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Abstract

The most common approaches to instance segmentation

are complex and use two-stage networks with object pro-

posals, conditional random-fields, template matching or re-

current neural networks. In this work we present Ternaus-

NetV2 - a simple fully convolutional network that allows

extracting objects from a high-resolution satellite imagery

on an instance level. The network has popular encoder-

decoder type of architecture with skip connections but has

a few essential modifications that allows using for semantic

as well as for instance segmentation tasks. This approach

is universal and allows to extend any network that has been

successfully applied for semantic segmentation to perform

instance segmentation task. In addition, we generalize net-

work encoder that was pre-trained for RGB images to use

additional input channels. It makes possible to use trans-

fer learning from visual to a wider spectral range. For

DeepGlobe-CVPR 2018 building detection sub-challenge,

based on public leaderboard score, our approach shows su-

perior performance in comparison to other methods.

1. Introduction

Automatic building extraction from high-resolution

satellite imagery creates new opportunities for urban plan-

ning and world population monitoring. Traditionally, the

building boundaries are delineated through manual label-

ing from digital images in the stereo view using the pho-

togrammetric stereo plotters [18]. However, this process is

a tedious task and requires qualified people and expensive

equipment. For this reason, building extraction using the

automatic techniques has a great potential and importance.

The advantages of satellite imagery compared to aerial im-

agery are the almost worldwide availability and that the data

typically contains wider spectral range, that includes both

optical, infrared and extra channels. The geometric resolu-

tion of 0.3-1.0 m per pixel is worse than for aerial imagery,

but is sufficient to be able to extract large objects, such as

buildings. The worldwide availability of the data makes it

possible to produce topographic databases for nearly any

region of the earth.

In the last years, different methods have been proposed

to tackle the problem by creating convolutional neural net-

works (CNN) that can produce a segmentation map for an

entire input image in a single forward pass. One of the most

successful state-of-the-art deep learning method is based on

the Fully Convolutional Networks (FCN) [15]. The main

idea of this approach is to use CNN as a powerful feature

extractor that creates high-level feature maps. Those maps

are further upsampled to produce dense pixel-wise output.

The method allows training CNN in the end to end man-

ner for semantic segmentation with input images of arbi-

trary sizes. This method has been further improved with

skipped connections and now known as U-Net neural net-

work [17]. Skip connections allow combining low-level

feature maps with higher-level ones, which enables precise

pixel-level localization. A large number of feature channels

in upsampling part allows propagating context information

to higher resolution layers. This type of network architec-

ture proved itself well in a satellite image analysis compe-

titions. [11, 13, 19]. Another modification to the U-Net

architecture that lead to a first place in the Carvana Image

Masking Challenge [1] was to replace encoder by a first few

convolution blocks of the VGG11 network. This modifica-

tion was called TernausNet [14] and ideas that we imple-

ment in the current work are natural extensions of the Ter-

nausNet.

The semantic segmentation is not able to separate differ-

ent instances because the predicted boundaries are usually
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not fine and closely packed objects of the same class col-

lapse into one connected component. It may also happen

that there is no distance between objects at all and even per-

fect network will predict different instances as being part

of the same connected blob. In work, [6] authors propose

a method that utilizes three stacked networks, the first one

performs semantic segmentation, the second one predicts

gradients of the distance transform, the last predicts energy

levels that are used in the postprocessing step during the wa-

tershed transformation. Our method is similar in the spirit,

but much more straightforward.

In this work, we solve two different problems. First of

all, we use all available multispectral information. Then, we

need a way to modify the network, so that combination of its

outputs allows to make segmentation on the instance level.

To resolve the first problem, we suggest an extension of the

TernausNet architecture [14] that replaces VGG11 encoder

with a more powerful ABN WideResnet-38 [7]. We also

extend the input RGB channels to 11 multispectral chan-

nels. So that, we are able to perform transfer learning from

RGB to RGB + multispectral inputs. For the second issue,

we use ideas that were developed in winning solutions for

recent data science challenges [11, 5]. To be specific and

separate buildings in a predicted binary masks, we add ad-

ditional output channel that predicts areas where objects are

touched or close to each other. This output is used in a

post-processing step and allows to partition the mask into

separate instances.

2. Dataset

The training data for the building detection sub-

challenge originate from the SpaceNet dataset [2]. The

dataset uses satellite imagery with 30 cm resolution col-

lected from DigitalGlobe’s WorldView-3 satellite. Each

image has 650x650 pixels size and covers 195x195 m2

of the earth surface. Moreover, each region consists of

high-resolution RGB, panchromatic, and 8-channel low-

resolution multi-spectral images. The satellite data comes

from 4 different cities: Vegas, Paris, Shanghai, and Khar-

toum with different coverage, of (3831, 1148, 4582, 1012)

images in the train and (1282, 381, 1528, 336) images in the

test sets correspondingly. All images in the train set have

a paired list of polygons that describes building instances.

The labels are not perfect due to the cost of mask annota-

tion, especially in places with high density. To evaluate our

model performance the predicted masks for the test images

should be upload into DeepGlobe website [3, 9]. An exam-

ple of a test image and predictions of our method is depicted

in the Fig. 1. 1.

Figure 1. From left to right: RGB part of the input image, pre-

dicted binary mask in blue and touching borders in green, building

instances after the watershed transform.

3. Model

Our approach leverages encoder-decoder type architec-

ture with skipped connections that is also known as U-Net

[17]. In general, U-Net consists of a contracting path to cap-

ture context and of symmetrically expanding path. This en-

ables precise localization with skip connections added be-

tween blocks of the same size in the contracting and ex-

pansive parts. Skip connections allow information to flow

directly from the low level to high-level feature maps with-

out alternations that even further improve localization ac-

curacy and speed up convergence [17]. The contracting

path follows the typical architecture of a convolutional net-

work with alternating convolution and pooling operations

and progressively down samples feature maps, increasing

the number of feature maps per layer at the same time. Ev-

ery step in the expansive path consists of an upsampling of

the feature map followed by a series of convolution layers.

The output of the model is a pixel-by-pixel mask that out-

puts the class of each pixel.

As an improvement over the U-Net architecture, we

replace the encoder with a convolutional part of the

WideResNet-38 network with in-place activated batch nor-

malization [7] that was pre-trained on ImageNet. In-place

activated batch normalization merges batch normalization

layer with activation layers which lead to up to 50% mem-

ory savings. It allows to fit into the GPU memory larger

batches and work with the input images of the larger size. A

model based on this encoder showed state of the art perfor-

mance on semantic segmentation tasks for Mapillary Vistas

[16] and Cityscapes [8] datasets. Compared to the origi-

nal ResNet architecture [12], WideResnet uses layers with

a higher number of channels, while reducing the number of

layers. We use the first five convolutional blocks of the net-

work as an encoder. The decoder of our network consists of

five decoder blocks that are connected to the corresponding

encoder block of the same size. The transmitted block from

the encoder is concatenated to the corresponding decoder

block. Each decoder block contains two sets of 3x3 convo-

lutions, followed by ReLU activations [10] that is followed

by an upsampling layer that increases the size of the feature

map twice. To prevent artifacts at the edges of the predicted
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Figure 2. TernausNetV2: encoder-decoder network with skipped connections that has ABN WideResnet-38 as the encoder. As an input, we

have RGB + extra channels image. B1-B5 are the first five convolutional blocks of the base network that was pre-trained on the ImageNet.

At every step of the decoder block, we perform upsampling, followed by the series of the convolution layers. Skip connections are added

between convolution blocks in the encoder and the decoder of the corresponding size. In the end, 1x1 convolution is added to reduce the

number of channels to the desired two, one for the binary mask and another one for touching instances.

buildings, we use nearest neighbor upsampling that showed

the best result in our experiments. The output of the model

is a two-channel pixel-by-pixel image where the first chan-

nel contains a binary mask of the combined building foot-

print. The second channel contains building borders that are

attached to each other or separated by few pixels (see Fig.

1).

To allow the encoder that was pre-trained on RGB im-

ages to take 11 channels as an input (RGB + 8 multispec-

tral), we replace the first convolutional layer by a larger one.

So that, it takes 11 channel images as an input. We copy

weights of the original pre-trained WideResnet38 to the first

three channels and initialize the remaining channels by ze-

ros.

4. Training

The satellite imagery in the Spacenet dataset comes in an

11-bit format. In order to make pixel intensity distributions

closer to the usual RGB images, we perform min-max nor-

malization per channel (x− xmin)/(xmax − xmin). Then,

we normalize RGB part subtracting (0.485, 0.456, 0.406, 0,

0, 0, 0 , 0, 0, 0, 0) and dividing by (0.229, 0.224, 0.225, 1,

1, 1, 1, 1, 1, 1, 1) for each channel correspondingly.

During a training, to perform a smooth transition from

RGB to RGB + multi-spectral data we train our network

with the following schedule. At the first epoch, we freeze

all weights in the encoder, so that only weights in the de-

coder are trained. Because weights that correspond to the

extra layers are zero-initialized only RGB part of the in-

put is used during training. At the end of the first epoch,

decoder weights have meaningful with respect to the prob-

lem values. At the second epoch, we unfreeze all layers

and train it end to end. As a result, the network learns how

to go from three to a larger number of input channels in a

delicate, careful manner, slowly increasing weights of the

multi-spectral part of the input.

As an output of the network, we have an image with two

channels. These channels are independent, and both of them

need to predict binary masks. One for building footprints

and the second one for touching borders. As a loss function,

we use a combination of a binary cross entropy and a soft

Jaccard loss. This loss was inspired by [13] where authors

proposed a way to generalize discrete Jaccard index (also

known as intersection over union) into a differentiable form.

This allows the network to optimize the loss directly during

the training process.

The Jaccard index can be interpreted as a similarity mea-

sure between a finite number of sets. For two sets A and B,
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it can be defined as following:

J(A,B) =
|A ∩B|

|A ∪B|
=

|A ∩B|

|A|+ |B| − |A ∩B|
(1)

Since an image consists of pixels, the last expression can be

adapted for non-discrete objects in the following way:

J =
1

n

2
∑
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∑
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(
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i
ŷc
i
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i
+ ŷc

i
− yc

i
ŷc
i

)

(2)

where yc
i

and ŷc
i

are a binary values (label) and correspond-

ing predicted probability for the pixel i of the class c. For

simplicity, we choose w1 = w2 = 1.

An image segmentation task can also be considered as

a pixel classification problem. We additionally use com-

mon classification loss function for a binary cross entropy,

denoted as H that we apply independently to each output

channel.

The final expression for the generalized loss function is

obtained combining Eg. (2) and H as following:

L = αH − (1− α)(1− J) (3)

By minimizing this loss function, we simultaneously maxi-

mize predicted probabilities for the right class for each pixel

and maximize the intersection over union J between masks

and corresponding predictions. In our experiments we used

α = 0.7.

As an additional regularization, we apply extensive data

augmentation both spatial and in the color space. For spa-

tial augmentation we use a random re-size, randomly choos-

ing scale between 0.5 and 1.5 of the input image and mask.

We apply random rotations in the full (0, 360) range, us-

ing reflection padding if needed. From the resulting image

and mask, we crop random regions of the size 384x384 pix-

els. These images are subject to color transformations such

as random contrast/brightness and gamma corrections with

gamma coefficient randomly chosen between two discrete

values: 0.8 and 1.2. One video card GTX1080 Ti with 11

GB of memory allows using the batch size of 5 images. In

our case, we use 4 GTX1080 Ti and batch 20.

We train our network using Adam optimizer with learn-

ing rate 1e-4. The training is done for 800 epochs. At the

inference time, we make predictions on the whole image

padding it with 11 pixels on each side to the 672x672 size,

so that it would be divisible by 32 = 25 (5 is the num-

ber of max-pooling layers in the decoder that constrains the

allowed input sizes). After prediction is done the padded

regions is cropped.

The last step during the inference is to post process pre-

dicted binary masks and touching borders in such a way that

the binary mask is splitted into separate instances. To make

this, we subtract touching borders from the corresponding

mask to obtain seeds and use both masks and these newly

generated seeds as an input to the watershed transform. We

do not fine tune the model for different cities. We also do no

use bagging, checkpoint averaging, test time augmentations

or any other ensembling techniques in our solution. The end

to end process including network inference and watershed

transformation process ten samples per a second using one

GTX 1080 Ti.

5. Conclusions

We developed a model for satellite imagery building de-

tection. We used a fully convolutional neural network that

is traditionally used for semantic segmentation and added

additional output that adds instance segmentation function-

ality. As an encoder, we chose pre-trained on ImageNet

WideResnet-38 network with in-place activated batch nor-

malization that can generate good semantic features and it is

memory efficient at the same time. We also generalized this

pre-trained encoder and propose training schedule that al-

lows applying transfer learning from RGB to multi-spectral

data. Based on the public leaderboard score our model pro-

vides state of the art result with the score equal to 0.74.
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