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Abstract

The land cover classification task of the DeepGlobe

Challenge presents significant obstacles even to state of the

art segmentation models due to a small amount of data, in-

complete and sometimes incorrect labeling, and highly im-

balanced classes. In this work, we show an approach based

on the U-Net architecture with the Lovász-Softmax loss that

successfully alleviates these problems; we compare several

different convolutional architectures for U-Net encoders.

1. Introduction

This work is devoted to a segmentation model that we

have developed as part of the DeepGlobe Challenge pre-

sented at CVPR 2018 [2]. The DeepGlobe Challenge is de-

signed to advance state of the art techniques for processing

satellite imagery, a treasure trove of data that can yield many

exciting new applications in the nearest future.

In this work, we introduce a segmentation model for the

land cover classification task presented as part of the Deep-

Globe Challenge. The main components of our solution in-

clude the U-Net architecture commonly used for segmen-

tation, especially under lack of labeled data, and the re-

cently developed Lovász-Softmax loss function specifically

designed to optimize the Jaccard index.

2. Related work

Deep learning models, which have revolutionized com-

puter vision over the last decade, have been recently ap-

plied to semantic segmentation in aerial and satellite im-

agery as well. Kampffmeyer et al. [10] utilize two different

architectures: patch-based classification using 64×64 pixel

patches for dense segmentation and pixel-to-pixel segmen-

tation where convolutional layers in the contracting path

are followed by a fractional-strided convolutional layer that

learns to upsample the prediction back to the original image

size. Volpi et al. [18] propose full patch labeling by learned

upsampling (CNN-FPL), a model architecturally similar to

U-Net [14] with the exception that they do not use skip

connections. Iglovikov et al. [6, 8] follow the classical U-

Net architecture with skip connections and more recent im-

provements like batch normalization and exponential linear

unit (ELU) as the primary activation function and use the

VGG-11 encoder in the contracting branch. Liu et al. [12]

propose an hourglass-shaped network (HSN) with residual

connections, which is also very similar to the U-Net archi-

tecture.

In this work, we also follow the already classical U-Net

scheme which has produced state-of-the-art results in many

segmentation tasks. The novelty of this work comes from

our exploration of different state-of-the-art CNN encoders

in the Land Cover Classification task, using the Lovász-

Softmax loss [1] for optimizing the Intersection-over-Union

(IoU) objective, applying the equibatch sampling method,

and the Stochastic Weight Averaging (SWA) procedure [9]

for training.

3. Dataset and Evaluation Metric

Satellite imagery for the land cover classification task

has 50cm pixel resolution and has been collected by a Digi-

talGlobe’s satellite. The training dataset contains 803 satel-

lite images, each of size 2448×2448 pixels, in 24-bit JPEG

format. The validation dataset contains 171 satellite images.

Each satellite image in the training set is paired with a

mask image for land cover annotation. The mask is an RGB

image with |C| = 7 classes of labels, using color-coding (R,

G, B) as shown in Table 1.

As stated on the competition web site, the labels are far

from perfect. Many masks ignore terrain details and contain

only 2-3 colors. Incomplete and often inaccurate labelling

presented a significant barrier for model development and

evaluation; this is intended to bring the competition models

more in sync with real life demands.

The evaluation metric for the land cover competition is

the pixel-wise mean Intersection over Union (mIoU), also
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Class Color Description

1 Urban land cyan man-made, built up areas with human ar-

tifacts

2 Agriculture

land

yellow farms, any planned (i.e. regular) planta-

tion, cropland, orchards, vineyards, nurs-

eries, and ornamental horticultural areas;

confined feeding operations

3 Rangeland magenta any non-forest, non-farm, green land,

grass

4 Forest land green any land with tree crown density plus

clearcuts

5 Water blue rivers, oceans, lakes, wetland, ponds

6 Barren

land

white mountain, land, rock, dessert, beach, no

vegetation

0 Unknown black clouds and others

Table 1. Descriptions of the seven classes in the dataset.

known as Jaccard Index:

mIoU =
1

6

6
∑

c=1

IoUc, IoUc =
TPc

TPc + FPc + FNc

, (1)

where TPc is the number of true positive pixels in class

c ∈ C across the entire data set; FPc, number of false pos-

itive pixels in c; FNc, number of false negative pixels in c.

mIoU is computed by averaging over all classes except the

“Unknown” class which is not used in evaluation.

4. Methods

4.1. Model architecture and loss function

As a core approach for multi-class segmentation, we

have implemented the U-Net architecture [14] that has

proven its efficiency in many segmentation problems with

limited amount of data, including medical and satellite

imaginary tasks [6, 15]. Figure 1 shows a typical U-Net

architecture that consists of a contracting branch to cap-

ture the context and an expanding branch that enables pre-

cise localization for the segmentation masks. The contract-

ing branch implements a standard convolutional architec-

ture with alternating convolution and pooling operations

and progressively downsampled feature maps. Every step

in the expansive path performs upsampling of the current

feature map followed by a convolution, thus gradually in-

creasing the resolution of the output. In order to localize

upsampled features, the expansive branch combines them

with high-resolution features from the contracting branch

via skip-connections [14]. The output of the model is a 2-

dimensional softmax which assigns each pixel probability

to belong to each of the 7 classes.

We have evaluated various convolutional encoders in the

contracting branch of U-Net: a VGG-based [16] custom

architecture m46 previously developed for medical imag-

ing [7], Resnet-34 [5], and Inception Resnet V2 [17]. In

Resnet architectures, we introduced small but useful modi-

fications: ELU activations instead of ReLU and reversed or-

der of batch normalization and activation layers as proposed

in [13]. We used the He normal weight initialization [4].

It is known that the categorical cross entropy CCE, while

convenient to train neural networks, does not directly trans-

late into mIoU. Hence, as loss functions we used

L(w) = (1− α)CCE(w)− αL′(w), (2)

a weighted sum of CCE and another loss L′, comparing two

different variants of L′: soft Jaccard loss J

J =
1

6n

6
∑

c=1

n
∑

p=1

(

yc
p
ŷc
p

yc
p
+ ŷc

p
− yc

p
ŷc
p

)

, (3)

where yc
p

is binary label for the class c for the pixel p. ŷc
p

is

predicted probability of the class c for the pixel p, and n is

the number of pixels in the batch, and the Lovász-Softmax

loss LSL, a tractable surrogate for optimizing IoU [1].

4.2. Preprocessing, training and mask generation

We preprocessed the input by rescaling 8-bit data

[0...255] into floating point numbers from [−1, 1], down-

scaled the image size by a factor of 2 or 4, cropped 288×288
patches from downscaled satellite images and correspond-

ing masks, and applied random color, gamma, and geomet-

rical augmentations. In some experiments we applied lo-

cal contrast normalization to the images; however, this did

not boost performance. We evaluated 4 scales: 1:1, 1:2,

1:4, and 1:8; 1:2 was best, as this resolution provides the

best tradeoff between image resolution and receptive fields

and depth of the model. Throughout the work we use the

batch size of 8. We implemented two schemes of sampling

the patches: (i) sampling every image randomly; (ii) the

equibatch method that accounts for class imbalances: since

mIoU gives equal importance to every class, we sample

patches from the training set by cycling over the classes so

that each class is visited at least once every |C| patches; this

approach was proposed in [1].

For training the models we implemented the recently

proposed Stochastic Weight Averaging (SWA) proce-

dure [9] that finds much broader optima than stochastic gra-

dient descent (SGD) by approximating the Fast Geometric

Ensembling (FGE) approach [3] with a single model. SWA

is based on averaging the weights proposed by SGD using

exploration of the region in the weight space corresponding

to high-performing networks. We begin the SWA proce-

dure by conventional training with the Adam optimizer [11]

for 100 epochs, starting with learning rate of 0.001 and de-

creasing it to 0.0001. Starting from epoch 101 we turn on

the cyclical learning rate schedule adopted from [3]. In each

cycle we linearly decrease the learning rate from 0.0001 to

0.00001. We use cycle length of 6 epochs and complete

10 full cycles averaging model weights obtained in the end
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Figure 1. U-Net architecture with a ResNet-34 encoder.

of each cycle. In our experiments, SWA steadily increases

mIoU of pre-trained models by 0.01-0.025; see Fig. 2 for

the plot of numerical results.

We predict the segmentation mask as follows: (i) down-

scale and normalize an image as above, (ii) crop it into mul-

tiple tiles of 288 × 288 pixels with a stride of
⌊

288

5

⌋

= 57
pixels, (iii) predict the tiles, (iv) assemble them into a grid

and average the predictions, (v) upsample predicted mask to

original size 2448×2448, (vi) assign the class of every pixel

as argmax of the 7 class probability scores. Finally, we ap-

ply morphological postprocessing to remove small compo-

nents with area < 3500 pixels (found with cross-validation).

This improves the score only slightly but significantly en-

hances the visual appearance.

5. Results

Tables 2 and 3 show our results. In Table 2 we show

the results of the two sampling methods, unbalanced and

the equibatch method, which is evidently better across all

classes. Note that the largest performance improvement

with equibatch is for the 3rd class (“rangeland”), which

proved to be the most difficult to detect in this challenge.

Performance of different encoders and loss functions on

the local validation set are compared in Table 3. There is

no distinct leader, all mIoU scores are sufficiently close. In

particular, our smallest model, U-Net with the m46 encoder

trained with Jaccard loss, performs even slightly better

than big models despite much fewer parameters. With the

Lovász-Softmax loss, Resnet-34 outperforms other models

Figure 2. Validation mIoU as a function of training epoch for de-

caying (green) learning rate schedule. In red we average the points

along the trajectory of SGD with cyclical learning rate starting at

epoch 101.
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Figure 3. Sample segmentation results, left to right: original image, ground truth, predicted mask.

Class 1 2 3 4 5 6 0

Equibatch 0.76 0.84 0.29 0.79 0.63 0.53 0.07

Unbalanced 0.74 0.79 0.02 0.75 0.52 0.41 0.02

Table 2. mIoU on the local validation set for 2 sampling methods:

Equibatch vs. unbalanced sampling.

U-Net encoder # params Jaccard Lovasz

m46 1M 0.624 0.619

Resnet-34 25M 0.615 0.641

Inception Resnet v2 61M 0.604 0.573

Table 3. mIoU on local validation for different encoders and loss

functions, see eq. 2, 3.

but, again, not by much. Inferior performance of Inception

Resnet v2, the largest model in our comparison with 60M

parameters, can be explained by incomplete convergence on

noisy labels. We believe that similar performance of such a

different encoders and loss functions suggests that the limit-

ing factors in this contest were mostly related to data label-

ing rather than model architecture or loss functions. For the

final ensemble we selected the 5 best performing models:

two based on m46 and three on Resnet-34; two of the mod-

els were trained with the Lovász-Softmax loss, and three

with Jaccard loss. The mIoU of this ensemble is 0.648, im-

proved to 0.649 by morphological postprocessing.

Figure 3 shows a sample segmentation result of our

model together with the ground truth segmentation mask.

We see that the segmentation quality is good enough,

but there is uncertainty between agriculture land (yellow),

rangeland (magenta), and forest (green); note that the model

correctly identified barren land (white) in the left part of the

image, while the labeler marked it as rangeland (magenta).

These observations are also supported by the confusion ma-

trix between classes for our best model, shown on Figure 4.

6. Conclusions

In this work, we have presented an approach to land

cover classification for satellite imagery based on the stan-

dard U-Net architecture. In our opinion, the features of our

solution that most significantly contributed to the overall

segmentation quality include: (i) the m46 encoder architec-

ture designed to overcome lack of data, (ii) the equibatch

sampling method that helps combat class imbalances, and,

most importantly, (iii) the Lovász-Softmax loss function

specifically designed to optimize IoU-based metrics. We

believe that the very recently developed Lovász-Softmax

loss [1] will play an important role in state of the art seg-

mentation models, and we view our solution as a step in

this direction.

Figure 4. Normalized confusion matrix.
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