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1. Introduction

Imitating expert demonstration is a powerful mechanism
for learning to perform tasks from raw sensory observa-
tions. The current dominant paradigm in learning from
demonstration (LfD) [3, 16, 19,20] requires the expert to ei-
ther manually move the robot joints (i.e., kinesthetic teach-
ing) or teleoperate the robot to execute the desired task.
The expert typically provides multiple demonstrations of a
task at training time, and this generates data in the form of
observation-action pairs from the agent’s point of view. The
agent then distills this data into a policy for performing the
task of interest. Such a heavily supervised approach, where
it is necessary to provide demonstrations by controlling the
robot, is incredibly tedious for the human expert. Moreover,
for every new task that the robot needs to execute, the expert
is required to provide a new set of demonstrations.

Instead of communicating how to perform a task via
observation-action pairs, a more general formulation allows
the expert to communicate only what needs to be done by
providing the observations of the desired world states via a
video or a sparse sequence of images. This way, the agent
is required to infer how to perform the task (i.e., actions) by
itself. In psychology, this is known as observational learn-
ing [4]. While this is a harder learning problem, it is a more
interesting setting, because the expert can demonstrate mul-
tiple tasks quickly and easily.

In this paper, we follow [, 13, 18] in pursuing an al-
ternative paradigm, where an agent explores the environ-
ment without any expert supervision and distills this explo-
ration data into goal-directed skills. These skills can then be
used to imitate the visual demonstration provided by the ex-
pert [15]. Here, by skill we mean a function that predicts the
sequence of actions to take the agent from the current obser-
vation to the goal. We call this function a goal-conditioned
skill policy (GSP). The GSP is learned in a self-supervised

*Denotes equal contribution. This is a workshop version of the
ICLR 2018 paper, available here: ht tps://pathak22.github.io/
zeroshot-imitation/
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Figure 1: The goal-conditioned skill policy (GSP) takes as
input the current and goal observations and outputs an ac-
tion sequence that would lead to that goal. We compare
the performance of the following GSP models: (a) Simple
inverse model; (b) Mutli-step GSP with previous action his-
tory; (c) Mutli-step GSP with previous action history and a
forward model as regularizer, but no forward consistency;
(d) Mutli-step GSP with forward consistency loss.

way by re-labeling the states visited during the agent’s ex-
ploration of the environment as goals and the actions exe-
cuted by the agent as the prediction targets, similar to [1,2].

One critical challenge in learning the GSP is that, in gen-
eral, there are multiple possible ways of going from one
state to another: that is, the distribution of trajectories be-
tween states is multi-modal. We address this issue with our
novel forward consistency loss based on the intuition that,
for most tasks, reaching the goal is more important than
how it is reached; details follow in method section. To ac-
count for varying number of steps required to reach differ-
ent goals, we propose to jointly optimize the GSP with a
goal recognizer that determines if the current goal has been
satisfied. See Figure | for a schematic illustration.

We call our method zero-shot because the agent never
has access to expert actions, neither during training of the
GSP nor for task demonstration at inference. In contrast,
most recent work on one-shot imitation learning requires
full knowledge of actions and a wealth of expert demon-
strations during training [6, 7]. In summary, we propose
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a method that (1) does not require any extrinsic reward or
expert supervision during learning, (2) only needs demon-
strations during inference, and (3) restricts demonstrations
to visual observations alone rather than full state-actions.
Instead of learning by imitation, our agent learns to imitate.

2. Imitation without Expert Supervision

Let S : {1, a1, 22, a2, ..., x7 } be the sequence of obser-
vations and actions generated by the agent as it explores its
environment using the policy a = wg(s). This exploration
data is used to learn the goal-conditioned skill policy (GSP).
m takes as input a pair of observations (x;, x4) and outputs
sequence of actions (@, : a1, as...ax ) required to reach the
goal observation (z4) from the current observation (;).

ar :'/T(xivxg;aﬂ') (D

where states x;, x4 are sampled from the S. The number of
actions, K, is also inferred by the model. We represent 7
by a deep network with parameters 6, in order to capture
complex mappings from visual observations (z) to actions.
m can be thought of as a variable-step generalization of the
inverse dynamics model [9], or as the policy corresponding
to a universal value function [8,21], with the difference that
x4 need not be the end goal of a task but can also be an
intermediate sub-goal.

Let the task to be imitated be provided as a sequence
of images D : {z¢,z%,...,2%} captured when the expert
demonstrates the task. This sequence of images D could
either be temporally dense or sparse. Our agent uses the
learned GSP 7 to imitate the sequence of visual observa-
tions D starting from its initial state zy by following actions
predicted by 7(z¢, v¢; 0, ). Let the observation after execut-
ing the predicted action be x(,. Since multiple actions might
be required to reach close to ¢, the agent queries a separate
goal recognizer network to ascertain if the current observa-
tion is close to the goal or not. If the answer is negative, the
agent executes the action a = 7(z), z¢;6,). This process
is repeated iteratively until the goal recognizer outputs that
agent is near the goal, or a maximum number of steps are
reached. Let the observation of the agent at this point be
#1. After reaching close to the first observation (x{) in the
demonstration, the agent sets its goal as (z4) and repeats
the process. The agent stops when all observations in the
demonstrations are processed.

2.1. Goal-conditioned Skill Policy (GSP)

We first describe the one-step version of GSP, and de-
scribe the multi-step extension and feature space general-
ization in the main paper '. One-step trajectories take the
form of (z, at, T441).

'Full ICLR 2018 paper at https://pathak22.github.io/
zeroshot-imitation/

Forward Consistency Loss Instead of penalizing the ac-
tions predicted by the GSP to match the ground truth, we
propose to learn the parameters of GSP by minimizing the
distance between observation Z;y1 resulting by executing
the predicted action a; = m(x¢, x¢41; 0,) and the observa-
tion x;1, which is the result of executing the ground truth
action a; being used to train the GSP. In this formulation,
even if the predicted and ground-truth action are different,
the predicted action will not be penalized if it leads to the
same next state as the ground-truth action. We call this
penalty the forward consistency loss.

In this work, we learn the forward dynamics f model
from the data, and is defined as Z;,11 = f(x, a;;07). Let
41 = f(xe,a;65) be the state prediction for the ac-
tion predicted by 7. In order to make the outcome of ac-
tion predicted by the GSP and the ground-truth action to be
consistent with each other, we include an additional term,
||#¢+1 — #4413 in our loss function and infer the parame-
ters 0 by minimizing ||z¢41 —Z¢11]|3 + A|@ep1 —Zeg1 3,
where )\ is a scalar hyper-parameter. The first term ensures
that the learned forward model explains ground truth tran-
sitions (x¢, a;, 141) collected by the agent and the second
term ensures consistency. The joint objective for training
GSP with forward model consistency is:

min e — Foalls + Mzeer — Zerall3 + Llar, ar)
T
S.t. .f?tJrl = f(act,at;Gf)
Ty = f(xt,dt;ef)

Gy = W(It,l"t-i-l; 97‘()
3. Experiments

Following methods will be evaluated: (1) Inverse Model:
Nair et al. [15] leverage vanilla inverse dynamics to follow
demonstration in rope manipulation setup. We compare to
their method in both visual navigation and manipulation.
(2) GSP-NoPrevAction-NoFwdConst is the ablation of our
recurrent GSP without previous action history and without
forward consistency loss. (3) GSP-NoFwdConst refers to
our recurrent GSP with previous action history, but without
forward consistency objective. (4) GSP-FwdRegularizer
refers to the model where forward prediction is only used
to regularize the features of GSP but has no role to play in
the loss function of predicted actions. The purpose of this
variant is to particularly ablate the benefit of consistency
loss function with respect to just having forward model as
feature regularizer. (5) GSP refers to our complete method
with all the components.

3.1. Rope Manipulation

Manipulation of non-rigid and deformable objects, e.g.,
rope, is a challenging problem in robotics. To test whether
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Inverse Model [Nair et.al. 2017]  36% =+ 9.6%
Forward-regularized GSP 44% £+ 9.9%
Forward-consistent GSP [Ours]  60% + 9.8%

TPS-RPM Erros

istent GSP [Ours]
| [Nair et.al., 2017]

[ 1 H 4 5 3

3
Step #

(a) TPS-RPM error for ‘S’ shape manipulation (b) Success rate for Knot-tying

Figure 2: GSP trained using forward consistency loss sig-
nificantly outperforms the baselines at the task of (a) ma-
nipulating rope into ‘S’ shape as measured by TPS-RPM
error and (b) knot-tying where we report success rate with
bootstrap standard deviation.

our agent could manipulate ropes by simply observing a hu-
man, we use the data collected by Nair et al. [15], where a
Baxter robot manipulated a rope kept on the table in front
of it. During exploration, the robot interacts with the rope
by using a pick and place primitive that chooses a random
point on the rope, and displaces it by a randomly chosen
length and direction. This process is repeated number of
times to collect about 60K interaction pairs of the form
(¢, as, ey 1) that are used to train the GSP. During infer-
ence, our proposed approach is tasked to follow a visual
demonstration provided by a human expert for manipulat-
ing the rope into a complex ‘S’ shape and tying a knot.

We compare our approach to the baseline that deploys an
inverse model which takes as input a pair of current and goal
images to output the desired action to reach goal [15]. We
re-implement the baseline and train in our setup for a fair
comparison. To further ablate the importance of consistency
loss, we compare to a baseline that just uses forward model
as aregularizer of features. The results in Figure 2 show that
our method significantly outperforms the baseline at task
of manipulating the rope in the ‘S’ shape and achieves a
success rate of 60% in comparison to 36% for knot tying.

3.2. Navigation in Indoor Office Environments

For navigation, both real-world and simulation, we
check generalization by testing on a novel building/floor.
We used TurtleBot2 which has an onboard RGB camera for
indoor office navigation. For learning the GSP, an auto-
mated self-supervised scheme for data collection was de-
vised that required no human supervision. The robot col-
lected number of trajectories that contain 230K interactions
data, i.e. (x4, a¢,Try1), from two floors of a academic
building. We then deployed the learned model on a sepa-
rate floor of a building with substantially different textures
and layout for visual imitation at test time.

We tested if the GSP learned by the TurtleBot can en-
able it to find its way to a goal that is within the same room

Model Name ‘ Success Rate

Random Search ‘ 0/8

Inverse Model [Nair et. al. 2017] 0/8
GSP-NoPrevAction-NoFwdConst 2/8
GSP-NoFwdConst 4/8
GSP (Ours) | 6/8

Table 1: Quantitative evaluation of various methods on the
task of navigating using a single image of goal in an unseen
environment. Our full GSP model outperforms the base-
lines significantly.

from just a single image of the goal. To test an extrapolative
generalization, we keep the Turtlebot approximately 20-30
steps away from the target location in a way that current
and goal observation has no overlap. We judge the robot
to be successful if it stops close to the goal and failure if
it crashed into furniture or does not reach the goal within
200 steps. Since the initial and goal images have no over-
lap, classical techniques such as structure from motion that
rely on feature matching cannot be used to infer the robot’s
action. In order to reach the goal, the robot must explore its
surroundings. We find that our GSP model outperforms the
baseline models in reaching the target location. Our model
learns the exploratory behavior of rotating at its location un-
til it encounters overlap between its current image and goal
image. Results are shown in Table 1 and videos are avail-
able at the website °.

4. Related Work

Nair er al. [15] observe a sequence of images from
the expert demonstration for performing rope manipula-
tions. Sermanet et al. [22] imitate humans with robots
by self-supervised learning but require expert supervision
at training time. Third person imitation learning [23]
and the concurrent work of imitation-from-observation [14]
learn to translate expert observations into agent observa-
tions such that they can do policy optimization to mini-
mize the distance between the agent trajectory and the trans-
lated demonstration, but they require demonstrations for
learning. Visual servoing is a standard problem in robotics
[5, 10-12,24,26] that seeks to take actions that align the
agent’s observation with carefully-designed visual features
or raw pixel intensities. The works of Jordan et al. [9];
Wolpert et al. [25]; Agrawal et al. [1]; Pathak et al. [17]
jointly learn forward and inverse dynamics model but do
not optimize for consistency between the forward and in-
verse dynamics. We empirically show that learning models
by our forward consistency loss significantly improves task
performance.

2https ://pathak22.github.io/zeroshot-imitation/
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