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Abstract

Advances in fluorescence microscopy enable acquisition

of 3D image volumes with better image quality and deeper

penetration into tissue. Segmentation is a required step to

characterize and analyze biological structures in the im-

ages and recent 3D segmentation using deep learning has

achieved promising results. One issue is that deep learning

techniques require a large set of groundtruth data which is

impractical to annotate manually for large 3D microscopy

volumes. This paper describes a 3D deep learning nu-

clei segmentation method using synthetic 3D volumes for

training. A set of synthetic volumes and the correspond-

ing groundtruth are generated using spatially constrained

cycle-consistent adversarial networks. Segmentation re-

sults demonstrate that our proposed method is capable of

segmenting nuclei successfully for various data sets.

1. Introduction

Fluorescence microscopy is a type of an optical mi-

croscopy that uses fluorescence to image 3D subcellular

structures [1, 2]. Three dimensional segmentation is needed

to quantify and characterize cells, nuclei or other biological

structures.

Various nuclei segmentation methods have been investi-

gated in the last few decades. Active contours [3, 4] which

minimizes an energy functional to fit desired shapes has

been one of the most successful methods in microscopy im-

age analysis. Since active contours uses the image gradient

to evolve a contour to the boundary of an object, this method

can be sensitive to noise and highly dependent on initial

contour placement. In [5] an external energy term which

convolves a controllable vector field kernel with an image

edge map was introduced to address these problems. In [6]

2D region-based active contours using image intensity to

identify a region of interest was described. This achieves

better performance on noisy image and is relatively inde-

pendent of the initial curve placement. Extending this to

3D, [7] described 3D segmentation of a rat kidney structure.

This technique was further extended to address the problem

of 3D intensity inhomogeneity [8]. However, these energy

functional based methods cannot distinguish various struc-

tures. Alternatively, [9, 10] described a method known as

Squassh to solve the energy minimization problem from a

generalized linear model to couple image restoration and

segmentation. In addition, [11] described multidimensional

segmentation using random seeds combined with multi-

resolution, multi-scale, and region-growing technique.

Convolutional neural network (CNN) has been used to

address problems in segmentation and object identification

[12]. Various approaches, based on CNNs, have been used

in the biomedical area [13]. U-Net [14] is a 2D CNN which

uses an encoder-decoder architecture with skip connections

to segment cells in light microscopy images. In [15] a multi-

input multi-output CNN for cell segmentation in fluores-

cence microscopy images to segment various size and inten-

sity cells was described. Since these approaches [14, 15] are

2D segmentation methods, they may fail to produce reason-

able segmentation in 3D. More specifically, stacking these

2D segmentation images into 3D volume may result in mis-

alignment in the depth direction [7]. Also, in [16] a method

that trained three networks from different directions in a

volume and combined these three results to produce a form
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Figure 1. Block diagram of the proposed approach for 3D nuclei segmentation

of 3D segmentation was described. A 3D U-Net [17] was

introduced to identify 3D structures by extending the archi-

tecture of [14] to 3D. However, this approach requires man-

ually annotated groundtruth to train the network. Generat-

ing groundtruth for 3D volumes is tedious and is generally

just done on 2D slices, obtaining true 3D groundtruth vol-

umes are impractical. One way to address this is to use syn-

thetic ground truth data [18, 19]. A method that segments

nuclei by training a 3D CNN with synthetic microscopy vol-

umes was described in [20]. Here, the synthetic microscopy

volumes were generated by blurring and noise operations.

Generating realistic synthetic microscopy image vol-

umes remains a challenging problem since various types

of noise and biological structures with different shapes are

present and need to be modeled. Recently, in [21] a gener-

ative adversarial network (GAN) was described to address

image-to-image translation problems using two adversarial

networks, a generative network and a discriminative net-

work. In particular, the discriminative network learns a loss

function to distinguish whether the output image is real or

fake whereas the generative network tries to minimize this

loss function. One of the extensions of GANs is Pix2Pix

[22] which uses conditional GANs to learn the relationship

between the input image and output image that can generate

realistic images. One issue with Pix2Pix [22] is that it still

requires paired training data to train the networks. In [23]

coupled GANs (CoGAN) for learning the joint distribution

of multi-domain images without having the corresponding

groundtruth images was introduced. Later, cycle-consistent

adversarial networks (CycleGAN) [24] employed a cycle

consistent term in the adversarial loss function for image

generation without using paired training data. More re-

cently, a segmentation method using concatenating segmen-

tation network to CycleGAN to learn the style of CT seg-

mentation and MRI segmentation was described in [25].

In this paper, we present a 3D segmentation method to

identify and segment nuclei in fluorescence microscopy vol-

umes without the need of manual segmented groundtruth

volumes. Three dimensional synthetic training data is gen-

erated using spatially constrained CycleGAN. A 3D CNN

network is then trained using 3D synthetic data to seg-

ment nuclei structures. Our method is evaluated using

hand segmented groundtruth volumes of real fluorescence

microscopy data from a rat kidney. Our data are col-

lected using two-photon microscopy with nuclei labeled

with Hoechst 33342 staining.

2. Proposed Method

Figure 1 shows a block diagram of our method. We de-

note I as a 3D image volume of size X × Y ×Z. Note that

Izp is a pth focal plane image, of size X × Y , along the z-

direction in a volume, where p ∈ {1, . . . , Z}. Note also that

Iorig and Iseg is the original fluorescence microscopy vol-

ume and segmented volume, respectively. In addition, let

I(qi:qf ,ri:rf ,pi:pf ) be a subvolume of I , whose x-coordinate

is qi ≤ x ≤ qf , y-coordinate is ri ≤ y ≤ rf , z-coordinate

is pi ≤ z ≤ pf , where qi, qf ∈ {1, . . . , X}, ri, rf ∈
{1, . . . , Y }, pi, pf ∈ {1, . . . , Z}, qi ≤ qf , ri ≤ rf , and

pi ≤ pf . For example, I
seg

(241:272,241:272,131:162) is a subvol-

ume of a segmented volume, Iseg, where the subvolume is

cropped between 241st slice and 272nd slice in x-direction,

between 241st slice and 272nd slice in y-direction, and be-

tween 131st slice and 162nd slice in z-direction.

As shown in Figure 1, our proposed method consists

of two steps: 3D synthetic data generation and 3D CNN

segmentation. We first generate synthetic binary volumes,

I labelcyc, and then use them with a subvolume of the origi-

nal image volumes, Iorigcyc, to train a spatially constrained

CycleGAN (SpCycleGAN) and obtain a generative model

denoted as model G. This model G is used with another set

of synthetic binary volume, I label, to generate correspond-

ing synthetic 3D volumes, Isyn. For 3D CNN segmenta-

tion, we can utilize these paired Isyn and I label to train a

3D CNN and obtain model M . Finally, the 3D CNN model

M is used to segment nuclei in Iorig to produce Iseg.

2.1. 3D Synthetic Data Generation

Three dimensional synthetic data generation consists of

synthetic binary volume generation, SpCycleGAN training,

and SpCycleGAN inferences. In synthetic binary volume
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Figure 2. Architecture of our modified 3D U-Net

generation, nuclei are assumed to have an ellipsoidal shape,

multiple nuclei are randomly generated in different orienta-

tions and locations in a volume [20]. The original Cycle-

GAN and our SpCycleGAN were trained to generate a set

of synthetic volumes.

2.1.1 CycleGAN

The CycleGAN is trained to generate a synthetic mi-

croscopy volume. CycleGAN uses a combination of dis-

criminative networks and generative networks to solve a

minimax problem by adding cycle consistency loss to the

original GAN loss function as [21, 24]:

L(G,F,D1, D2) = LGAN(G,D1, I
labelcyc, Iorigcyc)

+ LGAN(F,D2, I
origcyc, I labelcyc)

+ λLcyc(G,F, Iorigcyc, I labelcyc) (1)

where

LGAN(G,D1, I
labelcyc, Iorigcyc) = EIorigcyc [log(D1(I

origcyc))]

+ EIlabelcyc [log(1−D1(G(I labelcyc)))]

LGAN(F,D2, I
origcyc, I labelcyc) = EIlabelcyc [log(D2(I

labelcyc))]

+ EIorigcyc [log(1−D2(F (Iorigcyc)))]

Lcyc(G,F, Iorigcyc, I labelcyc) = EIlabelcyc [||F (G(I labelcyc))− I labelcyc||1]

+ EIorigcyc [||G(F (Iorigcyc))− Iorigcyc||1].

Here, λ is a weight coefficient and || · ||1 is L1 norm. Note

that Model G maps I labelcyc to Iorigcyc while Model F

maps Iorigcyc to I labelcyc. Also, D1 distinguishes between

Iorigcyc and G(I labelcyc) while D2 distinguishes between

I labelcyc and F (Iorigcyc). G(I labelcyc) is an original like

microscopy volume generated by model G and F (Iorigcyc)
is generated by model F that looks similar to a synthetic

binary volume. Here, Iorigcyc and I labelcyc are unpaired

set of images. In CycleGAN inference, Isyn is generated

using the model G on I label. As previously indicated Isyn

and I label are a paired set of images. Here, I label is served

as a groundtruth volume corresponding to Isyn.

2.1.2 Spatially Constrained CycleGAN

Although the CycleGAN uses cycle consistency loss to con-
strain the similarity of the distribution of Iorigcyc and Isyn,
CycleGAN does not provide enough spatial constraints on
the locations of the nuclei. CycleGAN generates realistic
synthetic microscopy images but a spatial shifting on the
location of the nuclei in Isyn and I label was observed. To
create a spatial constraint on the location of the nuclei, a net-
work H is added to the CycleGAN and takes G(I labelcyc)
as an input to generate a binary mask, H(G(I labelcyc)).
Here, the architecture of H is the same as the architecture
of G. Network H minimizes a L2 loss, LSpatial, between

H(G(I labelcyc)) and I labelcyc. LSpatial serves as a spatial
regulation term in the total loss function. The network H is
trained together with G. The loss function of the SpCycle-
GAN is defined as:

L(G,F,H,D1, D2)= LGAN(G,D1, I
labelcyc

, I
origcyc)

+ LGAN(F,D2, I
origcyc

, I
labelcyc)

+ λ1Lcyc(G,F, I
origcyc

, I
labelcyc)

+ λ2Lspatial(G,H, I
origcyc

, I
labelcyc)

(2)
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where λ1 and λ2 are the weight coefficients for Lcyc and

Lspatial, respectively. Note that first three terms are the

same and already defined in Equation (1). Here, Lspatial

can be expressed as

Lspatial(G,H, Iorigcyc, I labelcyc) = EIlabelcyc [||H(G(I labelcyc))− I labelcyc||2].

2.2. 3D U-Net

Figure 2 shows the architecture of our modified 3D U-

Net. The filter size of each 3D convolution is 3× 3× 3. To

maintain the same size of volume during 3D convolution,

a voxel padding of 1 × 1 × 1 is used in each convolution.

A 3D batch normalization [26] and a leaky rectified-linear

unit activation function are employed after each 3D convo-

lution. In the downsampling path, a 3D max pooling uses

2 × 2 × 2 with stride of 2 is used. In the upsampling path,

feature information is retrieved using 3D transpose convo-

lutions. Our modified 3D U-Net is one layer deeper than

conventional U-Net as can be seen in Figure 2. Our train-

ing loss function can be expressed as a linear combination

of the Dice loss (LDice) and the binary cross-entropy loss

(LBCE) such that

Lseg(T, S) = µ1LDice(T, S) + µ2LBCE(T, S) (3)

where

LDice(T, S) =
2(
∑N

i=1 tisi)∑N

i=1 t
2
i +

∑N

i=1 s
2
i

LBCE(T, S) = −
1

N

N∑

i=1

ti log(si) + (1− ti) log(1− si),

respectively [27]. Note that T is the set of the targeted

groundtruth values and ti ∈ T is a targeted groundtruth

value at ith voxel location. Similarly, S is a probability map

of binary volumetric segmentation and si ∈ S is a proba-

bility map at ith voxel location. Lastly, N is the number

of entire voxels and µ1, µ2 serve as the weight coefficient

between to loss terms in Equation (3). The network takes

a grayscale input volume with size of 64 × 64 × 64 and

produces an voxelwise classified 3D volume with the same

size of the input volume. To train our model M , V pairs of

synthetic microscopy volumes, Isyn, and synthetic binary

volumes, I label, are used.

2.2.1 Inference

For the inference step we first zero-padded Iorig by 16
voxels on the boundaries. A 3D window with size of

64 × 64 × 64 is used to segment nuclei. Since the zero

padded Iorig is bigger than the 3D window, the 3D win-

dows is slided to x, y, and z-directions by 32 voxels on zero-

padded Iorig [20]. Nuclei partially observed on boundaries

of the 3D window may not be segmented correctly. Hence,

only the central subvolume of the output of the 3D window

with size of 32 × 32 × 32 is used to generate the corre-

sponding subvolume of Iseg with size of 32×32×32. This

process is done until the 3D window maps an entire volume.

3. Experimental Results

We tested our proposed method on two different rat kid-

ney data sets. These data sets contain grayscale images of

size X = 512 × Y = 512. Data-I consists of Z = 512
images, Data-II consist of Z = 64.

Our SpCycleGAN is implemented in Pytorch using the

Adam optimizer [28] with default parameters given by Cy-

cleGAN [24]. In addition, we used λ1 = λ2 = 10
in the SpCycleGAN loss function shown in Equation (2).

We trained the CycleGAN and SpCycleGAN to generate

synthetic volumes for Data-I and Data-II, respectively. A

128 × 128 × 128 synthetic binary volume for Data-I de-

noted as I labelcycData−I and a 128 × 128 × 300 subvol-

ume of original microscopy volume of Data-I denoted as

IorigcycData−I were used to train model GData−I . Simi-

larly, a 128×128×128 synthetic binary volume for Data-II

denoted as I labelcycData−II and a 128 × 128 × 32 subvol-

ume of original microscopy volume of Data-II denoted as

IorigcycData−II were used to train model GData−II .

We generated 200 sets of 128 × 128 × 128 syn-

thetic binary volumes, I labelData−I and I labelData−II where

I labelData−I and I labelData−II are generated according to

different size of nuclei in Data-I and Data-II, respectively.

By using the model GData−I on I labelData−I , 200 pairs

of synthetic binary volumes, I labelData−I , and correspond-

ing synthetic microscopy volumes, IsynData−I , of size of

128× 128× 128 were obtained. Similarly, by using model

GData−II on I labelData−II , 200 pairs of I labelData−II and

corresponding IsynData−II , of size of 128×128×128 were

obtained. Since our modified 3D U-Net architecture takes

volumes of size of 64 × 64 × 64, we divided I labelData−I ,

IsynData−I , I labelData−II , and IsynData−II into adjacent

non overlapping 64× 64× 64. Thus, we have 1600 pairs of

synthetic binary volumes and corresponded synthetic mi-

croscopy volumes per each data to train our modified 3D

U-Net. Note that these 1600 synthetic binary volumes per

each data are used as groundtruth volumes to be paired

with corresponding synthetic microscopy volumes. Model

MData−I and MData−II are then generated.

Our modified 3D U-Net is implemented in Pytorch us-

ing the Adam optimizer [28] with learning rate 0.001. For

the evaluation purpose, we use different settings of using

3D synthetic data generation methods (CycleGAN or Sp-

CycleGAN), different number of pairs of synthetic training

volume V (V = 80 or V = 1600) among 1600 pairs of syn-

thetic binary volume corresponding synthetic microscopy

volume. Also, we use different loss functions with different
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settings of the µ1 and µ2. Moreover, we also compared our

modified 3D U-Net with 3D encoder-decoder architecture

[20]. Lastly, small objects which are less than 100 voxels

were removed using 3D connected components.

(a) (b) (c)

(d) (e) (f)

Figure 3. Slices of the original volume, the synthetic microscopy

volume, and the corresponding synthetic binary volume for Data-I

and Data-II (a) original image of Data-I, (b) synthetic microscopy

image of Data-I, (c) synthetic binary image of Data-I, (d) original

image of Data-II, (e) synthetic microscopy image of Data-II, (f)

synthetic binary image of Data-II

(a) (b)

Figure 4. A comparison between two synthetic data generation

methods overlaid on the corresponding synthetic binary image (a)

CycleGAN, (b) SpCycleGAN

Figure 3 shows the synthetic images generated by our

proposed method. The left column indicates original im-

ages whereas middle column shows synthetic images arti-

ficially generated from corresponding synthetic binary im-

ages provided in right column. As can be seen from Figure

3, the synthetic images reflect characteristics of the original

microscopy images such as background noise, nuclei shape,

orientation and intensity.

Additionally, two synthetic data generation methods be-

tween CycleGAN and SpCycleGAN from the same syn-

thetic binary image are compared in Figure 4. Here, the syn-

thetic binary image is overlaid on the synthetic microscopy

image and labeled in red. It is observed that our spatial con-

straint loss reduces the location shift of nuclei between a

synthetic microscopy image and its synthetic binary image.

Our realistic synthetic microscopy volumes from SpCycle-

GAN can be used to train our modified 3D U-Net.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. 3D visualization of subvolume 1 of Data-I using

Voxx [29] (a) original volume, (b) 3D ground truth volume, (c)

3D active surfaces from [7], (d) 3D active surfaces with inhomo-

geneity correction from [8], (e) 3D Squassh from [9, 10], (f) 3D

encoder-decoder architecture from [20], (g) 3D encoder-decoder

architecture with CycleGAN, (h) 3D U-Net architecture with Sp-

CycleGAN (Proposed method)

2338



Table 1. Accuracy, Type-I and Type-II errors for known methods and our method on subvolume 1, subvolume 2 and subvolume 3 of Data-I

Subvolume 1 Subvolume 2 Subvolume 3

Method Accuracy Type-I Type-II Accuracy Type-I Type-II Accuracy Type-I Type-II

Method [7] 84.09% 15.68% 0.23% 79.25% 20.71% 0.04% 76.44% 23.55% 0.01%

Method [8] 87.36% 12.44% 0.20% 86.78% 13.12% 0.10% 83.47% 16.53% 0.00%

Method [9, 10] 90.14% 9.07% 0.79% 88.26% 11.67% 0.07% 87.29% 12.61% 0.10%

Method [20] 92.20% 5.38% 2.42% 92.32% 6.81% 0.87% 94.26% 5.19% 0.55%

3D Encoder-Decoder

93.05% 3.09% 3.87% 91.30% 5.64% 3.06% 94.17% 3.96% 1.88%+ CycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D Encoder-Decoder

94.78% 3.42% 1.79% 92.45% 6.62% 0.92% 93.57% 6.10% 0.33%+ SpCycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

95.07% 2.94% 1.99% 93.01% 6.27% 0.72% 94.04% 5.84% 0.11%+ BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

94.76% 3.00% 2.24% 93.03% 6.03% 0.95% 94.30% 5.22% 0.40%+ DICE

(µ1 = 1, µ2 = 0,V = 80)

3D U-Net +SpCycleGAN

95.44% 2.79% 1.76% 93.63% 5.73% 0.64% 93.90% 5.92% 0.18%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 80)

3D U-Net +SpCycleGAN

95.37% 2.77% 1.86% 93.63% 5.69% 0.68% 94.37% 5.27% 0.36%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 1600)

3D U-Net +SpCycleGAN

95.56% 2.57% 1.86% 93.67% 5.65% 0.68% 94.54% 5.10% 0.36%
+ DICE and BCE + PP

(µ1 = 1, µ2 = 10,V = 1600)

(Proposed method)

Our proposed method was compared to other 3D seg-

mentation methods including 3D active surface [7], 3D

active surface with inhomogeneity correction [8], 3D

Squassh [9, 10], 3D encoder-decoder architecture [20], 3D

encoder-decoder architecture with CycleGAN. Three orig-

inal 3D subvolumes of Data-I were selected to evaluate

the performance of our proposed method. We denote the

original volume as subvolume 1 (I
orig

(241:272,241:272,31:62)),

subvolume 2 (I
orig

(241:272,241:272,131:162)), and subvolume

3 (I
orig

(241:272,241:272,231:262)), respectively. Corresponding

groundtruth of each subvolume was hand segmented. Voxx

[29] was used to visualize the segmentation results in 3D

and compared to the manually annotated volumes. In Fig-

ure 5, 3D visualizations of the hand segmented subvolume

1 and the corresponding segmentation results for various

methods were presented. As seen from the 3D visualiza-

tion in Figure 5, our proposed method shows the best per-

formance among presented methods visually compared to

hand segmented groundtruth volume. In general, our pro-

posed method captures only nuclei structure whereas other

presented methods falsely detect non-nuclei structures as

nuclei. Note that segmentation results in Figure 5(g) yields

smaller segmentation mask and suffered from location shift.

Our proposed method shown in Figure 5(h) outperforms

Figure 5(g) since our proposed method uses spatially con-

strained CycleGAN and takes consideration of the Dice loss

and the binary cross-entropy loss.

All segmentation results were evaluated quantitatively

based on voxel accuracy, Type-I error and Type-II error met-

rics, using 3D hand segmented volumes. Here, accuracy =
nTP+nTN

ntotal
, Type-I error = nFP

ntotal
, Type-II error = nFN

ntotal
, where

nTP, nTN, nFP, nFN, ntotal are defined to be the number

of true-positives (voxels segmented as nuclei correctly),

true-negatives (voxels segmented as background correctly),

false-positives (voxels falsely segmented as nuclei), false-

negatives (voxels falsely segmented as background), and the

total number of voxels in a volume, respectively.

The quantitatively evaluations for the subvolumes are

shown in Table 1. Our proposed method outperforms other

compared methods. The smaller Type-I error shows our

proposed method successfully rejects non-nuclei structures

during segmentation. Also, our proposed method has rea-

sonably low Type-II errors compared to other segmentation

methods. Moreover, in this table, we show that our pro-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Original images and their color coded segmentation re-

sults of Data-I and Data-II (a) Data-I Iorigz66
, (b) Data-II Iorigz31

, (c)

Data-I Isegz66
using [20], (d) Data-II Isegz31

using [20], (e) Data-I Isegz66

using 3D encoder-decoder architecture with CycleGAN, (f) Data-

II Isegz31
using 3D encoder-decoder architecture with CycleGAN,

(g) Data-I Isegz66
using 3D U-Net architecture with SpCycleGAN

(Proposed method), (h) Data-II Isegz31
using 3D U-Net architecture

with SpCycleGAN (Proposed method)

posed SpCycleGAN creates better paired synthetic volumes

which reflects in segmentation accuracy. Instead of 3D

encoder-decoder structure, we use 3D U-Net which leads

to better results since 3D U-Net has skip connections that

can preserve spatial information. In addition, the combi-

nation of two loss functions such as the Dice loss and the

BCE loss turns out to be better for the segmentation task in

our application. In particular, the Dice loss constrains the

shape of the nuclei segmentation whereas the BCE loss reg-

ulates voxelwise binary prediction. It is observed that train-

ing with more synthetic volumes can generalize our method

to achieve better segmentation accuracy. Finally, the post-

processing (PP) that eliminates small components helps to

improve segmentation performance.

To make this clear, segmentation results were color

coded using 3D connected component labeling and overlaid

on the original volumes. The method from [20] cannot dis-

tinguish between nuclei and non-nuclei structures including

noise. This is especially recognizable from segmentation

results of Data-I in which multiple nuclei and non-nuclei

structures are colored with the same color. As can be ob-

served from Figure 6(e) and 6(f), segmentation masks are

smaller than nuclei size and suffered from location shifts.

Conversely, our proposed method shown in Figure 6(g) and

6(h) segments nuclei with the right shape at the correct lo-

cations.

4. Conclusion

In this paper we presented a modified 3D U-Net nuclei

segmentation method using paired synthetic volumes. The

training was done using synthetic volumes generated from

a spatially constrained CycleGAN. The combination of the

Dice loss and the binary cross-entropy loss functions are op-

timized during training. We compared our proposed method

to various segmentation methods and with manually anno-

tated 3D groundtruth from real data. The experimental re-

sults indicate that our method can successfully distinguish

between non-nuclei and nuclei structure and capture nu-

clei regions well from various microscopy volumes. One

drawback of our proposed segmentation method is that our

method cannot separate nuclei if they are physically touch-

ing to each other. In the future, we plan to develop nuclei

localization method to identify overlapping nuclei to indi-

viduals.
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