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Abstract

Road extraction is a fundamental task in the field of re-

mote sensing which has been a hot research topic in the past

decade. In this paper, we propose a semantic segmentation

neural network, named D-LinkNet, which adopts encoder-

decoder structure, dilated convolution and pretrained en-

coder for road extraction task. The network is built with

LinkNet architecture and has dilated convolution layers in

its center part. Linknet architecture is efficient in computa-

tion and memory. Dilation convolution is a powerful tool

that can enlarge the receptive field of feature points without

reducing the resolution of the feature maps. In the CVPR

DeepGlobe 2018 Road Extraction Challenge, our best IoU

scores on the validation set and the test set are 0.6466 and

0.6342 respectively.

1. Introduction

Road extraction from satellite images has been a hot re-

search topic in the past decade. It has a wide range of

applications such as automated crisis response, road map

updating, city planning, geographic information updating,

car navigations, etc. In the field of satellite image road ex-

traction, a variety of methods have been proposed in recent

years. Most of these methods can be seperated into three

categories: generating pixel-level labeling of roads [1, 2],

detecting skeletons of roads [3, 4] and a combination of

both [5, 6].

In the DeepGlobe Road Extraction Challenge [7], the

task of road extraction from satellite images was formu-

lated as a binary classification problem: to label each pixel

as road or non-road. In this paper, we handling the road

extraction task as a binary semantic segmentation task to

generate pixel-level labeling of roads,.

Recently, deep convolutional neural networks

(DCNN) [8, 9, 10, 11] have shown their dominance

on many visual recognition tasks. In the field of im-

age semantic segmentation, fully-convolutional network

(FCN) [12] architecture, which can produce a segmentation

map for an entire input image through single forward pass,

is prevalent. Most latest excellent semantic segmentation

networks [13, 14, 15, 16] are improved versions of FCN.

Several previous works have applied deep learning to

road segmentation task. Mnih and Hinton [17] employed

restricted Boltzmann machines to segment road from high

resolution aerial images. Saito et al. [18] used a classi-

fication network to assign each patch extracted from the

whole image as road, building or background. Zhang et

al. [1] followed the FCN architecture and employed a Unet

with residual connections to segment roads from one image

through single forward pass. In this paper, we follow these

methods, using DCNN to handle road segmentation task.

Although has been extensively studied in the past years,

road segmentation from high resolution satellite images is

still a challenging task due to some special features of the

task. First, the input images are of high-resolution, so net-

works for this task should have large receptive field that can

cover the whole image. Second, roads in satellite images

are often slender, complex and cover a small part of the

whole image. In this case, preserving the detailed spacial

information is significant. Third, roads have natural con-

nectivity and long span. Taking these natural properties of

roads in consideration is necessary. Based on the challenges

discussed above, we propose a semantic segmentation net-

work, named D-LinkNet, which can properly handle these

challenges.

D-LinkNet uses Linknet [15] with pretrained encoder as

its backbone and has additional dilated convolution layers in

the center part. Linknet is an efficient semantic segmenta-

tion neural network which takes the advantages of skip con-

nections, residual blocks [10] and encoder-decoder archi-

tecture. The original Linknet uses ResNet18 as its encoder,

which is a pretty light but outperforming network. Linknet

has shown high precision on several benchmarks [19, 20],

and it runs pretty fast.

Dilated convolution is a useful kernel to adjust recep-

tive fields of feature points without decreasing the resolu-

tion of feature maps. It was widely used recently, and it
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Figure 1. D-LinkNet architecture. Each blue rectangular block represents a multi-channel features map. Part A is the encoder of D-LinkNet.

D-LinkNet uses ResNet34 as encoder. Part C is the decoder of D-LinkNet, it is set the same as LinkNet decoder. Original LinkNet only

has Part A and Part C. D-LinkNet has an additional Part B which can enlarge the receptive field and as well as preserve the detailed spatial

information. Each convolution layer is followed by a ReLU activation except the last convolution layer which use sigmoid activation.

generally has two types, cascade mode like [21] and paral-

lel mode like [16], both modes have shown strong ability

to increase the segmentation accuracy. We take advatages

of both modes, using shortcut connection to combine these

two modes.

Transfer learning is a useful method that can directly im-

prove network preformance in most situation [22], especiall

when the training data is limited. In semantic segmantation

field, initializing encoders with ImageNet [23] pretrained

weights has shown promissing results [16, 24].

In the DeepGlobe Road Extraction Challenge, our best

single model got IoU score of 0.6412 on the validation set.

2. Method

2.1. Network Architecture

In the DeepGlobe Road Extraction Challenge, the origi-

nal size of the provided images and masks is 1024 × 1024,

and the roads in most images span the whole image. Still,

roads have some natural properties such as connectivity,

complexity et al. Considering these properties, D-LinkNet

is designed to receive 1024×1024 images as input and pre-

serve detailed spacial information. As shown in Figure 1,

D-LinkNet can be split in three parts A, B, C, named en-

coder, center part and decoder respectively.

D-LinkNet uses ResNet34 [10] pretrained on Ima-

geNet [23] dataset as its encoder. ResNet34 is originally

designed for classification task on mid-resolution images of

size 256 × 256, but in this challenge, the task is to seg-

ment roads from high-resolution satellite images of size

1024 × 1024. Considering the narrowness, connectivity,

complexity and long span of roads, it is important to in-

crease the receptive field of feature points in the center part

of the network as well as keep the detailed information.

Using pooling layers could multiply increase the receptive

field of feature points, but may reduce the resolution of cen-

ter feature maps and drop spacial information. As shown by

some state-of-the-art deep learning models [21, 25, 26, 16],
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Figure 2. The center dilation part of D-LinkNet can be unrolled as

this structure. It contains dilated convolution both in cascade mode

and parallel mode, and the receptive field of each path is different,

so the network can combine features from different scales. From

top to bottom, the receptive fields are 31, 15, 7, 3, 1 respectively.

dilated convolution layer can be desirable alternative of

pooling layer. D-LinkNet uses several dilated convolution

layers with skip connections in the center part.

Dilated convolution can be stacked in cascade mode. As

shown in the Figure1 of [21], if the dilation rates of the

stacked dilated convolution layers are 1, 2, 4, 8, 16 respec-

tively, then the receptive field of each layer will be 3, 7, 15,

31, 63. The encoder part (RseNet34) has 5 downsampling

layers, if an image of size 1024 × 1024 go through the en-

coder part, the output feature map will be of size 32 × 32.

In this case, D-LinkNet uses dilated convolution layers with

dilation rate of 1, 2, 4, 8 in the center part, so the feature

points on the last center layer will see 31 × 31 points on

the first center feature map, covering main part of the first

center feature map. Still, D-LinkNet takes the advantage of

multi-resolution features, and the center part of D-LinkNet

can be viewed as the parallel mode as shown in Figure 2.

The decoder of D-LinkNet remains the same as the orig-

inal LinkNet [15], which is computationally efficient. The

decoder part uses transposed convolution [27] layers to do

upsampling, restoring the resolution of feature map from

32× 32 to 1024× 1024.

2.2. Pretrained Encoder

Transfer learning is an efficient method for computer vi-

sion, especially when the number of training images is lim-

ited. Using ImageNet [23] pretrained model to be the en-

coder of the network is a method widely used in semantic

segmentation field [16, 24]. In the DeepGlobe Road Ex-

traction Challenge, we found that transfer learning can ac-

celerate our network convergence and make it have better

performance with almost no extra cost.

3. Experiments

In the DeepGlobe Road Extraction Challenge. We use

PyTorch [28] as the deep learning framework. All models

are trained on 4 NVIDIA GTX1080 GPUs.

3.1. Dataset

We test our method on DeepGlobe Road Extraction

dataset [7], which consists of 6226 training images, 1243

validation images and 1101 test images. The resolution of

each image is 1024 × 1024. The dataset is formulated as a

binary segmentation problem, in which roads are labeled as

foreground and other objects are labeled as background.

3.2. Implementation details

In the training phase, we did not use cross validation1.

Still, we wanted to make full use of the provided data, so

we trained our model on all of the 6226 labeled images, and

only used the 1243 validation images provided by the orga-

nizer for validation. This may be at the risk of overfiting

on the training set, so we did data augmentation in an am-

bitious way, including horizontal flip, vertical flip, diagonal

flip, ambitious color jittering, image shifting, scaling.

For our best model, we used BCE (binary cross entropy)

+ dice coefficient loss as loss function and chose Adam [29]

as our optimizer. The learning rate was originally set 2e-4,

and reduced by 5 for 3 times while observing the training

loss decreasing slowly. The batch size during training phase

was fixed as 4. It took about 160 epochs for our network to

converge.

We did test time augmentation(TTA) in the predicting

phase, including image horizontal flip, image vertical flip,

image diagonal flip (predicting each image 2 × 2 × 2 = 8

times), and then restored the outputs to the match the ori-

gin images. Then, we averaged the prob of each prediction,

using 0.5 as our prediction threshold to generate binary out-

puts.

3.3. Results

During the DeepGlobe Road Extraction Challenge, we

trained a deep Unet with 7 pooling layers, which can cover

images of size 1024 × 1024, as our baseline model, and

trained a LinkNet34 with pretrained encoder but without

dilated convolution in the center part. The performances

of different model are shown in Table 1. We found that

the pretrained LinkNet34 was just a little bit better than the

Unet trained from scratch. We evaluated the IoU of masks

predicted by Unet and masks predicted by LinkNet34, and

1It took about 40 hours for us to train one model, if we train models with

5-fold cross validation, it will take us 200 hours to try one architecture (too

long for us), so we just dropped cross validation.
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Model IoU on validation set

Unet (7 pooling layers, no-pretrain) 0.6294

LinkNet34 (pretrained encoder) 0.6300

Ensemble of Unet and LinkNet34 0.6394

D-LinkNet (pretrained encoder) 0.6412

Table 1. Results on validation set of different models in the Deep-

Globe Road Extraction Challenge. LinkNet34 with pretrained en-

coder got almost the same score as Unet on the validation set.

D-LinkNet get higher score than the Ensembling of Unet and

LinkNet34 on the validation set.

Unet LinkNet34 D-LinkNet34 Input 

Figure 3. Example results of three models. The first two lines are

examples showing the road connectivity problem in LinkNet34.

There are several road interruptions in LinkNet34 results. The

last two lines are examples showing the incorrection predicting

of Unet. Unet is more likely to wrongly recognize roads as back-

ground or recognize something non-road like rivers as roads. D-

LinkNet avoids weaknesses in Unet and LinkNet34, and makes

better predictions.

found that on the validation set, the averaged IoU of these

two models was 0.785, which we considered as a pretty

low score. We thought these two models might get almost

the same score in different ways. Our baseline Unet had

larger receptive field but had no pretrained encoder and the

center feature map’s resolution was 8 × 8, which is too

small to preserve detailed spacial information. LinkNet34

had pretrained encoder which made the network has bet-

ter representation, but it only had 5 downsampling layers,

hardly covering the 1024 × 1024 images. While reviewing

the outputs from these two models, we found that although

LinkNet34 was better than Unet while judging an object to

be road or not, it had road connectivity problem. Some ex-

amples are shown in Figure 3. By adding dilated convolu-

tion with shortcuts in the center part, D-LinkNet can obtain

larger receptive field than LinkNet as well as preserve de-

tailed information at the same time, and thus alleviated the

road connectivity problem occurred in LinkNet34.

3.4. Analysis

We used several methods during the DeepGlobe Road

Extraction Challenge, and we have done several experi-

ments to find the contribution of each method. The most

contributing method is test time augmentation(TTA), it con-

tributes about 0.029 points. Using BCE + dice coefficient

loss is better than BCE + IoU loss about 0.005 points. Pre-

trained encoder contributes about 0.01 points. Dilated con-

volution in the center part contributes about 0.011 points.

Ambitious data augmentation is better than normal data

augmentation without color jittering and shape transfroma-

tion about 0.01 points.

4. Conclusion

In this paper, we have proposed a semantic segmenta-

tion network, named D-LinkNet, for high resolution satel-

lite imagery road extraction. By enlarging the receptive

field and ensembling multi-scale features in the center part

while keeping the detailed information at the same time,

D-LinkNet can handle roads’ properties such as narrow-

ness, connectivity, complexity and long span to some ex-

tent. However, D-LinkNet still has the wrong recognition

and road connectivity problems, we plan to do more re-

search on these problems in the feature.

In addition, although the proposed D-LinkNet architec-

ture was originally designed for the road segmentation task,

we anticipate it may also be useful in other segmentation

tasks, and we plan to investigate this in our future research.
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