
VisDA: A Synthetic-to-Real Benchmark for Visual Domain Adaptation

Xingchao Peng1, Ben Usman1, Neela Kaushik1, Dequan Wang2, Judy Hoffman2, and Kate Saenko1

xpeng,usmn,nkaushik,saenko@bu.edu, jhoffman,dqwang@eecs.berkeley.edu
1Department of Computer Science, Boston University

2EECS, University of California Berkeley

1. Introduction

The success of machine learning methods on visual

recognition tasks is highly dependent on access to large la-

beled datasets. However, real training images are expensive

to collect and annotate for both computer vision and robotic

applications. The synthetic images are easy to generate but

model performance often drops significantly on data from a

new deployment domain, a problem known as dataset shift,

or dataset bias. Changes in the visual domain can include

lighting, camera pose and background variation, as well as

general changes in how the image data is collected. While

this problem has been studied extensively in the domain

adaptation literature, progress has been limited by the lack

of large-scale challenge benchmarks.

Several benchmark datasets have been collected and

used to evaluate visual domain adaptation, most notable

are summarized in Table 1. Majority of popular bench-

marks lack task diversity: the most common cross-domain

datasets focus on the image classification task, i.e. digits

of different styles, objects [16] or faces [18] under varying

conditions. One issue about these benchmark is the small

scale. Modern computer vision methods require a lot of

training data, while cross-domain datasets such as Office

Dataset [16] only contain several hundred of images. Be-

sides the small size of these benchmarks, another problem

is the relatively small domain shifts, such as the shift be-

tween two different sensors (DSLR vs Webcam in the Office

dataset [16]). Other tasks such as detection [12], structure

prediction [15, 5, 14] and sequence labeling [6] have been

relatively overlooked.
We present the Synthetic-to-Real Visual Domain Adap-

tation (VisDA) Benchmark , a large-scale testbed for un-

supervised domain adaptation across visual domains. As

showed in Figure 1, the VisDA dataset is focused on the

simulation-to-reality shift and has two associated tasks: im-

age classification and image segmentation. The goal in both

tracks is to first train a model on simulated, synthetic data

in the source domain and then adapt it to perform well on

real image data in the unlabeled test domain. Our dataset

is the largest one to date for cross-domain object classifi-

(a) Image Classification Task

(b) Semantic Image Segmentation Task

Figure 1: (Best viewed in color) The VisDA dataset aims to

test models ability to perform unsupervised domain adapta-

tion, i.e. to transfer knowledge from a large labeled source

domain to an unlabeled target domain. It contains a chal-

lenging simulation-to-real domain shift and consists of two

tasks: (a) classification and (b) semantic segmentation. For

each task we provide data from three distinct domains: train

(source), validation (target) and test (target), therefore chal-

lenging domain adaptation methods’ ability to perform well

out-of-the-box on unseen domains without manual hyper-

parameters tuning.

cation, with over 280K images across 12 categories in the

combined training, validation and testing domains. The im-

age segmentation dataset is also large-scale with over 30K

images across 18 categories in the three domains. We com-

pare VisDA to existing cross-domain adaptation datasets

and provide a baseline performance analysis using various
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OBJECT CLASSIFICATION
Dataset Examples Classes Domains

COIL20 [11] 1,440 20 1 (tools)

Office [16] 1,410 31 3 (office)

Caltech [2] 1,123 10 1 (office)

CAD-office [12] 775 20 1 (office)

Cross-Dataset [22] 70,000+ 40 12 (mixed)

VisDA-C 280,157 12 3 (mixed)

SEMANTIC SEGMENTATION
Dataset Examples Classes Domains

SYNTHIA-subset [15] 9,400 12 1 (city)

CityScapes [5] 5,000 34 1 (city)

GTA5 [14] 24,966 18 1 (city)

VisDA-S 31,466 18 3 (city)

Table 1: Comparison of VisDA to existing cross-domain datasets

used for domain adaptation experiments, with corresponding num-

bers of classes and domains. Datasets that share object categories

can be combined to form cross-domain benchmarks.

domain adaptation models that are currently popular in the

field.

The VisDA dataset focuses on the domain shift from sim-

ulated to real imagery–a challenging shift that has many

practical applications in robotics and computer vision. This

type of “synthetic-to-real” domain shift is important in

many real-world situations when labeled imagery is diffi-

cult or expensive to collect (autonomous decision making

in robotics, medical imaging, etc.), whereas synthetic ren-

dering pipeline can produce virtually infinite amounts of la-

beled data. For this reason we generated the largest cross-

domain synthetic-to-real object classification dataset to date

with over 280K images in the combined training, valida-

tion and testing sets. For the semantic segmentation track

we augmented existing datasets for a total of approximately

30k images across three domains.

2. VisDA-C: Classification Dataset

The VisDA Classification (VisDA-C) dataset provides a

large-scale testbed for studying unsupervised domain adap-

tation in image classification. The dataset contains three

splits (domains), each with the same 12 object categories:

• training domain (source): synthetic renderings of 3D

models from different angles and with different light-

ing conditions,

• validation domain (target): a real-image domain

consisting of images cropped from the Microsoft

COCO dataset [9],

• testing domain (target): a real-image domain con-

sisting of images cropped from the Youtube Bounding

Box dataset [13]

We use different target domains for the validation and

test splits to prevent hyper-parameter tuning on the test data.

Figure 2: Sample images from the VISDA-C dataset. The top

group shows synthetically rendered images (source domain), the

middle group shows objects cropped from COCO dataset [9] us-

ing their bounding boxes (validation target domain), and the bot-

tom group shows similarly cropped images from YouTube-BB

dataset [13] (test target domain).

Unsupervised domain adaptation is usually done in a trans-

ductive manner, meaning that unlabeled test data is actively

used to train the model. However, it is not possible to tune

hyper-parameter on the test data, since it has no labels. De-

spite this fact, the lack of established validation sets often

leads to poor experimental protocols where the labeled test

set is used for this purpose. In our benchmark, we provide

a validation set to mimic the more realistic deployment sce-

nario where the target domain is unknown at training time

and test labels are not available for hyper-parameter tuning.

This setup also discourages algorithms that are designed to

handle a specific target domain. It is important to mention

that the validation and test sets are different domains, so

over-tuning to one can potentially degrade performance on

another.

Training Domain: Synthetic Dataset The synthetic

dataset was generated by rendering 3D models of the same

object categories as in the real data from different angles

and under different lighting conditions. We obtained 1,907

models in total and generated 152,397 synthetic images. We

used four main sources of models that are indicated with a

sec prefix of the corresponding image filename. These four

sources include manually chosen subsets of ShapenetCore

[3], NTU 3D [4], SHREC 2010 [23] with some labels re-

trieved from TSB [21] and our own collection of 3D CAD

models from 3D Warehouse SketchUp.

We used twenty different camera yaw and pitch combi-

nations with four different light directions per model. The

lighting setup consists of ambient and sun light sources in

1:3 proportion. Objects were rotated, scaled and translated
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Training Domain (CAD-synthetic) → Validation Domain (MS COCO)

Method Train Test aero bike bus car horse knife mbike person plant skbrd train truck Mean Source Gain

DAN [10] syn real 71.0 47.4 67.3 31.9 61.4 49.9 72.1 36.1 64.7 28 70.6 19 51.62 28.12 83.6%

D-CORAL [20] syn real 76.5 31.8 60.2 35.3 45.7 48.4 55 28.9 56.4 28.2 60.9 19.1 45.53 28.12 61.91%

Source (AlexNet) syn real 53.5 3.7 50.1 52.2 27.9 14.9 27.6 2.9 25.8 10.5 64.4 3.9 28.12 - -

Oracle (AlexNet) syn syn 100 100 99.8 99.9 100 99.9 99.8 100 100 100 99.9 99.7 99.92 - -

Oracle (AlexNet) real real 94.9 83.2 83.1 86.5 93.9 91.8 90.9 86.6 94.9 88.9 87 65.4 87.26 - -

Training Domain (CAD-synthetic) → Testing Domain (YT-BB)

Method Train Test aero bike bus car horse knife mbike person plant skbrd train truck Mean Source Gain

DAN syn real 55.4 18.4 59.9 68.6 55.2 41.4 63.4 30.3 78.8 23.0 62.8 40.1 49.78 30.81 61.57%

D-CORAL syn real 62.5 21.7 66.4 64.7 31.1 36.6 54.3 24.9 73.8 30.0 43.4 34.1 45.29 30.81 47.0%

Source (AlexNet) syn real 46.5 0.8 59.2 82.7 21.0 14.4 23.2 1.0 46.1 17.2 47.8 9.8 30.81 - -

Oracle (AlexNet) real real 94.5 84.4 90.1 95.5 93.2 95.1 90.4 90.1 95.7 89.5 94.6 91.8 92.08 - -

Oracle (ResNext) real real 96.2 89.3 92.8 98.3 94.8 95.7 90.7 92.0 95.9 86.0 94.9 93.5 93.40 - -

Table 2: Baseline results for the classification track. We show per-category accuracy for models trained using various adaptation

methods. The top table reports performance of models adapted to validation domain of VisDA-C. The bottom one reports adaptation

performance for to the test domain. First column indicates either the method used for adaptation, or a special setup (a source only case with

no adaptation; a classifier trained using oracle label values). The tables show domain adaptation algorithms (DAN [10] and D-CORAL [20])

can improve the results by roughly 20 percent. Gain column indicates relative improvement over source model.

to match the floor plane, duplicate faces and vertices were

removed, and the camera was automatically positioned to

capture the entire object with a margin around it. For tex-

tured models, we also rendered their un-textured versions

with a plain grey albedo. In total, we generated 152,397

synthetic images to form the synthetic source domain.

Validation Domain: MS COCO. The validation dataset

for the classification track is built from the Microsoft COCO

[9] Training and Validation splits. In total, the MS COCO

dataset contains 174,011 images. We used annotations pro-

vided by the COCO dataset to find and crop relevant object

in each image. All images were padded by retaining an ad-

ditional ~50% of its cropped height and width (i.e. by di-

viding the height and width by
√
2 ). Padded image patches

whose height or width was under 70 pixels were excluded

to avoid extreme image transformations on later stages. In

total, we collected 55,388 object images that fall into the

chosen twelve categories. We took all images from each

of twelve categories with the exception of the “person” cat-

egory, which was reduced to 4,000 images in order to bal-

ance the overall number of images per category (the original

“person” category has more than 120k images).

Testing Domain: YouTube Bounding Boxes. Due to the

overlap in object category labels with the other two do-

mains, we chose the YouTube Bounding Boxes (YT-BB)

dataset [13] to construct the test domain. Compared to

the validation domain (MS COCO), the image resolution

in YT-BB is much lower, because they are frames extracted

from YouTube videos. The original YT-BB dataset contains

segments extracted from 240,000 videos and approximately

5.6 million bounding box annotations for 23 categories of

tracked objects. We extracted 72,372 frame crops that fall

into one of our twelve categories and satisfy the size con-

straints.

Baseline experiments We evaluate two existing domain

adaptation algorithms as baselines. DAN (Deep Adaptation
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Table 3: Number of images per category in VisDA Classification

training, validation and testing domains.

Network) [10] learns transferable features by training deep

models with Maximum Mean Discrepancy [17] loss to align

the feature distribution of source domain to target domain.

In our implementation, the network architecture of DAN

is extended from AlexNet [8], which consists of 5 convo-

lutional layers (conv1 - conv5) and 3 fully connected lay-

ers (fc6 - fc8) and Deep CORAL (Deep Correlation Align-

ment) [19] performs deep model adaptation by matching the

second-order statistics of feature distributions. The domain

discrepancy is then defined as the squared Frobenius norm

d(S, T ) = ‖CovS −CovT ‖2F , where CovS ,CovT are the

covariance matrices of feature vectors from the source and

target domain, respectively.

Baseline Results. Baseline results on the validation do-

main for classification are shown in Table 2. “Oracle”

or in-domain AlexNet performance for training and test-

ing on the synthetic domain reaches 99.92% accuracy, and

training and testing on the real validation domain leads to

87.62%. This supervised learning performance provides a

loose upper bound for our adaptation algorithms. As far

as unadapted source-only results on the validation dataset,
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GTA → CityScapes Validation Domain
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mIoU

Source (Dilation F.E.) 30.6 21.2 44.8 10.1 4.4 15.4 12.4 1.7 75.1 13.5 58.1 38.0 0.2 67.5 9.4 5.0 0.0 0.0 0.0 21.4

Oracle (Dilation F.E.) 96.2 76.0 88.4 32.5 46.4 53.5 52.0 68.7 88.6 46.6 91.0 74.8 46.0 90.5 46.9 58.0 44.7 45.2 70.3 64.0

GTA → Nexar Test Domain

Source (Dilation F.E.) 40.7 19.2 42.3 4.2 20.0 21.8 26.0 13.4 68.0 19.6 84.7 32.4 5.8 59.0 10.3 9.8 1.6 13.5 0.0 25.9

FCN-in-the-wild [7] 57.8 20.1 51.0 6.5 14.1 20.4 26.7 13.7 66.1 22.2 88.9 34.1 13.2 63.2 10.2 7.1 2.0 18.7 0.0 28.2

Table 4: Baseline results for the segmentation track. The top shows IoU results from [7] for the source Dilation Front End model and its

oracle performance on the validation CityScapes domain. The domain adaptation method presented in [7] achieves 27.1 mIoU. The bottom

evaluates the same source and adapted models on the test Nexar domain, and shows results obtained by the top three challenge teams.

AlexNet trained on the synthetic source domain and tested

on the real domain obtains 28.12% accuracy, a significant

drop from in-domain performance. This provides a measure

of how much the domain shift affects the model. Among

the tested domain adaptation algorithms, Deep CORAL

improves the cross-domain performance from 28.12% to

45.53% and DAN further boosts the result to 51.62%.

While their overall performance is not at the level of in-

domain training, they achieve large relative improvements

over the base model through unsupervised domain adapta-

tion, improving it by 83.6% and 61.9% respectively.

In-domain oracle and source-only performance of

AlexNet was similar on the test dataset to the valida-

tion dataset. Oracle performance of AlexNet is 92.08%

and ResNext-152 improves the result to 93.40%. Source

AlexNet achieves 30.81% mean accuracy, and DAN and

Deep CORAL improve the result to 49.78% and 45.29%,

respectively. As a base model, AlexNet has relatively low

performance due to its simpler architecture, compared to

more recent CNNs. However, the relative improvement

of domain adaptation algorithms (i.e. DAN and Deep

CORAL) is still large.

3. VisDA-S: Semantic Segmentation

The goal of our VisDA2017 Segmentation (VisDA-S)

benchmark is to test adaptation between synthetic and real

dashcam footage for semantic image segmentation. The

training data includes pixel-level semantic annotations for

19 classes. We also provide validation and testing data, fol-

lowing the same protocol as for classification:

• training domain (source): synthetic dashcam render-

ings from the GTA5 dataset along with semantic seg-

mentation labels,

• validation domain (target): a real-world collection

of dashcam images from the CityScapes dataset along

with semantic segmentation labels to be used for vali-

dating the unsupervised adaptation performance,

• test domain (target): a different set of unlabeled, real-

world images from the new Nexar dashcam dataset.

Figure 3: Images in the VisDA-S dataset. The first row shows the

synthetic GTA5 images (training domain), the second row shows

the images from CityScapes dataset (validation domain), the last

row shows the images from Nexar dataset (test domain).

The training and validation domain datasets used here

are the same as those used in Hoffman et al (2016) [7] for

their work in synthetic to real adaptation in semantic seg-

mentation tasks.

Training Domain: Synthetic GTA5. The images in the

segmentation training come from the GTA5 dataset. GTA5

consists of 24,966 high quality labeled frames from the

photorealistic, open-world computer game, Grand Theft

Auto V (GTA5). The frames are synthesized from a fic-

tional city modeled off of Los Angeles, CA and are in

high-resolution, 1914×1052. All semantic segmentation

labels used in the GTA5 dataset have a counterpart in the

CityScapes category list for adaptation. See Figure 3 for

sample training domain data.

Validation Domain: Real CityScapes. Data in the seg-

mentation validation domain comes from the CityScapes

dataset. CityScapes contains 5,000 dashcam photos sep-

arated by the individual European cities from which they

were taken, with a breakdown of 2,975 training, 500 valida-

tion and 1,525 test images. Images are in high resolution,

2048 × 1024. In total, the CityScapes dataset has 34 se-

mantic segmentation categories, of which we are interested

in the 19 that overlap with the synthetic GTA5 dataset. See

Figure 3 for sample validation domain data.

Test Domain: Real DashCam Images. Dashcam photos
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in the test domain were taken from a dataset recently re-

leased by Berkeley Deep Drive and Nexar [1]. They were

collected using the Nexar dashcam interface and manually

annotated with segmentation labels. We use 1500 images of

size 1280 × 720 available with annotations corresponding

to the 19 categories matching GTA5 and CityScapes. Note

that this data along with the annotations is part of a larger

data collection effort by Berkeley Deep Drive (BDD). See

Figure 3 for sample test domain data.

Domain Adaptation Algorithms. For details on the do-

main adaptation algorithms applied to this domain shift, we

refer the reader to the original work that performed adap-

tation from GTA5 (synthetic) to CityScapes (real) in [7].

The authors use the front-end dilated fully convolutional

network as the baseline model. The method for domain

adaptive semantic segmentation consists of both global and

category specific adaptation techniques. Please see section

3 (Fully Convolutional Adaptation Models) in [7] for de-

tailed information about these techniques and their imple-

mentation. In all experiments, the Intersection over Union

(IoU) evaluation metric is used to determine per-category

segmentation performance.

Baseline Results. Please refer to Table 4 and Section

4.2.1 in Hoffman et al. [7] for full experimental results

and discussion of semantic segmentation performance in

GTA5→CityScapes adaptation. Some relevant results are

replicated here. In summary, the front-end dilation source

achieves a mean IoU (mIoU) of 21.6 over all semantic cate-

gories on the val domain, compared to oracle mIoU of 64.0.

The adaptation method in [7] improves mIoU to 25.5. A

similar performance improvement is seen when adapting

the GTA5 model to our challenge test domain.

4. Conclusion

In this paper, we introduce a large scale synthetic-to-

real dataset for unsupervised domain adaptation. We highly

encourage researchers to work on adaptation methods that

do not rely on the supervised pre-training, because there

are plenty of important domains, such as robotic simula-

tion, that seriously lack labeled data, and therefore might

greatly benefit from synthetic-to-real domain adaptation.

Large scale synthetic-to-real datasets as the one described

in this paper present an experimental setup designed for

figuring out how to train these models without supervised

pre-training, and therefore working on methods that per-

form well in practical domains that do not have large labeled

datasets using simulated data, which is becoming more and

more important these days. As of now the no-pretrain setup

poses a substantial challenge for existing domain adaptation

methods and solving it would greatly benefit the research

community.
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