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Abstract

Most automated facial expression analysis methods treat

the face as a 2D object, flat like a sheet of paper. That

works well provided images are frontal or nearly so. In real-

world conditions, moderate to large head rotation is com-

mon and system performance to recognize expression de-

grades. Multi-view Convolutional Neural Networks (CNNs)

have been proposed to increase robustness to pose, but

they require greater model sizes and may generalize poorly

across views that are not included in the training set. We

propose FACSCaps architecture to handle multi-view and

multi-label facial action unit (AU) detection within a sin-

gle model that can generalize to novel views. Addition-

ally, FACSCaps’s ability to synthesize faces enables in-

sights into what is leaned by the model. FACSCaps mod-

els video frames using matrix capsules, where hierarchical

pose relationships between face parts are built into inter-

nal representations. The model is trained by jointly opti-

mizing a multi-label loss and the reconstruction accuracy.

FACSCaps was evaluated using the FERA 2017 facial ex-

pression dataset that includes spontaneous facial expres-

sions in a wide range of head orientations. FACSCaps out-

performed both state-of-the-art CNNs and their temporal

extensions.

1. Introduction

Facial expression communicates emotion, intentions,

and physical states [27]. Automatic detection of facial ex-

pressions is crucial to multiple domains that include mental

and physical health, education, and human-computer and

robot-human interaction. The most comprehensive method

to annotate facial expression is the anatomically-based Fa-

cial Action Coding System (FACS). FACS “action units”

alone or in combinations can describe nearly all possible fa-

cial expressions. Automatic detection of FACS action units

(AU) has been an active area of research.

Approaches have included both shallow- and deep learn-

ing. For the former, hand-crafted features have included

SIFT, HOG, LBP, LGBP and geometric features. More re-

cently, deep-learning approaches have been proposed [11,

10]. Convolutional Neural Networks (CNNs) learn repre-

sentations and estimate AU occurrences. While CNNs have

often outperformed shallow-learning approaches in AU de-

tection [5, 38], except for the recent FERA Challange, pose

variation has been limited to frontal or nearly frontal views.

In natural environments in which moderate to large head

rotation is common, generalizability to non-frontal views is

critical.

Recently, some studies have performed multi-view facial

AU detection. The approaches have included hand-crafted

features [19], CNN [26, 4], and LSTM [12]. A limitation to

all these studies is that they fail to illuminate the underlying

representations. They are unable to reveal or interpret what

is learned by their architectures visually. With respect to

accuracy, CNNs performed well but have two main draw-

backs [23, 32]. First, they fail to represent spatial hierarchy

between object parts. If the existence of parts is satisfied, a

CNN model outputs the existence of whole object by ignor-

ing the spatial orientation among parts. It would yield false

positives. Second, they lack rotational invariance. Since

pose is not independent from the internal representation of

an object, the same object observed from a different orien-

tation would be recognized as a different object, leading to

false negatives.

To address these problems, Sabour et al. [23] proposed

Capsule Networks (CapsNets), where capsule is a group of

neurons that encapsulates all significant information about

the state of the features in a form of vector, rather than the

scalar neuron outputs, which are common to nearly all other

neural network approaches. The most crucial property of

CapsNets is routing by agreement, which means capsules at

lower levels predict the outcome of capsules at higher lev-

els, and higher level capsules become activated only if these

predictions agree. Dynamic routing and reconstruction reg-

ularization enable CapsNets to model spatial hierarchy and

invariance to rotation [23]. They can learn viewpoint invari-

ant relationship between the parts of an object and whole

object. They have been shown to be more successful than
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Figure 1: Different views included in the FERA 2017 dataset

CNNs for digit [23] and object [32, 14] classification.

Most of the studies aiming to recognize facial expres-

sions or AUs focus only on the classification without con-

sidering the variations in the data. On the contrary, variants

of variational autoencoders [13, 18] aim to learn the hier-

archical representations and variations in the dataset in an

unsupervised manner or they apply classifiers learned sep-

arately from the encoded representations. Linh Tran et al.

[21] proposed to jointly learn the hierarchical representa-

tions and perform AU intensity estimation only on near-

frontal images.

In this study, we propose an architecture called

FACSCaps to both detect AUs from facial images having

multiple views and model the variation in the data simul-

taneously. We perform multi-label AU detection for the

classification part and we model the variation in the data

by reconstructing the images from unmasked capsules. We

test FACSCaps on FERA 2017 challenge dataset which has

frames with 9 different views. Our results outperform pre-

vious approaches which rely on hand-crafted features or

CNN and their temporal extensions. In addition to perfor-

mance improvement, we can visualize what is learned by

capsules and manipulate the learned representations. Fi-

nally, we perform cross-pose experiments to explore how

FACSCaps will perform on novel viewpoints for the first

time. We test our architecture with frames having faces with

unseen views in the dataset. Cross-pose experiment results

validate that FACSCaps is good at learning internal repre-

sentations invariant to pose.

2. Related Work

AU detection has been a popular field in the past years.

Several studies have focused on designing and extracting

features [9, 3, 25, 22] and generating novel classifiers [34,

8, 6] for AU detection. Readers are referred to the surveys

[7, 24] for further information. In the rest of this section,

we will review the literature most relevant to our work.

Convolutional Neural Networks (CNNs) have been used

to learn representations from facial images and detect AUs.

A number of studies [16] trained separate CNN architec-

tures to detect individual AUs. However, contrary to the ex-

isting research suggesting strong AU correlations [31, 20],

these studies do not take AU correlations into account. In

order to model the correlations among AUs, several studies

[5, 37, 10, 11] perform multi-label AU detection, in which

AUs are detected concurrently. Yet, most of the meth-

ods have been developed for multi-label AU detection from

frontal or close to frontal face images.

Several studies focused on detection of AUs using multi-

view face images. Among them, Toser et al. [28] used 3D

information to augment BP4D-spontaneous dataset [35] and

trained CNNs with the resulting face images having large

head poses. Li et al. [19] used combination of hand-crafted

(LBP-TOP) and CNN features with a late fusion mechanism

applied over multiple AUs. Batista et al. [4] estimated pose,

AU occurrence and AU intensity in a single CNN architec-

ture. Tang et al. [26] fine-tuned VGG-Faces network using

all views for each AU separately.

Following the recent success of CapsNets compared to

CNNs on classification of digits in MNIST dataset [23] and

object recognition [23, 14], a number of studies employed

capsules in various fields. Afshar et al. [1] reported that

CapsNets outperform CNNs for brain tumor type classifi-

cation. Moreover, Jaiswal et al. [15] proposed Generative

Adversarial Capsule Networks (CapsuleGAN) for model-

ing image data and showed that CapsuleGAN outperforms

convolutional-GAN at modeling image data distribution on

the MNIST dataset. Wang et al. [30] proposed RNN-

Capsule for sentiment analysis and obtained state-of-the-art

performance on sentiment classification. Furthermore, An-

dersen [2] showed that CapsNet is a reliable architecture for

Deep Q-Learning based algorithms for game AI.

3. Multi-view Multi-label AU Detection using

FACSCaps

3.1. Dataset

In this study we use FERA 2017 challenge dataset

[29]. It contains sequences of BP4D-spontaneous [35] and

BP4D+ [36] datasets which are 3D rotated by -40, -20 and

0 degrees yaw and -40, 0 and 40 degrees pitch. Therefore,

original videos are synthesized into 9 different head poses

as shown in Figure 1. Dataset is divided into training, de-

velopment and test partitions containing videos from 41, 20

and 30 participants, respectively.

In this dataset frame-level AU occurrence labels are pro-

vided for 10 AUs namely AU1 (inner brow raiser), AU4
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Figure 2: Overview of the proposed FACSCaps architecture for AU detection.

(brow lowerer), AU6 (cheek raiser), AU7 (lid tightener),

AU10 (upper lip raiser), AU12 (lip corner puller), AU14

(dimpler), AU15 (lip corner depressor), AU17 (chin raiser)

and AU23 (lip tightener).

3.2. Proposed FACSCaps Architecture

In this study we introduce FACSCaps architecture,

which aims to detect occurrence of multiple AUs concur-

rently from multi-view facial images. As illustrated in Fig-

ure 2, the architecture takes input images having multiple

views during training. Input layer is followed by a convo-

lutional layer, which detects the basic features in the image

and converts pixel intensities to the activations of local fea-

ture detectors. Then, the output of convolutional layer is fed

to primary capsules.

Primary capsule is a convolutional capsule, in which in-

formation about the state of the features are encapsulated in

a form of vector as opposed to the scalar outputs of basic

neurons in artificial neural networks. In other words, the

activity of neurons in a capsule represents the instantiation

parameters (size, orientation, etc.) of a given entity.

Let j denote a capsule at a higher layer and i denote a

capsule at a layer below. The activation of capsule j de-

pends on the activations from the layer below. Based on

the degree of agreement between the capsules at the higher

layer and layer below, coupling coefficients cij between

capsule i and capsule j are computed using the following

routing softmax function:

cij =
exp(bij)∑
k exp(bik)

(1)

where bij is the log probability representing whether cap-

sule i at lower layer should be coupled with capsule j. bij
is initially set to 0 and with the iterative dynamic routing

process cij is estimated. Input to capsule j (denoted as xj)

is computed as follows:

xj =
∑

i

cijWijui (2)

where ui represents the output vector of capsule i, Wij rep-

resents the weight matrix between capsule i and capsule j.

Length of the output vector of a capsule represents the

probability that the entity is present in the input, while the

orientation of the output vector represents the properties of

the entity. When the position, scale or other state of a de-

tected feature changes in the image, the length of the vector

remains the same, yet its orientation changes. We employ a

squashing function to map the length of the output vectors

between the interval [0, 1] such that short vectors have val-

ues close to zero whereas long vectors get shrunk to a value

close to 1. By applying the squashing function, we obtain

the output of capsule j, (denoted as vj) as follows:

vj =
||xj ||

2

1 + ||xj ||2
xj

||xj ||
(3)

In FACSCaps, outputs of primary capsules are fed to AU

Capsules and the outputs of AU capsules are used both for

AU detection and for reconstruction of the input image. In

AU detection part, the architecture learns to estimate occur-

rences of multiple AUs in the given image simultaneously.

In reconstruction part, the architecture tries to reconstruct

the input image from the representations in AU capsules.

During training, AU capsules are masked such that only the

capsules whose AUs are existent in the image are used to

reconstruct the image. Outputs of AU capsules are fed to

fully connected layers which are followed by ReLU layers.

3.3. Network Optimization

Since the architecture both estimates the multi-label AU

occurrence and reconstructs the input image, the network is

optimized by minimizing the following loss function:

Lnet = Lmargin + αLreconstruction (4)
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Table 1: Multi-view AU detection results (F1-score)

Basline CNN Fusion AUMPNet CNN-BLSTM FACSCaps

[29] [19] [4] [12]

AU1 0.147 0.199 0.215 0.219 0.198 0.196

AU4 0.044 0.051 0.044 0.056 0.043 0.067

AU6 0.630 0.750 0.755 0.785 0.747 0.766

AU7 0.755 0.810 0.805 0.816 0.784 0.791

AU10 0.758 0.821 0.810 0.838 0.816 0.840

AU12 0.687 0.805 0.753 0.780 0.809 0.819

AU14 0.668 0.698 0.750 0.747 0.691 0.764

AU15 0.220 0.244 0.208 0.145 0.208 0.247

AU17 0.274 0.386 0.286 0.388 0.398 0.349

AU23 0.342 0.365 0.356 0.286 0.374 0.413

Mean 0.453 0.513 0.498 0.506 0.507 0.525

where α is the weight determining the ratio of effect of

losses. If an image contains an AU, we want the corre-

sponding output vector to be long, whereas the if an AU

is non-existent in the image, we expect the output vector of

the corresponding AU to be short. In order to enforce that,

we use the following margin loss for each AU a:

Lmargin
a = Ta max(0,m+ − ||va||)

2+

λa(1− Ta)max(0, ||va|| −m−)2
(5)

where Ta = 1 if AU a exists in the image and Ta = 0 if a

does not exist in the image. λa specifies the effect of losses

obtained when the AU is present or absent in the image.

Finally, margin loss is provided to be zero if ||va|| > m+

when Ta = 1 and ||va|| < m− when Ta = 0. We compute

the margin loss obtained from all AUs as:

Lmargin =
∑

a

Lmargin
a (6)

In reconstruction part, we compute Lreconstruction as the

sum of squared differences between the sigmoid outputs of

the last fully connected layer and pixel intensities on im-

ages. We select α in Equation (4) to be a small value so that

the reconstruction loss does not dominate margin loss.

4. Experiments

4.1. Settings

In our architecture, the Conv layer has 256 9 × 9 ker-

nels with a stride of 4 and ReLU activation. In the Prim-

Caps layer, we have 4 channels of convolutional 8D cap-

sules where each capsule has 8 convolutional units with a

9 × 9 kernel. Capsules in [11 × 11] grid share weights and

we obtain [4 × 11 × 11] 8D capsule outputs. Each cap-

sule in PrimCaps layer is connected to each capsule in AU-

Caps layer by a weight matrix Wij of size [8 × 8]. We

have 10 AUCaps for each AU. During reconstruction we use

three fully connected layers of sizes 512, 1024 and 16384

(128×128), respectively. The first two fully connected lay-

ers have ReLU activation function while the last layer has

Sigmoid activation function. Margins of Lmargin are se-

lected as m+ = 0.9 and m− = 0.1 as suggested in [23].

During optimization we used Adam optimizer with a

learning rate 0.001 and decaying learning rate weight 0.9.

We select α = 0.0005 to use reconstruction as a regularizer.

We used 3 iterations of dynamic routing.

4.2. Multilabel AU detection

We resized the frames in FERA2017 to 128 × 128. In

order to compare our results with the ones in the literature,

we have followed the protocol of the FERA2017 challenge.

We have trained our FACSCaps architecture using only the

frames in the training set of FERA2017 challenge dataset

and we report result on the test set.

4.2.1 Comparison.

We compare our results with FERA2017 baseline [29] and

the recent studies which perform fusion of multiple fea-

tures and AUs (Fusion) [19], employ a CNN architecture

to estimate pose and AU occurrence together (AUMPNet)

[4], combine CNN and BLSTM (CNN-BLSTM) [12] on

FERA2017 challenge dataset. We also trained a standard

CNN having a similar architecture our FACSCaps as sug-

gested in [23]. The baseline CNN we trained has three con-

volutional layers having 256, 256, 128 channels with 5× 5
kernels. Since we perform multi-label detection of multiple

AUs, we used binary cross-entropy loss. We also trained the

CNN architecture with Adam optimizer [17].

In Table 1 we share the average F1-score values over

nine poses for each AU separately. Results reflect that, on

average of 10 AUs, our FACSCaps architecture performs
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Table 2: AU detection results (F1-score) for each pose and each AU

Pose

Skew 1 2 3 4 5 6 7 8 9

AU1 14.28 0.205 0.186 0.132 0.230 0.203 0.228 0.213 0.207 0.160

AU4 37.23 0.074 0.085 0.066 0.055 0.055 0.080 0.074 0.076 0.038

AU6 1.29 0.759 0.754 0.737 0.763 0.776 0.767 0.770 0.786 0.777

AU7 0.57 0.806 0.794 0.792 0.789 0.783 0.790 0.782 0.789 0.793

AU10 0.64 0.836 0.821 0.825 0.854 0.846 0.832 0.858 0.850 0.835

AU12 0.98 0.798 0.812 0.811 0.816 0.829 0.815 0.841 0.840 0.811

AU14 0.66 0.751 0.767 0.783 0.739 0.772 0.768 0.747 0.758 0.789

AU15 6.87 0.188 0.219 0.269 0.228 0.276 0.274 0.238 0.263 0.263

AU17 5.60 0.395 0.442 0.407 0.372 0.367 0.333 0.293 0.265 0.265

AU23 3.33 0.448 0.445 0.454 0.491 0.458 0.472 0.306 0.328 0.312

Mean 7.15 0.526 0.533 0.528 0.534 0.537 0.536 0.512 0.516 0.504

the best among others. Moreover, FACSCaps achieves the

best F1-score values in six out of ten AUs (AU4, AU10,

AU12, AU14, AU15 and AU23). For three AUs (AU1, AU6

and AU7), AUMPNet achieves the best performance. Note

that, a subset of development set was used for early stopping

evaluation during the training of AUMPNet.

In [26], authors fine-tuned the pre-trained VGG-Faces

architecture with training set of FERA2017 and obtained an

average F1-score of 0.574. Since the pre-trained architec-

ture is trained with millions of faces having lots of views

and all other methods used only the training set of FERA,

it would not be fair to compare results of this method with

others including ours.

4.2.2 Detailed results for each pose.

In addition to the comparison of FACSCaps with other

methods, we provide results for each pose and each AU sep-

arately in Table 2. In the second column, we also share the

degree of skew (ratio of negative samples to positive sam-

ples). Results show that the best average F1-score is ob-

tained in pose 5 (small yaw variation). However, different

AUs achieve their best results in different AUs. For example

AU10 and AU12 have the best F1-scores on pose 7, whereas

AU1 and AU23 have the best F1-scores on pose 4. We can

also infer from Table 2 that changes in the F1-scores of AUs

for different poses are small.

4.2.3 Cross-pose AU detection.

Since we expect capsules to learn the internal representa-

tions independent from the view angle, we would expect

our architecture to detect AUs in a view it has never seen

before. To verify this, we perform cross-pose experiments,

in which we train the architecture using eight of the nine

poses of training set and test it with the remaining pose of

test set. We report the F1-score results of cross-pose exper-

iments in Table 3. We hypothesize that, detecting AUs in

more extreme poses such as pose 1 (-40 degrees yaw, -40

degrees pitch), pose 3 (0 degrees yaw, -40 degrees pitch),

pose 7 (-40 degrees yaw, 40 degrees pitch) and pose 9 (0

degrees yaw, 40 degrees pitch) would be more difficult us-

ing only the remaining poses since they are more difficult to

interpolate from other poses. On the other hand, detection

of AUs in poses which are in the middle of two other poses

would be easier. For example, pose 2 (-20 degrees yaw,

-40 degrees pitch) can be interpolated using pose 1 (-40 de-

grees yaw, -40 degrees pitch) and pose 3 (0 degrees yaw,

-40 degrees pitch). Since frames from pose 1 and pose 3 are

included in the training set, we expect higher AU detection

results compared to more extreme poses.

Results in Table 3 reflect that we obtain lower average

F1-scores for extreme poses 1 (0.469), 3 (0.509), 7 (0.448)

and 9 (0.475) compared to others. Moreover, the cross-pose

results obtained for poses which are in the middle of other

poses are better compared to their corresponding surround-

ing poses. Pose 2, pose 5 and pose 8 are in the middle of

pose pairs 1-3, 4-6 and 7-9 in terms of yaw, respectively.

Similarly, pose 4, pose 5 and pose 6 are in the middle of

pose pairs 1-7, 2-8 and 3-9 in terms of pitch, respectively. It

can be seen that results obtained by these poses in the mid-

dle are better than the ones obtained for surrounding pose

pairs. We can also note that pose 5 is in the middle of poses

4 and 6 in terms of yaw angle and in the middle of poses

2 and 8 in terms of pitch angle. Therefore, AUs in pose

5 are the easiest to detect leading to the best average F1-

score value (0.533) in Table 3. Note that, since other stud-

ies including FERA 2017 challenge paper [29] do not re-

port cross-pose experiment results, we cannot compare our

cross-pose results with other methods.
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Table 3: Cross-pose F1-score results

Pose to be tested

1 2 3 4 5 6 7 8 9

AU1 0.155 0.180 0.130 0.188 0.194 0.186 0.160 0.167 0.169

AU4 0.056 0.052 0.076 0.070 0.064 0.039 0.046 0.032 0.039

AU6 0.674 0.789 0.720 0.736 0.775 0.784 0.655 0.773 0.733

AU7 0.618 0.764 0.796 0.768 0.756 0.769 0.789 0.782 0.750

AU10 0.706 0.801 0.786 0.846 0.846 0.847 0.835 0.830 0.800

AU12 0.771 0.806 0.748 0.798 0.829 0.810 0.688 0.842 0.768

AU14 0.750 0.774 0.746 0.681 0.779 0.775 0.556 0.770 0.684

AU15 0.115 0.251 0.243 0.222 0.248 0.240 0.227 0.262 0.280

AU17 0.366 0.423 0.408 0.362 0.388 0.344 0.250 0.319 0.197

AU23 0.481 0.430 0.439 0.406 0.448 0.462 0.270 0.356 0.325

Mean 0.469 0.527 0.509 0.508 0.533 0.526 0.448 0.513 0.475

4.3. Perturbing dimensions of a capsule

During training, we pass the encoding of AUs existent in

the input image and mask out the AUCaps of absent AUs

while reconstructing the input image. Therefore, we ex-

pect AUCaps to learn the variations in the given AU classes

and dimensions of AUCaps to learn to span the space of

variations. In order to understand what each individual di-

mension of each AU capsule has learned, we perturb only

a single dimension of activity vector of the corresponding

capsule and then reconstruct the image from the perturbed

vector. We plot the examples of synthesized image from

perturbed activity vectors in Figure 3.

We can observe that, all of the frames in a given row con-

tain the corresponding AU denoted in front of the row but

frames in the same row vary in one or more dimensions. We

explain the variations from the first image to last image in a

row. In the examples of AU1 and AU4, we observe changes

in the yaw angle and AU intensity as we perturb individual

dimensions. For AU6, variations appear in pitch and yaw

directions and illumination. The most obvious variation for

the AU10 sample is the size of the head. We plot four ex-

ample rows for AU12, each denoting variations in different

dimensions. In the first row of AU12, pose is changing from

pose 1 to pose 3 in FERA2017 dataset and mouth opens as

the intensity of AU12 increases. Faces in second row of

AU12 are mainly frontal but smile intensity increases. In

the third row of AU12, size of the head, yaw angle and iden-

tity changes. Fourth row of AU12 represent variation from

pose 7 to pose 9 of FERA2017 dataset. Moreover, as the

face rotates in yaw dimension in the row of AU14, dimple

becomes more visible. In the first row of AU17, pitch and

yaw directions change together as the intensity of AU17 de-

creases, while in the second row of AU17, head size and

pose changes. Finally, synthesized perturbed images ob-

tained for AU23 are blurry, but the variation in the pose and

shape of the mouth is visible.

From these synthesized frames we can infer that, indi-

vidual dimensions of corresponding AU capsules learned

to represent variations in instantiation parameters such as

pose, head size, AU intensity, etc.

4.4. Occlusion Sensitivity Maps

We generated Occlusion Sensitivity Maps [33] for differ-

ent poses and different AUs. We modified the pixel values

of patches having size 15 × 15 in the original image with

0.5 (gray color). We slide the patch over the image of size

128 × 128 with a stride 2. Therefore, we obtain modified

images in which the patch resides in 57 × 57 different po-

sitions. For each AU and each pose, we select 25 images

from all of the test participants (750 frames) containing the

specified AU. Then, we test the modified frames (nearly 2.4

million frames for each pose) and obtained accuracy values

for each position of the patch on the image. After an inter-

polation step, the resulting grid of accuracy values gives us

occlusion sensitivity maps as shown in Figure 4. In these

maps, darker red colors represent the lowest accuracy of

correctly estimating positive samples while darker blue col-

ors represent the parts, whose occlusion do not affect the

accuracy a lot. Therefore, the significant regions for each

AU are the ones colored with red.

From the maps we can infer that FACSCaps architecture

correctly learns where to look in the image for most of the

AUs. Since the variation in the yaw angle is only in one

direction in the dataset, occlusion sensitivity maps are gen-

erally not symmetric. It can be observed that for mainly

AU1, AU6 and AU10, the regions our model mainly looks

at are on the right side of the face.

In the top row of Figure 4, for poses 4-6, the model

focuses on upper eyebrows to detect AU1. Yet, for other
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Figure 3: Synthesized images obtained by perturbing individual dimensions of activity vectors of AU capsules.

poses, whose yaw angle is not 0, the model looks at larger

regions. For AU6, the model mainly looks at regions close

to cheek and for poses 1-3 the focus region also contains lip

corners. We can also observe weakly focused parts on eye

corner regions where wrinkles appear during AU6. Occlu-

sion sensitivity maps of AU10 mainly highlight upper lip

regions as expected. Moreover, for AU12 and AU14, the

model looks at regions covering mouth and lip corners. For

AU15, the model looks at a larger region around mouth,

covering both lip corners and chin. This can be explained

by the fact that while moving the lip corners down, AU15

may flatten or cause bulges to appear on the chin boss. For

AU17, significant regions contain mouth and chin regions

as expected. Finally, our classifier looks at mainly mouth

region for AU23.

Although focused parts contain upper eyebrows and

nose, maps obtained for AU4 do not reflect regions very

specific to brows. It can be explained by the fact that the

dataset is highly skewed in terms of AU4, which also leads

to very low F1-scores. Moreover, since AU7 does not lead

to an obvious change in the appearance, the model could not

learn where to look at for AU7 correctly. Since the F1-score

values are high for AU7, we can say that while classifying

AU7, our model considers other visual changes on the face,

which are caused by the AUs that co-occur with AU7.

5. Conclusions

In this paper, we proposed FACSCaps architecture for

multi-view, multi-label AU detection. FACSCaps archi-

tecture both estimates the occurrence of multiple AUs and

learns to reconstruct the input image. With the help of

masking during reconstruction, AUCaps are forced to learn

the variations in the corresponding AUs. When multiple

AUs are present in training images, corresponding AUCaps

remain unmasked, which provides multi-label learning of

AUCaps representations. Similarly, the architecture per-
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Figure 4: Occlusion sensitivity maps overlaid on a neutral frame for poses 1-9. The modified images are evaluated for

accuracy of positive examples. Performance is color coded at the central pixel of the patch. Best viewed in color.

forms multi-label AU detection, which considers the cor-

relation between AUs.

We showed that FACSCaps outperforms baseline ap-

proaches employing hand-crafted features and CNNs.

Moreover, our cross-pose experiment results reflect that

FACSCaps can detect AUs from the face images having un-

seen viewpoints. By perturbing the individual dimensions,

we could interpret and visualize what is learned by each di-

mension of capsules. We observed that variation in pose

is represented in many dimensions and as we perturb each

dimension, multiple instantiation parameters such as pose,

head size, AU intensity, illumination, etc. changes.

Finally we occluded parts of frames using a sliding patch

and measured the decrease in the accuracy of positive sam-

ples by testing the occluded frames. Occlusion sensitivity

maps are generally consistent with the expected regions re-

lated to AUs and pose. We can conclude that, employing

capsule networks for AU detection both provides promising

results and brings more interpretability on the variation of

data. A future direction would be integration of AU inten-

sity estimation to the architecture and joint estimation of AU

intensity and AU occurrence. Moreover, it is worth explor-

ing that whether training capsule networks with thousands

of faces having lots of views would lead better representa-

tions compared to CNN-based VGG-Faces architecture.

Acknowledgements: Preparation of this article was sup-

ported in part by the National Institute of Mental Health

of the National Institutes of Health under Award Number

MH096951.

2250



References

[1] P. Afshar, A. Mohammadi, and K. N. Plataniotis. Brain tu-

mor type classification via capsule networks. arXiv preprint

arXiv:1802.10200, 2018.

[2] P.-A. Andersen. Deep reinforcement learning using cap-

sules in advanced game environments. arXiv preprint

arXiv:1801.09597, 2018.
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