12], the accuracy of building detection

is improved by training multi-class model which simultane-

ously detects both of buildings and roads.

One problem of [12] is that to train their multi-class seg-

mentation model, they require training samples that have la-

bels for both classes. The samples that have only labels for

either of the classes cannot be used for training, which sig-

nificantly limits the number of training samples available.

To fully utilize all the labels available, we propose to add

a road extraction branch to the proposed multi-task model

stated above. The branch is trained by knowledge distilla-

tion [6] using another road extraction model as a teacher.

By using the output of the teacher model as a ground truth,

the road extraction branch can be trained even for samples

that have only building labels.
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Figure 2. Overview of the proposed method. The multi-task U-Net (Center) consists of a shared feature extractor F and successive multi-

task branches Cr , Cs, Cm, and Cl. The model takes RGB images as input and outputs four types of probability maps: one for road

extraction result and three for building detection results. Each of the three results corresponds to “small”, “medium” and “large” size

buildings. The road extraction branch is trained by knowledge distillation from another pre-trained CNN model. The building detection

branches are trained using multi-size labels shown on the left side. In the labels, red, green and blue color represent “small”, “medium”

and “large” buildings respectively. Finally, the outputs for each size of buildings are integrated into a final prediction result in the post-

processing (Right)

In our experiments, the proposed multi-task model with

the knowledge distillation shows the remarkable perfor-

mance improvement. All the experiments are conducted

through the participation of DeepGlobe competition [2].

2. Methods

2.1. Overview

Figure 2 shows an overview of the proposed model. The

model architecture is based on U-Net [11]. The model con-

sists of a shared feature extractor F and successive multi-

task branches Cr, Cs, Cm, and Cl. Each of the branches

solves different tasks: road extraction (Cr) and size-specific

building detection (Cs, Cm, Cl). The loss function is de-

fined as the sum of the losses from each branch.

L = Lsmall + Lmedium + Llarge + Lroad. (1)

Bellow, we explain the size specific building detection

branches (section 2.2), the road extraction branch (sec-

tion 2.3), and the post-processing (section 2.4).

2.2. Size­specific building detection

The proposed model has three building detection

branches (Cs, Cm, Cl), each of which is responsible for

detecting “small”, “medium”, and “large” buildings. For

input x ∈ X , the outputs of the branches can be written as

follows.

pk = Ck(F (x)), k = {s,m, l}. (2)

To train the branches, the multi-class labels yi =
{cn, cs, cm, cl} which defines “non-building”, “small”,

“medium”, and “large” classes are used. Note that the

multi-class labels can be acquired from commonly used bi-

nary building labels. An example of the labels is shown in

the left side of Figure 2. Using the labels, the loss function

of the branch for “small” buildings becomes

Lsmall =
∑

i

I(yi = cs) log p
s
i + I(yi = cn) log (1− psi ).

(3)

Here, I(·) is an indicator function which returns 1 if the

argument is true and returns 0 if false. Note that in the loss

function, only the pixels of small buildings or non-buildings

affect the loss value. This is because pixels which is out of

scope of the branch (i.e. “medium” and “large”) produces

unwanted error signal. The other loss functions (Lmedium

and Llarge) are defined in the same way as Lsmall.

2.3. Distillation from road extraction model

The output of the road extraction branch Cr is defined as

follows.

pr = Cr(F (x)) (4)
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The branch is trained by distilling knowledge from a teacher

model R which is trained in advance using another dataset

for road extraction. For each image x ∈ X in the build-

ing detection dataset X , the output of the teacher model is

calculated as

p̂ = R(x). (5)

During training, the teacher output p̂ is used as a ground

truth for input x. Using cross entropy, the loss function for

the branch is defined as follows.

Lroad =
∑

i

p̂i log p
r
i + (1− p̂i) log (1− pri ) (6)

2.4. Post­processing

In the post-processing, the output probability maps from

each building detection branches are integrated. The inte-

gration is conducted in the following steps. First, the out-

puts are binarized using pre-defined threshold. Then, from

each binarized maps, invalid building masks that are out of

assigned building size are filtered out. Then, filtered results

are integrated by taking logical sum for each pixel. Finally,

too small building masks are removed as invalid predictions.

To determine the binarization threshold, each of the size-

specific branches are evaluated on a validation set. For each

branch, the best performing threshold is chosen from range

[0.4, 0.6] in terms of recall value calculated on the assigned

size of ground truth masks. The range of the filtering is

defined by the half of lower bound and the twice of upper

bound of the assigned range for each branch. This means

that we leave all the prediction masks that are possible to

have IoU > 0.5 with any ground truth masks in their as-

signed range. Although the model performance is not so

sensitive to the choice of the filter range, we find that too

strict filtering (e.g. no margin to the filtering range) or too

loose filtering (e.g. no filtering) degrades the performance.

3. Experiments

3.1. Dataset

In our experiments, we used building detection dataset

provided in DeepGlobe competition [2]. Among the pro-

vided images, we used 30cm resolution RGB images (RGB-

Pansharpen). For internal validation, we hold out randomly

chosen 300 images from 10560 training images. Through-

out the paper, we used the validation data to evaluate our

models. For training, 5 million patches of size 128 × 128
are cropped from the training images. When cropping, class

balance is considered as far as possible.

To define the division of building sizes, k-means clus-

tering is applied to the square root of the building extent in

the dataset. As a result, the division becomes as follows:

S ≤ 1150, 1150 < S ≤ 4540 and 4540 < S for “small”,

Table 1. F1 scores for each model evaluated on the internal vali-

dation set and the final phase test set of DeepGlobe competition.

For validation set, F1 scores are shown for each size of buildings

as well as overall buildings.
F1 @ val F1 @ final

Model small medium large overall overall

VGG-U-Net 45.07 80.24 80.04 67.4 -

+Aug. 38.48 79.41 79.75 65.36

+Distil 47.27 81.69 79.83 68.95 -

+SS 53.91 85.11 84.83 72.36 -

+SS+Distil 53.65 85.28 83.49 72.32 -

Ensemble 54.70 85.52 85.12 73.04 71.99

Res-U-Net 50.51 83.97 82.88 71.60 -

+SS 56.92 85.89 86.12 74.41 73.70

Ensemble 56.90 86.51 85.96 74.67 73.91

Table 2. F1 score for different choice of branch point for multi-task

detectors. For each model, the position of branch point is changed

from 3rd block to 5th block in the decoder (i.e., lower to higher

layer)

Branch point

Model 3rd block 4th block 5th block

VGG-U-Net+Distil 70.31 69.91 70.25

VGG-U-Net+SS 72.18 71.76 69.25

“medium” and “large” buildings respectively, where S de-

notes a pixel extent of a building. In this paper, we only

tried k = 3, but it would be possible to have more or fewer

classes.

For training of the teacher model for distillation, we used

the road extraction dataset provided from the other part of

the competition [2].

3.2. Experimental setups

We build two types of U-Net architectures as our base-

line: VGG-U-Net and Res-U-Net. Each architecture has the

encoder which consists of pool4 features of VGG16 [13]

and conv5 features of Resnet-18 [5] respectively, each fol-

lowed by two 3×3 convolutions with ReLU activation func-

tions. Since the resolution of feature maps are important to

detect small buildings [3], we made minor modifications

for our Res-U-Net: we eliminated the first max-pooling

layer from Resnet-18 and changed stride of conv1 from 2

to 1. As a result, the global stride of the encoder output be-

comes 16, which is the same as VGG-U-Net. For both of the

architectures, the decoders have the symmetric architecture

as the encoders. Then, these baselines are extended to the

proposed multi-task U-Net by adding multiple branches, i.e.

the size-specific branches (SS), the road extraction branch

(Distil), and the combination of them (SS+Distil). All the

branches have identical architecture and they branch off at

the fourth block in the decoder (see Figure 2 for VGG-U-

Net+SS+Distil).

We also compare the proposed method to multi-scale

training, a commonly used approach to deal with objects

in various scales. Specifically, during training of VGG-U-

Net, we randomly scale input images by the factor of 0.5,
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Input Ground truth Small Medium Large Merged output

Figure 3. The example results of ensemble model of Res-U-Net family. The output probability maps of size-specific branches are shown

through the 3rd to 5th column and final prediction results after post-processing are shown in the last column.

1.0 and 2.0 (VGG-U-Net+Aug.). Although We also tried

the augmentation at test time, this significantly hurt the per-

formance because nearby buildings in down-scaled inputs

tend to be over segmented and be included in single large

masks.

For initialization of the networks, pre-trained weights on

ImageNet are used for layers in the encoder and the other

layers are initialized using [4]. Adam [8] are used for

optimization with an initial learning rate of 1.0e-4 and co-

efficient of weight decay term of 5.0e-4. The learning rate

is decayed linearly along with training iteration.

The teacher model for road extraction has the same ar-

chitecture and the same training setting as VGG-U-Net.

3.3. Results

Table 1 shows the evaluation results for each model.

Compared to the baselines, adding road extraction branch

(+Distil) and size specific branches (+SS) improves the per-

formance. The improvement is especially large for “small”

buildings. The combination of both branches (+SS+Distil)

does not further improve the performance but shows com-

peting performance with size specific branches. The large

performance boost is acquired by changing base architec-

ture from VGG16 to Resnet-18.

Table 2 investigate the sensitivity to the choice of the

branch point. In the case with size specific branches (+SS),

it seems better to branch off early in the decoder, while in

the case with road extraction branch (+Distil), the choice of

branch point does not affect the performance so much.

3.4. Techniques for performance improvement

All the results in Table 1 are acquired by using test time

augmentation. Each of the test images is augmented 6 times

with rotation (0, 90, 180 and 270 degrees) and flipping (ver-

tical and horizontal) and the outputs are averaged over the

augmented inputs. In addition, we build ensemble models

by averaging the output of top-k performing models. We

used eight models for VGG-U-Net family and four models

for Res-U-Net family. As shown in Table 1, the ensemble of

Res-U-Net family performs the best for both of our internal

validation score and final test score. Some example outputs

of the ensemble model is shown in Figure 3.

4. Conclusion

In this paper, we proposed the multi-task building detec-

tion model that can effectively deal with buildings of differ-

ent size. In addition, the model implicitly utilizes the infor-

mation about road without using road labels. The proposed

model achieved significant improvement compared to the

conventional U-Net model. While, in this paper, we decom-

pose the building detection task into subtasks along with the

factor of size, there will be some other factors worth explor-

ing, such as the shape complexity or architectural styles.

Moreover, there arises a new question: is there a method to

automatically define optimal subtask decomposition? We

leave these things for future work.
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