
Motion Fused Frames: Data Level Fusion Strategy for

Hand Gesture Recognition
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Abstract

Acquiring spatio-temporal states of an action

is the most crucial step for action classification. In

this paper, we propose a data level fusion strat-

egy, Motion Fused Frames (MFFs), designed to

fuse motion information into static images as bet-

ter representatives of spatio-temporal states of an

action. MFFs can be used as input to any deep

learning architecture with very little modification

on the network. We evaluate MFFs on hand ges-

ture recognition tasks using three video datasets

- Jester, ChaLearn LAP IsoGD and NVIDIA Dy-

namic Hand Gesture Datasets - which require cap-

turing long-term temporal relations of hand move-

ments. Our approach obtains very competitive

performance on Jester and ChaLearn benchmarks

with the classification accuracies of 96.28% and

57.4%, respectively, while achieving state-of-the-

art performance with 84.7% accuracy on NVIDIA

benchmark.

1. Introduction

Action and gesture recognition have become

very popular topics within computer vision field

in the last few years, especially after the applica-

tion of deep learning in this domain. Similar to

other areas of computer vision, the recent work on

action and gesture recognition is mainly based on

Convolutional Neural Networks (CNNs).

Current CNN architectures are generally de-

signed for static image recognition hence their per-

formances are based on spatial analysis. On the

other hand, there is still a gap in the studies apply-

ing deep learning for video analysis. Due to the

temporal dimension in videos, the amount of data

to be processed is high and the models are more

complex, which makes the recognition from video

Figure 1: Motion Fused Frames (MFFs): Data

level fusion of optical flow and color modalities.

Appending optical flow frames to static images

makes spatial content aware of which part of the

image is in motion and how the motion is per-

formed. Top: ’Swipe-right’ gesture. Bottom:

’Showing two fingers’ gesture.

data more challenging. Recent studies address this

issue and propose approaches analyzing the tem-

poral information in videos [2].

The temporal information in videos has been

analyzed using different modalities such as RGB,

depth, infrared and flow images as input. The

results show that although each of these modali-

ties provide good recognition performances alone,

the fusion analysis of these modalities further in-

creases the recognition performance [8, 21, 17].

The applied fusion strategy plays a critical role

on the performance of multimodal gesture recog-

nition. Different modalities can be fused either

on data level, feature level or decision level. Fea-
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ture and decision level fusions are the most popular

fusion strategies that most of the CNNs currently

apply [8, 21]. Although they perform pretty well

on action and gesture recognition tasks, they have

some drawbacks: (i) Usually a separate network

must be trained for each modality, which means

number of trainable parameters are multiple times

of a single network; (ii) at most of the time, pixel-

wise correspondences between different modali-

ties cannot be established since fusion is only on

the classification scores or on final fully connected

layers; (iii) applied fusion scheme might require

complex modifications on the network to obtain

good results.

The data level fusion is the most cumbersome

one since it requires frame registration, which

is a difficult task if the multimodal data is cap-

tured by different hardwares. However, the draw-

backs arising at feature and decision level fusion

methods disappear inherently. Firstly, a single

network training is sufficient, which reduces the

number of parameters multiple times. Secondly,

since different modalities are fused at data level,

pixel-wise correspondences are automatically es-

tablished. Lastly, any CNN architecture can be

adopted with a very little modification.

In this paper, we propose a data level fusion

strategy, Motion Fused Frames (MFFs), using

color and optical flow modalities for hand ges-

ture recognition. MFFs are designed to fuse mo-

tion information into static images as better rep-

resentatives of spatio-temporal states of an action.

This makes them favorable since hand gestures are

composed of sequentially related action states, and

slight changes in these states form new hand ges-

tures. To the best of our knowledge, it is the first

time that data level fusion is applied for deep learn-

ing based action and gesture recognition.

An MFF is generated by appending optical flow

frames to a static image as extra channels. The

appended optical flow frames are calculated from

the consecutive previous frames of the selected

static image. Fig. 1 shows two MFF examples:

’Swipe-right’ gesture (top) and ’showing two fin-

gers’ gesture (bottom). In the top example of Fig.

1, by looking at only static image, one can infer

the information of a lady holding her hand up-

ward. However, incorporating optical flow frames

into static image brings extra motion information,

which shows that the hand is actually moving from

left to right making it a swipe-right gesture.

We evaluated MFFs on three publicly available

datasets, which are Jester Dataset [1], ChaLearn

LAP IsoGD Dataset (ChaLearn) [25] and NVIDIA

Dynamic Hand Gesture Dataset (nvGesture) 1

[17]. Our approach obtains very competitive

performance on Jester and ChaLearn datasets with

the classification accuracies of 96.28% (2nd place

in the leaderboard) and 57.4%, respectively, while

achieving state-of-the-art performance with 84.7%

accuracy on nvGesture dataset.

The rest of the paper is organized as follows.

Section 2 presents the related work in action and

gesture recognition that applies deep learning.

Section 3 introduces the proposed gesture recog-

nition approach. Section 4 and 5 present the

experiments and discussion parts, respectively.

Finally, Section 6 concludes the paper.

2. Related Work

CNNs have initially been applied for static im-

ages, and currently achieve the state-of-the-art

performance on object detection and classifica-

tion tasks [14, 34, 9]. After they have provided

very successful results on static images, they have

been extended for recognition tasks on video data

[21, 8, 7].

There are various approaches using CNNs to

extract spatio-temporal information from video

data. In [8, 21, 13, 28], 2D CNNs are used to

treat video frames as multi-channel inputs for ac-

tion classification. 3D CNNs [22, 23, 24] use 3D

convolutions and 3D pooling to capture discrimi-

native features along both spatial and temporal di-

mensions. Temporal Segment Network (TSN) [29]

divides video data into segments and extracts in-

formation from color and optical flow modalities

for action recognition. Recently, Temporal Rela-

tion Network (TRN) [33] builds on top of TSN to

investigate temporal dependencies between video

frames at multiple time scales. In [4], the authors

propose an architecture, which extracts features

from video frames by a CNN and applies LSTM

for global temporal modeling. A similar approach

[17] proposes a recurrent 3D convolutional neural

network for hand gesture recognition, which uses

a 3D CNN for the feature extraction part.

Fusion of information from different modalities

is also a common approach in CNNs to increase

the recognition performance. There are three main

variants for information fusion in deep learning

models: data level, feature level and decision level

fusions. Within each fusion strategy, still different

approaches exists. For instance, for decision level

1NVIDIA Dynamic Hand Gesture Dataset and ChaLearn

LAP IsoGD Dataset are referred as ’nvGesture’ and ’ChaLearn’

in this paper.

2217



fusion, averaging [21, 17], concatenating [33] or

consensus voting can be applied on the scores of

different modalities trained on separate networks.

For the feature level fusion case, features from dif-

ferent layers of the CNNs can be fused at different

levels [8], or different schemes can be proposed

as in [16], which proposes a canonical correlation

analysis based fusion scheme.

Out of all fusion strategies, data level fusion is

the least used one so far since data preparation re-

quires effort especially when different hardwares

are used for different modalities. However, it has

very critical advantages over feature and decision

level fusions like training only a single network,

or automatically established pixel-wise correspon-

dence between different modalities. Thus, we ap-

plied data level fusion, Motion Fused Frames, to

draw the attention to these advantages.

Considering all the possible CNN architectures,

a TSN based approach is selected as building block

to leverage MFFs since the architecture proposes

to use segmented video clips. Then, MFFs can be

used to represent the spatio-temporal state of each

segment, which is fused later for classification of

the actions. Moreover, MFFs do not necessarily

use all the frames in each video segment which is

critical for real time applications.

3. Approach

In this section, we describe Motion Fused

Frames and the network architecture used for hand

gesture recognition. Particularly, we first define

MFFs and explain how to form them. Then, we

introduce the network architecture which takes

advantage of this data fusion strategy. Finally,

we describe the training details on experimented

datasets.

3.1. Motion Fused Frames

A single RGB image usually contains static

appearance information at a specific time instant

and lacks the contextual and temporal information

about previous and next frames. As a result, single

video frames cannot represent the actual state of

an action completely.

Motion fused frames are inspired to be better

representatives of action states. As the name im-

plies, they are composed by fusing motion infor-

mation into static RGB images. Motion informa-

tion is simply optical flow frames that are calcu-

lated from consecutive previous frames, and fu-

sion method is achieved by appending optical flow

frames to RGB image as extra channels, as illus-

Figure 2: Network Architecture for N -segment 3-

motion-1-frame MFF (N -MFFs-3f1c): One input

video is divided into N segments, and equidis-

tant frames are selected from the created seg-

ments. 3 optical flow frames calculated from pre-

vious frames are appended to RGB frames as extra

channels, which forms the Motion Fused Frames

(MFFs). Each MFF is fed into a CNN to extract

a feature vector representing the spatio-temporal

state of the segment. Extracted features are con-

catenated at the fusion layer and passed to fully

connected layers to get class scores.

trated in Fig. 1. Therefore, an MFF contains

(i) spatial content contained in RGB channels,

and (ii)motion content contained in opticalflow

channels. Since optical flow images are computed

from RGB images, in fact the approach needs only

RGB image modality, which avoids the need for

enhanced sensors providing several modalities like

depth and infrared images.

Blending motion information into contextual

information, as in MFFs, ensures pixel-wise cor-

respondence automatically. In other words, spatial

content is aware of which part of the image is in

motion and how the motion is performed.

The quality of motion estimation techniques

plays a critical role on the performance of gesture

recognition. In [24], the performance of several

optical flow estimation techniques are tested to in-
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vestigate the dependency of action recognition on

the quality of motion estimation. It has been exper-

imentally proved that Brox flow [3] performs bet-

ter compared to MPEG flow [12] and Farneback

[6] techniques. Therefore, we have computed hor-

izontal and vertical components of optical flow

frames using Brox technique. We have scaled op-

tical flow frames according to the maximum value

appeared in absolute values of horizontal and ver-

tical components and mapped discretely into the

interval [0, 250]. By means of this step, the range

of optical flow frames becomes same as RGB im-

ages.

3.2. Network Architecture

In this study, we use a deep convolutional

neural network architecture applied on segmented

video clips, as illustrated in Fig. 2. The architec-

ture consists of 4 parts: The formation of MFFs,

a deep CNN to extract spatio-temporal features

from MFFs, fusion of features from different seg-

ments and fully connected layers for global tempo-

ral modeling, and finally a softmax layer for pre-

dicting class-conditional gesture probabilities.

We first divide entire video clip V into N seg-

ments. Each video segment is represented as Sn ∈

R
w×h×crgb×m of m ≥ 1 sequential frames of size

w×h pixels with crgb = 3 channels. Then, within

segments, equidistant color frames are selected

randomly. Each segment is transformed with M

into an MFF mn by appending precomputed opti-

cal flow frames to the selected color frames:

M : Rw×h×crgb×m → R
w×h×cmff ,

where mn = M(Sn).

The number of channels in an MFF can be calcu-

lated with cmff = crgb + n.cflow, where n is the

number of optical flow frames appended for each

segment, and cflow is the number of channels in

flow frames that is equal to 2 containing horizon-

tal and vertical components. For instance, an MFF

containing 3 flow and 1 color frames, as in Fig. 1,

has cmff = 3 + 3.2 = 9 channels. Each MFF mn

is then transformed into a feature representation fn
by a CNN F :

F : Rw×h×cmff → R
q, where fn = F(mn),

After extracting feature representations fn of

each MFF, we concatenate them by keeping their

order intact:

(f1 ⊕ f2 ⊕ ...⊕ fN ) ∈ R
N×q,

where ⊕ refers to concatenation. We pass this vec-

tor into a two-layer multilayer perceptron (MLP).

The intuition behind is that the MLP will be able

to infer the temporal features from the sequence

inherently, without having to know that it is a se-

quence at all. Finally, a softmax layer is applied

to get class-conditional probabilities of each class.

ReLU nonlinearity is applied between all convolu-

tional and fully connected layers with the excep-

tion of the final fully connected layer which has no

nonlinearity.

A network architecture dividing gesture videos

into N segments and transforming each segment

into an MFF by appending n optical flow frames

to 1 color image is referred as N -MFFs-nf1c.

3.3. Training Details

The CNN architecture used to extract features

from MFFs is critical for the performance of the

overall network, and it has been experimented that

deeper architectures like ResNet [10] performs

slightly better results. However, our aim is to eval-

uate the effectiveness of the proposed data level fu-

sion strategy, Motion Fused Frames, in hand ges-

ture recognition. Therefore, following the design

choices of [29], we adopted Inception with Batch

Normalization (BN-Inception) [11] pretrained on

ImageNet as baseline architecture due to its good

balance between accuracy and efficiency. We also

apply the same training strategies of partial-BN

(freezing the parameters of all Batch Normaliza-

tion layers except the first one) and adding an extra

dropout layer after the global pooling layer in BN-

Inception architecture. For fc6, fc7 and fc8 layers

in Fig. 2, we used one-layer MLPs with 256, 512

and class-number units, respectively.

For Jester dataset, we modify the weights of

first convolution layer of pretrained BN-Inception

model to accommodate MFFs. Specifically, the

weights across the RGB channels are averaged and

replicated through the appended optical flow chan-

nels. For ChaLearn and nvGesture datasets, train-

ing is started with the pretrained models on Jester

dataset.

Learning. We use stochastic gradient descent

(SGD) applied to mini-batch of 32 videos with

standard categorical cross-entropy loss. The mo-

mentum and weight decay are set to 0.9 and 5 ×

10−4, respectively. The learning rate is initial-

ized with 1 × 10−3 for all the experiments. For

Jester dataset, the learning rate is reduced twice
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with a factor of 10−1 after 25th and 40th epochs

and optimization is completed after 5 more epochs.

For ChaLearn dataset, the learning rate is reduced

twice with a factor of 4−1 after 15th and 30th

epochs and optimization is completed after 10

more epochs. Finally, for nvGesture dataset, the

learning rate is reduced twice with a factor of 4−1

after 40th and 80th epochs and optimization is

completed after 20 more epochs. These training

rules are applied for the 8-MFFs-3f1c architec-

ture, and approximately same for the other archi-

tectures.

Regularization. We apply several regulariza-

tion techniques to reduce over-fitting. Weight de-

cay (γ = 5 × 10−4) is applied on all parameters

of the network. We use a dropout layer after the

global pooling layer (before fc6 in Fig. 2) of BN-

Inception architecture. For Jester dataset, dropout

ratio in this layer is kept at 0.8 throughout whole

training process. However, over-fitting is much

more severe for ChaLearn and nvGesture datasets

since average number of training samples per class

is much smaller compared to Jester dataset (4391,

144 and 42 training samples per class for Jester,

ChaLearn and nvGesture datasets, respectively).

Therefore, we apply an additional dropout layer

after fc7 layer for these datasets. The dropout ra-

tio is initialized with 0.5 for both dropout layers

and increased to 0.8 and 0.9 when the learning

rates are reduced. Gradual increase of dropout ra-

tio helps faster convergence while keeping over-

fitting in control, which helps to save considerable

amount of training time.

Data Augmentation. Various data augmenta-

tions steps are applied in order to increase the di-

versity of the training videos: (a) Random scal-

ing (±20%), (b) random spatial rotation (±20°),

(c) spatial elastic deformation [20] with pixel dis-

placement of α = 15 and standard deviation of

the smoothing Gaussian kernel σ = 20 pixels (ap-

plied with probability 50%), (d) random crop-

ping, scale jittering and aspect ratio jittering as

in [29], (e) flipping horizontally with probabil-

ity 50% (for only ChaLearn dataset), (f) tempo-

ral scaling (±10%) and jittering (± 2 frames) (for

only nvGesture dataset). All these data augmenta-

tion steps are applied online and the input is finally

resized to 224 × 224 for network training.

Implementation. We have implemented our

approach in PyTorch [19] with a single Nvidia Ti-

tan Xp GPU. We make our code publicly available
2 for reproducibility of the results.

2https://github.com/okankop/MFF-pytorch

Model Top1 Acc.(%) Top5 Acc.(%)

1-MFFs-0f1c 63.60 92.44

1-MFFs-1f1c 72.83 93.96

1-MFFs-2f1c 73.66 94.10

1-MFFs-3f1c 74.09 94.17

1-MFFs-5f1c 78.39 95.84

1-MFFs-7f1c 81.15 96.69

1-MFFs-9f1c 82.69 97.06

1-MFFs-11f1c 82.93 97.07

2-MFFs-0f1c 75.65 94.40

2-MFFs-3f1c 84.22 97.84

4-MFFs-3f1c 92.18 99.41

6-MFFs-3f1c 94.72 99.66

8-MFFs-3f1c 95.36 99.75

10-MFFs-3f1c 95.12 99.69

12-MFFs-3f1c 94.73 99.69

8-MFFs-0f1c 92.90 99.41

8-MFFs-1f1c 94.20 99.61

8-MFFs-2f1c 94.67 99.62

8-MFFs-3f1c 95.36 99.75

8-MFFs-3f1c

(5 crop)
96.33 99.86

Table 1: Results on the validation set of Jester

dataset V1

4. Experiments

The performance of the proposed approach is

tested on three publicly available datasets: Jester

dataset, Chalearn LAP RGB-D Isolated Gesture

dataset and NVIDIA Dynamic Hand Gesture

dataset. For the evaluation part, center cropping

with equidistant frames (middle frame in each

segment) in the videos are used for all the datasets.

4.1. Results Using Jester Dataset

Jester dataset is a recent video dataset for hand

gesture recognition. It is a large collection of

densely-labeled video clips that shows humans

performing pre-defined hand gestures in front of

a laptop camera or webcam with a frame rate of

30 fps. There are in total 148,092 gesture videos

under 27 classes performed by a large number of

crowd workers. The dataset is divided into three

subsets: training set (118,562 videos), validation

set (14,787 videos), and test set (14,743 videos).

We initially investigated the effects of the num-

ber of appended optical flow frames on the perfor-

mance of single segment architectures (1-MFFs-
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Model Top1 Acc.(%)

C3D 94.62

Multiscale TRN [33] 94.78

SJ 94.87

Guangming Zhu 95.01

DIN 95.31

NUDT PDL 95.34

MFNet 96.22

8-MFFs-3f1c 96.28

DRX3D 96.60

Table 2: Results on the test set of Jester dataset V1

nf1c). So, we took the complete gesture videos as

one segment and tried to classify them using a sin-

gle RGB image with varying number of appended

optical flow frames. We started with 0 optical flow

frames and gradually increased it to 11. The results

in the first part of Table 1 show that every extra op-

tical flow frame improves the performance further

(from 63.60% to 82.93%). The performance boost

is significant for the very first optical flow frame

with around 9% accuracy gain.

Secondly, we analyzed the effects of number of

segment selection for gesture videos. Fixing the

number of appended optical frames to 3, we have

experimented the 2, 4, 6, 8, 10 and 12-MFFs ar-

chitectures. The results in the second part of Table

Method Modality Val. Acc.(%)

8-MFFs-0f1c RGB 41.3

8-MFFs-1f1c RGB + Flow 48.4

8-MFFs-2f1c RGB + Flow 50.0

8-MFFs-3f1c RGB + Flow 56.9

Table 3: Results on the validation set of ChaLearn

dataset.

Method Modality Test Acc.(%)

8-MFFs-0f1c RGB 42.8

8-MFFs-1f1c RGB + Flow 53.7

8-MFFs-2f1c RGB + Flow 53.9

8-MFFs-3f1c RGB + Flow 56.7

Table 4: Results on the test set of ChaLearn

dataset.

1 show that the performance increases as we in-

crease the number of segments until reaching to

the 8 segmented architecture. Then the perfor-

mance decreases gradually as we keep incrasing

the segment number. In this analysis, it is found

that 8 segmented architecture performs best.

Lastly, we analyze the effects of the number of

appended optical flow frames on the best perform-

ing segment size (8-MFFs-nf1c) by varying the

number of optical flow frames from 0 to 3. Results

in the last part of Table 1 show that every extra

optical flow frame again boosts the performance

further. However, the performance boost is more

significant for smaller segment architectures like

2-MFFs or 1-MFFs. Out of all models, 8-MFFs-

3f1c with 5-crop data augmentation shows the best

performance.

We evaluate the 8-MFFs-3f1c architecture on

the test set and submit our predictions to the offi-

cial leaderboard of the Jester dataset [1]. At the

submission time, our approach is in the second

place as shown in Table 2.

4.2. Results Using ChaLearn Dataset

This database includes 47933 presegmented

RGB-D gesture videos each representing one ges-

ture only. There are 249 gesture classes performed

by 21 different individuals. The database has been

Method Modality Acc.(%)

8-MFFs-0f1c RGB 41.36

ResC3D [16] RGB 45.07

ResC3D [16] Depth 48.44

ResC3D [16] Flow 44.45

Scene Flow [30] RGBD 36.27

Wang et al. [31] RGBD 39.23

Pyramidal C3D [35] RGBD 45.02

2SCVN+3DDSN [5] RGBD 49.17

32-frame C3D [15] RGBD 49.20

C3D+LSTM [36] RGBD 51.02

8-MFFs-3f1c RGB + Flow 56.9

8-MFFs-3f1c

(5 crop)
RGB + Flow 57.4

Zhang et al. [32] RGBD + Flow 58.65

Wang et al. [27] RGBD + Flow 60.81

ResC3D [16] RGBD + Flow 64.40

Table 5: Comparison with state-of-the-art on

ChaLearn dataset in validation accuracy.
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divided into three sub-datasets having 35878,

5784 and 6271 videos for training, validation and

testing, respectively. Videos are captured by a

Kinect device with a frame rate of 10 fps.

Experiments on Jester dataset proved that ap-

plying MFFs on 8 segmented videos performs bet-

ter than applying smaller segments. Therefore, we

have experimented MFFs on 8 segmented videos

with varying the number of optical flow frames.

Acquired results for models 8-MFFs-nf1c, where

n ranges from 0 to 3, are given in Table 3 and

Table 4 for validation and test sets, respectively.

Compared to Jester dataset, there is a remarkable

performance boost (accuracy gain of 15.6% and

13.9% for validation and test sets, respectively)

as the number of optical flow frames increases.

It must be noted that created MFFs represents a

larger time span for ChaLearn dataset since frames

are captured with a rate of 10 fps. This gives an in-

tuition that acquired performance at Jester dataset

can also be boosted by appending flow frames

from earlier timestamps. However, we leave this

issue as a future research work.

Best performing model (8-MFFs-3f1c) is com-

pared with several state-of-the-art methods. Ac-

cording to Table 5, best results are reported in

case three modalities are used at the same time.

Our approach performs better than most of the ap-

proaches reported in the table without using the

depth modality, which is a significant advantage

of the proposed approach.

4.3. Results Using nvGesture Dataset

nvGesture is a dataset of 25 gesture classes,

each intended for human-computer interfaces and

recorded by multiple sensors and viewpoints.

There are 1532 weakly segmented videos in total,

which are performed by 20 subjects at an indoor

car simulator with both bright and dim artificial

lighting. The dataset is randomly split by subjects

into training (70%) and test (30%) sets, resulting

in 1050 training and 482 test videos. Videos are

captured by a SoftKinetic DS325 sensor with a

frame rate of 30 fps. Since the gesture videos

are weakly segmented - some parts of the videos

do not contain gesture - we cropped the first and

the last 10 frames and used the center 60 frames

for the test set evaluation, where the gesture is

occurring at most of the time.

Although this training set is a lot smaller com-

pared to other datasets, using pretrained models

on Jester dataset helps us to remove the over-

fitting impact considerably. In Table 6, we give

the comparison of our approach with the state-of-

Method Modality Acc. (%)

HOG+HOG2 [18] RGB 24.5

Spatial stream

CNN [21]
RGB 54,6

iDT-HOG [26] RGB 59.1

C3D [22] RGB 69.3

R3DCNN [17] RGB 74.1

iDT-HOF [26] Flow 61.8

Temporal stream

CNN [21]
Flow 68,0

iDT-MBH [26] Flow 76.8

R3DCNN [17] Flow 77.8

Two stream

CNN [21]
RGB + Flow 65,6

iDT [26] RGB + Flow 73.4

R3DCNN [17] RGB + Flow 79.3

6-MFFs-3f1c RGB + Flow 82.4

8-MFFs-3f1c RGB + Flow 84.7

R3DCNN [17] all modalities* 83.8

Human [17] RGB 88.4

Table 6: Comparison with state-of-the-art on

nvGesture dataset. *All modalities refer to RGB,

optical flow, depth, infrared and infrared disparity

modalities.

the-art models. Compared to the popular C3D and

two stream CNN architectures, our approach can

achieve 14.4% and 19.1% accuracy gain, respec-

tively. Our approach performs state-of-the-art per-

formance on this benchmark, although we only use

color and optical flow modalities.

The dataset providers also evaluated the human

performance by asking six subjects to label each

gesture video in the test set for the color modality.

Gesture videos are presented to human subjects in

random order and only once to be consistent with

machine classifiers. Human accuracy is reported

as 88.4% for color modality.

5. Discussion

The proposed approach provides a novel fusion

strategy for optical flow and color modalities to

represent the states of an action. However, this

approach is not restricted to only these modali-

ties. Although depth and infrared (IR) modalities

require additional hardware, they do not require

extra computation like optical flow. This is ad-
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vantageous for real time applications, and the pro-

posed approach can be applied for such modalities

as well, which is the flexibility of our approach.

At the creation of MFFs, optical flow frames

calculated from consecutive previous frames are

appended to the selected RGB image. The effect

of temporally different selection of optical flow

frames (i.e. temporally much earlier or later than

chosen RGB image) can also be investigated which

would increase the performance further.

A recent work [33] proposes an approach which

can capture temporal relations at multiple time

scales. This approach can be used together with

our work to acquire better performance.

After feature extraction, we have used MLPs to

get conditional-class scores of the gesture videos.

However, different architectures like Recurrent

Neural Networks (RNNs) can perform better re-

sults. We plan to analyze all these items as future

work.

6. Conclusion

This paper presents a novel data level fusion

strategy, Motion Fused Frames, by fusing motion

information (optical flow frames) into RGB im-

ages for hand gesture recognition.

We evaluated the proposed MFFs on several re-

cent datasets and acquired competitive results us-

ing only optical flow and color modalities. Our re-

sults show that, fusion of more motion information

improves the performance further at all cases. The

performance increase at the first appended optical

flow frame is especially significant.

As a future work, we would like to analyze

our approach on different modalities at more chal-

lenging tasks requiring human understanding in

videos. We intend to find better ways to exploit

advantages of data level fusion on CNNs for video

analysis.
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