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1. Introduction

Based on what is seen (i.e. visual input), humans are able

to visually predict (i.e. regress) what the scene will look like

after taking a certain action. Further, humans are able to

take advantage of such predictions to select optimal actions

for the task they are working on. Using example videos,

robots can also learn to visually imagine the future conse-

quence of taking an action. This can be viewed as learning

a function mapping a raw image frame (conditioned on a

particular action) to the future image frame. Once learned,

the future regression function can be combined with an ac-

tion policy learning framework (e.g. reinforcement or im-

itation learning), enabling better robot action learning for

given tasks.

We formulate the problem of robot action learning as the

learning of convolutional neural network (CNN) model pa-

rameters. Prior works were limited to the forecasting of

small pixel motion in a static robot video [1] or were done

without considering multiple action possibilities [2]. Our

future frame regression is designed to handle entire scene

changes conditioned on input action selected from multi-

ple candidates, enabling the network to learn representa-

tions to predict large scene changes. We compare several

CNN architectures designed for the scene-level future re-

gression (Fig. 1), investigating the better function modeling

strategies for robot imitation learning. Given a set of expert

example videos as training data, our robot simultaneously

learns the action-conditioned future regression function and

a CNN-based value function to select the optimal action for

a given task. We compare our future regression models with

the standard behavioral cloning and Q function learning.

We use a ground mobility robot for our real-time exper-

iments, which were performed in a real-world environment

with everyday objects (e.g. desks, chairs, cabinets) without

any markers, in order to compare our different CNN mod-

els for future regression and imitation learning. Importantly,

we do not provide any explicit label showing what the target

looks like, or allow the robot to use any localization tech-
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Figure 1: Action-conditioned future scene regression with

(a) linear action representation and (b) convolutional action

representation. We also tried (c) future ‘representation’ re-

gression, to be combined with the value function.

nique when making the action decisions. Our results con-

firm the benefits of action-conditioned future regression.

2. Approach

We present different CNN architectures for robot action

learning. Given an image input at each time step, our goal

is to make the robot decide its optimal action to reach the

target object. In imitation learning, this is done by learning

an action model from human expert training data.

In its simplest form, this can be formulated as the learn-

ing of the action function fw that produces the robot ac-

tion at based on the robot’s visual input It: at = fw(It)
where at can be the direct motor control commands or

more abstract actions. Direct learning of such function pa-

rameter w (from supervised training data) is often called

‘behavioral cloning.’ CNNs are good function approxima-

tors that can be used to approximate fw. Alternatively, we

can also use the Q function learning to choose the optimal

action. The Q function evaluates the goodness of state-

action pairs, as also was done in Deep Q learning [3]. The

only difference here is that this function is being trained

solely based on expert trajectories. The action is decided by

at = argmax
a
Q(st, a) where st is often It.
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2.1. Action­conditioned future regression

First, in order to obtain a better state representation, we

propose to take advantage of an action-conditioned autoen-

coder for future regression. This model, shown in Fig. 1(a),

is composed of two CNNs (i.e. two functions): the encoder

Enc and the decoder Dec. The encoder maps the current

image to a latent linear representation, zI = Enc(It). We

also use a neural network, Act, to learn a representation of

the action, za = Act(at). The decoder then reconstructs the

future image from this representation.

Ît+1 = Dec([Enc(It), Act(at)]). (1)

This model, trained to directly minimize L1 error between

the predicted image and the ground truth image, is further

combined with another CNN to estimate the value function.

We also extend our approach as described in Fig. 1(b) to

preserve spatial information by doing the convolutional fu-

ture regression while concatenating the intermediate feature

map with the learned action representation also having spa-

tial dimensionality. Lastly, similar to [2], we learn future

regression directly in the representation space (Fig. 1(c)).

We first train a denoising autoencoder to reconstruct a given

image. The latent space, zI = Enc(It), is our state. We

then train a neural network to learn a representation of the

action za = Act(at). These representations are concate-

nated together, followed by a future regression CNN, R, to

predict the next state:

ŝt+1 = R([Enc(It), Act(at)]) (2)

This network has 3 loss functions: image reconstruction,

future state regression, and value function learning.

3. Experiments

We perform both offline evaluation of the robot action

model as well as online evaluation of real-time robot exper-

iments. We collected a set of 10 random exploration trajec-

tories for an average of 1750 steps to learn the environment.

In addition, a set of expert trajectories with 7 different tar-

get objects was collected. The target location and the initial

robot placement were varied. For each trajectory, we only

annotate the frame with the current robot pose. On average,

we collected 36 110-frame trajectories for each of the 7 tar-

get objects. We split our dataset to 32 training trajectories

and 4 test trajectories per target.

3.1. Evaluation of our models

To test the potential of the various models, we conducted

a set of experiments using the held-out expert trajectories in

our dataset. Table 1 shows the results evaluating our models

on the unseen trajectories. We show mean linear and rota-

tional errors between selected actions by each network and

optimal actions. Future scene regression models yielded the

best performance.

Table 1: Evaluation of our various models on the held-out

expert trajectories.

Model Error cm Error deg

Behavioral Cloning 21.98 25.23°

CNN Q Function Learning 9.91 8.58°

Future Scene Regression (linear action) 8.46 9.74°

Future Scene Regression (conv action) 9.06 8.35°

Future State Regression (conv action) 11.18 21.70°
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Figure 2: Sample trajectory.

3.2. Real­time robot experiments

We conducted a set of real-time experiments with a

ground mobility robot in a complex real-world environment

to illustrate the implementation of the action network mod-

els we learned. For each model, we ran 18 trials each for

two different target objects. A successful run entails fewer

than 20 steps to reach within 0.5 meters of the target and to

capture an image of the target within the 0.5m. Fig. 2 shows

a trajectory of an example run, including frames our robot

obtains and processes during its task. It is important to note

that we do not explicitly perform localization of the target

within the image. Rather, we rely strictly on the network

to select the optimal action based on visual input. In Ta-

ble 2, we see that the convolutional future scene regression

(Fig. 1(d)), because of its superior ability to preserve spatial

information, yielded the best results.

Table 2: Real-time robot experiment results reporting the

task success rate.

Model Target 1 Target 2 Average

CNN Q Function Learning 50% 44% 47%

Linear Future Scene Regression 89% 67% 78%

Conv Future Scene Regression 100% 94% 97%
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