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Abstract

The land cover classification task of the DeepGlobe
Challenge presents significant obstacles even to state of the
art segmentation models due to a small amount of data, in-
complete and sometimes incorrect labeling, and highly im-
balanced classes. In this work, we show an approach based
on the U-Net architecture with the Lovdsz-Softmax loss that
successfully alleviates these problems; we compare several
different convolutional architectures for U-Net encoders.

1. Introduction

This work is devoted to a segmentation model that we
have developed as part of the DeepGlobe Challenge pre-
sented at CVPR 2018 [2]. The DeepGlobe Challenge is de-
signed to advance state of the art techniques for processing
satellite imagery, a treasure trove of data that can yield many
exciting new applications in the nearest future.

In this work, we introduce a segmentation model for the
land cover classification task presented as part of the Deep-
Globe Challenge. The main components of our solution in-
clude the U-Net architecture commonly used for segmen-
tation, especially under lack of labeled data, and the re-
cently developed Lovasz-Softmax loss function specifically
designed to optimize the Jaccard index.

2. Related work

Deep learning models, which have revolutionized com-
puter vision over the last decade, have been recently ap-
plied to semantic segmentation in aerial and satellite im-
agery as well. Kampffmeyer et al. [|10] utilize two different
architectures: patch-based classification using 64 x 64 pixel
patches for dense segmentation and pixel-to-pixel segmen-
tation where convolutional layers in the contracting path
are followed by a fractional-strided convolutional layer that
learns to upsample the prediction back to the original image
size. Volpi et al. [|18]] propose full patch labeling by learned
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upsampling (CNN-FPL), a model architecturally similar to
U-Net [14] with the exception that they do not use skip
connections. Iglovikov et al. [6l/8] follow the classical U-
Net architecture with skip connections and more recent im-
provements like batch normalization and exponential linear
unit (ELU) as the primary activation function and use the
VGG-11 encoder in the contracting branch. Liu ef al. [12]
propose an hourglass-shaped network (HSN) with residual
connections, which is also very similar to the U-Net archi-
tecture.

In this work, we also follow the already classical U-Net
scheme which has produced state-of-the-art results in many
segmentation tasks. The novelty of this work comes from
our exploration of different state-of-the-art CNN encoders
in the Land Cover Classification task, using the Lovasz-
Softmax loss [ 1] for optimizing the Intersection-over-Union
(IoU) objective, applying the equibatch sampling method,
and the Stochastic Weight Averaging (SWA) procedure [9]]
for training.

3. Dataset and Evaluation Metric

Satellite imagery for the land cover classification task
has 50cm pixel resolution and has been collected by a Digi-
talGlobe’s satellite. The training dataset contains 803 satel-
lite images, each of size 2448 x 2448 pixels, in 24-bit JPEG
format. The validation dataset contains 171 satellite images.

Each satellite image in the training set is paired with a
mask image for land cover annotation. The mask is an RGB
image with |C| = 7 classes of labels, using color-coding (R,
G, B) as shown in Table[T]

As stated on the competition web site, the labels are far
from perfect. Many masks ignore terrain details and contain
only 2-3 colors. Incomplete and often inaccurate labelling
presented a significant barrier for model development and
evaluation; this is intended to bring the competition models
more in sync with real life demands.

The evaluation metric for the land cover competition is
the pixel-wise mean Intersection over Union (mloU), also
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Class Color | Description
1 | Urban land cyan man-made, built up areas with human ar-
tifacts
2 | Agriculture | yellow | farms, any planned (i.e. regular) planta-
land tion, cropland, orchards, vineyards, nurs-

eries, and ornamental horticultural areas;
confined feeding operations

3 | Rangeland | magenta | any non-forest, non-farm, green land,

grass
4 | Forest land green any land with tree crown density plus
clearcuts
5 | Water blue rivers, oceans, lakes, wetland, ponds
6 | Barren white mountain, land, rock, dessert, beach, no
land vegetation

0 | Unknown black clouds and others

Table 1. Descriptions of the seven classes in the dataset.

known as Jaccard Index:
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where TP, is the number of true positive pixels in class
c € C across the entire data set; FP ., number of false pos-
itive pixels in ¢; FN., number of false negative pixels in c.
mloU is computed by averaging over all classes except the
“Unknown” class which is not used in evaluation.

4. Methods
4.1. Model architecture and loss function

As a core approach for multi-class segmentation, we
have implemented the U-Net architecture [14] that has
proven its efficiency in many segmentation problems with
limited amount of data, including medical and satellite
imaginary tasks [6[15]]. Figure [I] shows a typical U-Net
architecture that consists of a contracting branch to cap-
ture the context and an expanding branch that enables pre-
cise localization for the segmentation masks. The contract-
ing branch implements a standard convolutional architec-
ture with alternating convolution and pooling operations
and progressively downsampled feature maps. Every step
in the expansive path performs upsampling of the current
feature map followed by a convolution, thus gradually in-
creasing the resolution of the output. In order to localize
upsampled features, the expansive branch combines them
with high-resolution features from the contracting branch
via skip-connections [14]. The output of the model is a 2-
dimensional softmax which assigns each pixel probability
to belong to each of the 7 classes.

We have evaluated various convolutional encoders in the
contracting branch of U-Net: a VGG-based [[16]] custom
architecture m46 previously developed for medical imag-
ing [7], Resnet-34 [5]l, and Inception Resnet V2 [17]. In
Resnet architectures, we introduced small but useful modi-

fications: ELU activations instead of ReLU and reversed or-
der of batch normalization and activation layers as proposed
in [[13]]. We used the He normal weight initialization [4]].

It is known that the categorical cross entropy CCE, while
convenient to train neural networks, does not directly trans-
late into mlIoU. Hence, as loss functions we used

L(w) = (1 - a)CCE(w) — aL'(w), (2)

a weighted sum of CCE and another loss L', comparing two
different variants of L’: soft Jaccard loss J
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where y;, is binary label for the class c for the pixel p. gy, is
predicted probability of the class ¢ for the pixel p, and n is
the number of pixels in the batch, and the Lovdsz-Softmax
loss LSL, a tractable surrogate for optimizing IoU []1]].

4.2. Preprocessing, training and mask generation

We preprocessed the input by rescaling 8-bit data
[0...255] into floating point numbers from [—1, 1], down-
scaled the image size by a factor of 2 or 4, cropped 288 x 288
patches from downscaled satellite images and correspond-
ing masks, and applied random color, gamma, and geomet-
rical augmentations. In some experiments we applied lo-
cal contrast normalization to the images; however, this did
not boost performance. We evaluated 4 scales: 1:1, 1:2,
1:4, and 1:8; 1:2 was best, as this resolution provides the
best tradeoff between image resolution and receptive fields
and depth of the model. Throughout the work we use the
batch size of 8. We implemented two schemes of sampling
the patches: (i) sampling every image randomly; (ii) the
equibatch method that accounts for class imbalances: since
mloU gives equal importance to every class, we sample
patches from the training set by cycling over the classes so
that each class is visited at least once every |C| patches; this
approach was proposed in [/1].

For training the models we implemented the recently
proposed Stochastic Weight Averaging (SWA) proce-
dure [9] that finds much broader optima than stochastic gra-
dient descent (SGD) by approximating the Fast Geometric
Ensembling (FGE) approach [3|] with a single model. SWA
is based on averaging the weights proposed by SGD using
exploration of the region in the weight space corresponding
to high-performing networks. We begin the SWA proce-
dure by conventional training with the Adam optimizer [11]]
for 100 epochs, starting with learning rate of 0.001 and de-
creasing it to 0.0001. Starting from epoch 101 we turn on
the cyclical learning rate schedule adopted from [3]]. In each
cycle we linearly decrease the learning rate from 0.0001 to
0.00001. We use cycle length of 6 epochs and complete
10 full cycles averaging model weights obtained in the end
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Figure 1. U-Net architecture with a ResNet-34 encoder.

of each cycle. In our experiments, SWA steadily increases
mloU of pre-trained models by 0.01-0.025; see Fig. [2] for
the plot of numerical results.

We predict the segmentation mask as follows: (i) down-
scale and normalize an image as above, (ii) crop it into mul-
tiple tiles of 288 x 288 pixels with a stride of | 28| = 57
pixels, (iii) predict the tiles, (iv) assemble them into a grid
and average the predictions, (v) upsample predicted mask to
original size 2448 x 2448, (vi) assign the class of every pixel
as arg max of the 7 class probability scores. Finally, we ap-
ply morphological postprocessing to remove small compo-
nents with area < 3500 pixels (found with cross-validation).
This improves the score only slightly but significantly en-
hances the visual appearance.

5. Results

Tables 2] and [B] show our results. In Table 2] we show
the results of the two sampling methods, unbalanced and
the equibatch method, which is evidently better across all
classes. Note that the largest performance improvement
with equibatch is for the 3rd class (“rangeland”), which
proved to be the most difficult to detect in this challenge.

Performance of different encoders and loss functions on
the local validation set are compared in Table 3] There is
no distinct leader, all mIoU scores are sufficiently close. In

particular, our smallest model, U-Net with the m46 encoder
trained with Jaccard loss, performs even slightly better
than big models despite much fewer parameters. With the
Lovasz-Softmax loss, Resnet-34 outperforms other models
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Figure 2. Validation mloU as a function of training epoch for de-
caying (green) learning rate schedule. In red we average the points
along the trajectory of SGD with cyclical learning rate starting at
epoch 101.
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Figure 3. Sample segmentation results, left to right: original image, ground truth, predicted mask.

| Cass| 1 [ 2 [ 3 [ 4560 ]
Equibatch 0.76 | 0.84 | 0.29 | 0.79 | 0.63 | 0.53 | 0.07
Unbalanced | 0.74 | 0.79 | 0.02 | 0.75 | 0.52 | 0.41 | 0.02

Table 2. mloU on the local validation set for 2 sampling methods:
Equibatch vs. unbalanced sampling.

’ U-Net encoder \ # params \ Jaccard \ Lovasz ‘

m46 IM 0.624 0.619
Resnet-34 25M 0.615 0.641
Inception Resnet v2 61M 0.604 0.573

Table 3. mIoU on local validation for different encoders and loss
functions, see eq. 2] B

but, again, not by much. Inferior performance of Inception
Resnet v2, the largest model in our comparison with 60M
parameters, can be explained by incomplete convergence on
noisy labels. We believe that similar performance of such a
different encoders and loss functions suggests that the limit-
ing factors in this contest were mostly related to data label-
ing rather than model architecture or loss functions. For the
final ensemble we selected the 5 best performing models:
two based on m46 and three on Resnet-34; two of the mod-
els were trained with the Lovasz-Softmax loss, and three
with Jaccard loss. The mloU of this ensemble is 0.648, im-
proved to 0.649 by morphological postprocessing.

Figure [3] shows a sample segmentation result of our
model together with the ground truth segmentation mask.
We see that the segmentation quality is good enough,
but there is uncertainty between agriculture land (yellow),
rangeland (magenta), and forest (green); note that the model
correctly identified barren land (white) in the left part of the
image, while the labeler marked it as rangeland (magenta).
These observations are also supported by the confusion ma-
trix between classes for our best model, shown on Figure@

6. Conclusions

In this work, we have presented an approach to land
cover classification for satellite imagery based on the stan-
dard U-Net architecture. In our opinion, the features of our
solution that most significantly contributed to the overall
segmentation quality include: (i) the m46 encoder architec-
ture designed to overcome lack of data, (ii) the equibatch
sampling method that helps combat class imbalances, and,
most importantly, (iii) the Lovasz-Softmax loss function
specifically designed to optimize IoU-based metrics. We
believe that the very recently developed Lovasz-Softmax
loss will play an important role in state of the art seg-
mentation models, and we view our solution as a step in
this direction.
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Figure 4. Normalized confusion matrix.
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