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Abstract

Several recent efforts in computer vision indicate a trend

toward studying and understanding problems in larger

scale environments, beyond single images, and focus on

connections to tasks in navigation, mobile manipulation,

and visual question answering. A common goal of these

tasks is the capability of moving in the environment, acquir-

ing novel views during perception and while performing

a task. This capability comes easily in synthetic environ-

ments, however achieving the same effect with real images

is much more laborious. We propose using the existing Ac-

tive Vision Dataset to form a benchmark for such problems

in a real-world settings with real images. The dataset is well

suited for evaluating tasks of multiview active recognition,

target driven navigation, and target search, and also can

be effective for studying the transfer of strategies learned in

simulation to real settings.

1. Introduction

Vision is a key capability for robots to operate success-

fully in the everyday world around us, but necessary capa-

bilities are not stressed in previous computer vision datasets

and benchmarks. For instance, despite how central motion

is to robotics, current state-of-the-art object detection ap-

proaches in computer vision [13, 12, 10], operate indepen-

dently on each input image, at least in part because this

is how datasets and benchmarks (e.g., ImageNet[14] and

COCO[11]) are designed.

There is a new crop of datasets of environments and APIs

for training and testing visual perception approaches that

can be helpful for robotics [22, 9, 15, 19, 20, 5]. These

are designed to allow studying navigation, mobile manipu-

lation, and visual question answering. The common struc-

ture of these APIs allows agents to move in, and sometimes

interact with, an environment and then returns a new view

of the environment. While this capability comes easily for

synthetic environments, achieving the same functionality

with real images is more challenging.

We build a new benchmark based on the Active Vision

Dataset [1] to stress visual navigation and few-shot object

detection in real world scenes. The main advantage of the

Active Vision Dataset is that it is made up of real captured

images (and depth maps) of real scenes, thus stressing as-

pects of approaches that computer graphics based evalua-

tion may not.

The Active Vision Dataset consists of very dense col-

lections of RGB-D imagery of real-world scenes in order to

allow simulating a robot moving through an environment

by simply sampling the appropriate captured view. The

dataset includes everyday rooms: kitchens, living rooms,

dining rooms, offices, bathrooms, etc. A common set of

manipulable objects encountered in research on manipula-

tion (BigBird[16]) are placed in each scanned scene, and

these are labeled with bounding boxes. The data for a typ-

ical room will include thousands of RGB-D images, and

thousands of object bounding boxes for a few dozen ob-

jects. The views are organized by camera position, so that

an API can allow an agent to specify a relative motion in

the scene and properly select the next view that is seen (e.g.

what would I see if I turned right? went backwards?). More

details can be found in [1].

The Active Vision Dataset attempts to address sev-

eral difficulties in studying object detection and recog-

nition relevant to robotics applications. Generally work

on this area in the past suffered from the lack of realistic

benchmarks which would enable comparisons of different

approaches. Approaches were tested on robotic platforms

with wide variations in the environments and objects en-

countered, making direct comparisons difficult. AVD al-

lows approaches to be compared on exactly the same en-

vironment. More recently shared CG-based environments

that do allow comparison, do not provide the variability of

real images of scenes (with some exceptions for panoramic

datasets, e.g. [8]). Very recent datasets including those

based on Matterport3D[4] do use real imagery, but sample

camera positions somewhat sparsely requiring interpolation

(image-base rendering) between recorded views, again in-

troducing artifacts. AVD provides a denser set of views that

does not require interpolation.

Taking a step back to compare the state of work on ma-
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nipulation, where repeatability is addressed by considering

standard datasets of objects to be manipulated and distribut-

ing the physical objects to different groups. The underlying

vision tasks include segmentation, object instance recogni-

tion, and pose recovery in clutter and these are exhibited in

some recent challenges [21, 16, 3, 7]. These however do not

exhibit the large variations in scale, viewpoint, and back-

ground clutter encountered in mobile manipulation prob-

lems, where the camera position relative to objects can vary

more widely as the robot platform moves, and which require

detection of, and navigation to, objects of interest.

2. Related work

There has been a recent influx of datasets focusing on

active vision tasks, where visual observations are consid-

ered jointly with some control/action authority. The exist-

ing datasets vary in the level of visual realism they provide,

their scale, the type of modalities they can simulate and abil-

ity of agents to interact in the world. They can be broadly

partitioned into CG synthetic worlds derived from the orig-

inal SUNCG [17] dataset or datasets derived from scans of

the real world [4].

The MINOS [15] environment is a synthetic environ-

ment which contains both synthetic scenes from SUNCG

(with over 45,000 scenes) and meshes of reconstructed

scenes from the Matterport3D dataset [4] (with 90 multi-

floor houses). While the scale of the dataset is appealing,

the quality of the visual observations is limited to either

synthetic renderings of SUNCG scenes or renderings of re-

constructed meshes, which suffer from many reconstruction

artifacts affecting the visual observations. Additional sens-

ing modalities of depth, plane normals and semantic seg-

mentation and capability of arbitrary viewpoints and con-

tinuous motion are enabled by the dataset. House3D [19] is

also a fully simulated large scale environment derived from

SUNCG and enables visual observations as rendered views

along with depth and semantic segmentation.

Matterport3D [4] is a large-scale RGB-D dataset con-

taining 10,800 panoramic views about 1-1.5m apart with

surface reconstructions, camera poses, and 2D and 3D se-

mantic segmentation annotations. The scale and visual re-

alism of the data is impressive, but the poses where high

resolution panoramas as available are quite sparse. Views

generated outside of the panorama grid are obtained by ren-

dering mesh reconstructions and have notable artifacts.

Efforts to eliminate some of the reconstruction artifacts

have been tackled recently by [20] which used a novel

image-based rendering approach to eliminate some of the

visual artifacts. The resulting rendered views while free of

some artifacts are still quite blurry.

The AI2-THOR [9] environment also falls into the cat-

egory of CG synthetic environments allowing continuous

and discrete motion and near photo-realistic 3D indoor

scenes. The API for this environment does not provide ac-

cess to other modalities and the initial scale of the environ-

ments is smaller than other synthetic datasets (2-3 bedroom

houses compared to multi-story buildings provided by Mat-

terport3D and SUNCG). Another effort at a simulated world

is [18]

The tasks studied in the context of these datasets and

environments include navigation [6], target driven naviga-

tion [22], visual question answering [5], and planning [2].

While it can make sense to study each of these in both com-

pletely artificial environments as well as real scenes, using

real imagery allows probing aspects of visual perception

that might overfit or otherwise yield unrealistic performance

on CG data.

3. Active Vision Dataset Benchmark (AVDB)

The goal of AVDB is to help develop and compare ap-

proaches to vision problems that are relevant for robotics

on a repeatable real-world environment. For each task, a

training set, validation set, and test set from AVD is speci-

fied, and the testing methodology fixed. In some cases ad-

ditional training data from outside sources will be expected.

While the dataset can be used for benchmarking straight-

forward vision tasks like detection, we focus on exploring

tasks involving active vision, transfer learning, and class-

incremental learning.

For the benchmark we have augmented the original AVD

collection with 7 new scans of scenes to be used in testing.

Collectively these new scans account for over 9,000 images

and 18,000 bounding boxes. We will release the images and

movement pointers for these scenes, but will keep the labels

private for the benchmark evaluation.

3.1. Task: Active Object Search

The goal of the first task in AVDB, Active Object Search,

is to localize and navigate towards pre-specified objects of

interest. Each training and validation episode starts at a ran-

dom starting position in a random scene with a random tar-

get object. The episode is declared as success when the

navigation strategy stops at a location within <1m of the

object and the object is visible in the image at that location.

For each scene/object pair in the test set, we have randomly

chosen a fixed set of starting positions (location + direc-

tion). This provides a large test sample while keeping the

starting positions consistent for every evaluation, allowing

fair comparisons. Systems will be evaluated based on the

average number of steps needed to achieve success for each

scene/object pair, with an upper bound. We provide an Ope-

nAI Gym style environment that can be used with the AVD

data for training and testing on this task.

Within this Active Object Search task, we define three

specific train/test scenarios.

2160



3.1.1 Known Environment

As described in [1], some of the scenes in AVD are scanned

twice. In the second scan some objects are moved around,

some are removed completely, and some new objects are

introduced. In this task, the system is given the first scan

of a scene during training, and is tested only on the second

scan of that scene.

The training set consists of the first scan of the scene of

interest, and optionally any other scans from AVD or other

datasets. The test set is the second scan of the scene of

interest, with a set of starting positions for each object as

described above. We have three ”second” scans of scenes in

our new test data, the first scans have already been publicly

released. It is expected that a different model will be used

for each test scene as this task is environment specific, and

the final evaluation metric will be averaged over these three

scenes.

For validation style data, there exist five scenes in AVD

currently that have two scans. We recommend a system be

evaluated using each of these scenes as the scene of interest,

one at a time, for validation before testing.

3.1.2 Unknown Environment

In this task, the test scenes are not seen at all during training.

We provide four new scenes for the test set in this task. The

training set consists of the currently available AVD scenes,

and we recommend holding out at least three scenes during

training for validation. In both the known environment task

and this task, the set of objects being searched for are the

same in training and testing.

3.1.3 Transfer Learning

Learning approaches to both visual question answering

tasks and navigation strategies typically require large

amounts of training data, which is laborious to attain on

real robotic platforms and does not support the repeatability

of the results. Many existing approaches mentioned in the

related work section opt to use simulated environments for

these tasks. AVDB can be used for evaluation of the transfer

of these tasks to real-world environments.

3.2. Task: Class­incremental Learning

A robot in the real world will likely encounter objects

outside those in its initial training set. It would be useful

if the robot could recognize these new objects with as few

examples and in as little time as possible.

For this task we consider 27 object instances that are

present in AVD. The idea is to train on scenes consider-

ing 17 of the instances, and test on scenes considering all

27 instances. In addition to training scenes with 17 objects,

1-10 “target images” of each of the 27 objects in isolation

Figure 1: Some examples of labeled images.

Figure 2: Camera locations (red) and directions (blue) from

AVD. The dense sampling of images allows benchmarking

active navigation tasks using visual input.

Figure 3: Example “target images”.

will be provided at test time. The aim is to compare object

instance detection with training in scenes to object instance

detection where only a small number of isolated example

images are provided for training.

The training set will consist of all 30,000+ images cur-

rently available in AVD, but only seventeen instances will

be considered foreground. The other ten instances must be

treated as background, or blacked out, etc. In addition, 1-10

“target images” of the 17 instances are available at training

time. The seven new scenes collected for AVDB compro-

mise the test set, which contains all 27 instances. “Target

images” for the remaining ten test instances are provided at

test time. Use of any additional training data is permitted, as

long as the ten test instances are not present as foreground in

any training data. Systems will be evaluated using the mean

average precision metric commonly used in object detec-

tion, over all 27 instances.
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