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Abstract

Cell deformation is regulated by complex underlying bi-

ological mechanisms associated with spatial and tempo-

ral morphological changes in the nucleus that are related

to cell differentiation, development, proliferation, and dis-

ease. Thus, quantitative analysis of changes in size and

shape of nuclear structures in 3D microscopic images is im-

portant not only for investigating nuclear organization, but

also for detecting and treating pathological conditions such

as cancer. While many efforts have been made to develop

cell and nuclear shape characteristics in 2D or pseudo-3D,

several studies have suggested that 3D morphometric mea-

sures provide better results for nuclear shape description

and discrimination. A few methods have been proposed to

classify cell and nuclear morphological phenotypes in 3D,

however, there is a lack of publicly available 3D data for

the evaluation and comparison of such algorithms. This

limitation becomes of great importance when the ability to

evaluate different approaches on benchmark data is needed

for better dissemination of the current state of the art meth-

ods for bioimage analysis. To address this problem, we

present a dataset containing two different cell collections,

including original 3D microscopic images of cell nuclei

and nucleoli. In addition, we perform a baseline evalua-

tion of a number of popular classification algorithms using

2D and 3D voxel-based morphometric measures. To ac-

count for batch effects, while enabling calculations of AU-

ROC and AUPR performance metrics, we propose a specific

cross-validation scheme that we compare with commonly

used k-fold cross-validation. Original and derived imag-

ing data are made publicly available on the project web-

page: http://www.socr.umich.edu/projects/

3d-cell-morphometry/data.html.

1. Introduction

Morphology of a cell nucleus and its compartments is

regulated by complex biological mechanisms related to

cell differentiation, development, proliferation, and disease

[14, 34, 37]. Changes in nuclear morphology are associated

with reorganization of chromatin architecture and related to

altered functional properties such as gene regulation and ex-
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pression. Conversely, studies in mechanobiology show that

external geometric constraints and mechanical forces that

deform the cell nucleus affect chromatin dynamics and gene

and pathway activation [32]. Thus, nuclear morphological

quantification becomes of major relevance as the studies of

the reorganization of the chromatin and DNA architecture

in the spatial and temporal framework, known as the 4D

nucleome, emerge [11, 36]. Cellular structures of interest

in the context of the 4D nucleome include not only the nu-

cleus itself, but also the nucleolus and nucleolar-associating

domains, chromosome territories, topologically associating

domains, lamina-associating domains, and loop domains in

transcription factories [10]. Quantitative analyses of nuclear

and nucleolar morphological changes also have medical im-

plications, for example, in detection and treatment of patho-

logical conditions such as cancer [22, 34, 37].

While many efforts have been made to develop cell and

nuclear morphological characteristics in 2D or pseudo-3D

[12, 25], several studies have suggested that 3D measures

provide better results for nuclear morphometry description

and discrimination [6, 21]. Although a number of signal

processing and computer vision algorithms have been pro-

posed to analyze cell and nuclear morphological pheno-

types using 3D representations [8], there is a lack of pub-

licly available 3D cell imaging datasets that could serve for

the evaluation of various tools and methods. This limitation

becomes of great importance in the modern reality of big

data microscopy, when the ability to evaluate different ap-

proaches on publicly available data is needed for better dis-

semination of the current state of the art methods for bioim-

age analysis [4, 20].

In order to enable objective evaluation of the methods

for nuclear morphometric analysis, we create a 3D cell nu-

clear morphology dataset. The dataset includes 3D fluo-

rescence microscopy volumetric images of cell nuclei and

nucleoli of two different cell collections: primary human

fibroblast cells and human prostate cancer cells (PC3). In

turn, each collection contains images of cells in two dif-

ferent phenotypic states that have previously been shown

to exhibit quantifiable changes in nuclear morphology. This

allows to evaluate methods for morphological quantification

on two binary classification problems.

We also provide a baseline evaluation of simple voxel-

based morphometric analysis methods. First, we use au-

tomatic segmentation methods to extract individual nuclear

and nucleolar binary masks in 3D. We then extract com-

mon 2D and 3D voxel-based measures of binary mask mor-

phology and combine them into per-nucleus feature vectors.

These feature vectors then used to evaluate a number of ma-

chine learning algorithms to provide morphology classifi-

cation performance baselines. To account for batch effects,

while enabling calculations of the Area under the Precision-

Recall curve (AUPR) and the Area Under the Receiver Op-

erating Characteristic curve (AUROC) performance met-

rics, we propose a specific cross-validation (CV) scheme.

To promote the reproducibility of results, facilitate open-

scientific development, and enable collaborative valida-

tion we will make our workflows, together with underly-

ing source code, documentation, and all derived data from

this study available online. Original and derived imag-

ing data are made publicly available on the project web-

page: http://www.socr.umich.edu/projects/

3d-cell-morphometry/data.html. Additionally,

extracted morphometric features are made available for in-

teractive exploration and analysis online via our visual ana-

lytics platform SOCRAT [16].

2. Dataset preparation

2.1. Sample preparation

The dataset is composed of two different cell collections.

Each collection includes 3D volumetric images of cells in

two phenotypic states that have been shown to exhibit dif-

ferent nuclear and/or nucleolar morphology.

The first collection includes images of primary human

fibroblast cells (newborn male) that were purchased from

ATCC (BJ Fibroblasts CRL-2522 normal). In order to in-

troduce morphology changes, a part of this collection was

subjected to a G0/G1 Serum Starvation Protocol [17]. This

protocol is used for cell cycle synchronization and has pre-

viously been shown to cause morphology changes in human

fibroblasts, affecting nuclear size and shape [31]. As a re-

sult, the first collection contains 3D volumetric images of

cells in the following phenotypic classes: (1) proliferating

fibroblasts (PROLIF), and (2) cell cycle synchronized by the

serum-starvation protocol (SS). These classes serve as two

categories in a binary morphology classification setting.

The second collection contains images of human prostate

cancer cells (PC3). Through the course of progression to

metastasis, malignant cancer cells undergo a series of re-

versible transitions between intermediate phenotypic states

bounded by pure epithelium and pure mesenchyme [34].

These transitions in prostate cancer are associated with

quantifiable changes in both nuclear and nucleolar structure

[22, 35]. Microscope slides of prostate cancer cell line PC3

were cultured in: (1) epithelial (EPI), and (2) mesenchymal

transition (EMT) phenotypic states, as described in [35].

Thus, this setting can also be treated as a binary classifi-

cation task.

2.2. Image acquisition

Cells in both collections are labeled with 3 different flu-

orophores: DAPI (4’,6-diamidino-2-phenylindole), a com-

mon stain for the nuclei, fibrillarin antibody (anti-fibrillarin)

and ethidium bromide (EtBr), both used for nucleoli stain-

ing. Although anti-fibrillarin is a commonly used nucleolar
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Figure 1. An exemplar 3D visualization of a data sub-volume from the fibroblast cell collection: (A) DAPI channel; (B) EtBr channel;

(C) anti-fibrillarin channel; (D) a composite image. Images are thresholded by 25% the for the clarity of visual appearance and visualized

using ClearVolume [27].

label, we find it to be too specific, which makes the extrac-

tion of a shape mask problematic. It has been shown that

EtBr can be used for staining dense chromatin, nucleoli, and

ribosomes [3]. We find that it provides better overall repre-

sentation of nucleolar shape. Anti-fibrillarin is combined

with EtBr by co-localization to confirm correct detection of

nucleoli locations as described below. 3D imaging used a

Zeiss LSM 710 laser scanning confocal microscope with a

63x PLAN/Apochromat 1.4NA DIC objective.

For multichannel vendor data, the channels are separated

and saved as individual volumes labeled as c0, c1, c2, rep-

resenting the DAPI, anti-fibrillarin, and EtBr channels, re-

spectively, Fig. 1. Each channel-specific volume is then re-

sliced into a 1, 024 × 1, 024 × Z lattice (Z = {30, 50}),

where regional sub-volumes facilitate the alignment with

the native tile size of the microscope. All sub-volumes

are saved as multi-image 3D TIFF volumes. For every

sub-volume, accompanying vendor meta-data are extracted

from the original data.

As a result, the fibroblasts collection includes the total

of 178 sub-volumes (64 PROLIF and 112 SS), see Table. 1.

The PC3 collection includes the total of 101 sub-volumes

(50 EPI and 51 EMT), see Table. 2.

3. Methods

To establish baseline morphometry classification results,

we first segment nuclei and nucleoli from the original data

Class Sub-volumes GBs

PROLIF 64 10.6

SS 112 19.2

TOTAL 178 29.8

Table 1. The size of the fibroblast cell collection. Sub-volumes

column shows the number of 1024 × 1024 × Z sub-volumes per

channel.

Class Sub-volumes GBs

EPI 50 15.7

EMT 51 21.3

TOTAL 101 37.0

Table 2. The size of the PC3 cell collection. Sub-volumes column

shows the number of 1024× 1024× Z sub-volumes per channel.

sub-volumes. Then, we extract multiple voxel-based mor-

phometric characteristics from 3D binary masks and their

2D projections (2D masks). We use these features to eval-

uate the performance of a number of widely used classi-

fication algorithms. We also assess possible batch effects

in data by comparing two different cross-validation tech-

niques.
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Figure 2. A schematic view of the dataset segmentation protocol and exemplar 2D slices of fibroblast data: (A) steps for the DAPI segmen-

tation process that produces nuclear masks after hole-filling (color-coded by quality control filter); (B) steps for EtBr segmentation that

outputs nucleolar masks (colored by connected component labeling); (C) co-localization nucleolar segmented masks with the segmented

anti-fibrillarin channel; (D) the composite image of segmented data.

3.1. Nuclear segmentation

Model-based cell segmentation approaches are the most

common in bioimage analysis and typically perform well

for fluorescence microscopy images of cultured cells [4].

Moreover, they allow to avoid a very labor-intensive pro-

cess of manual pixel-level expert annotation of large 3D

volumetric imaging data. After testing a number of im-

plementations of 3D thresholding-based and watershed-like

methods in commonly used bioimage analysis packages, we

perform the automatic 3D segmentation of nuclei using Nu-

clear Segmentation algorithm from the Farsight toolkit [1].

This tool was created specifically to segment DAPI-stained

nuclei in 2D or 3D, it does not require a labeled training set,

has a convenient command line interface, and demonstrated

stable results on these data. The algorithm implements mul-

tiple steps which include a graph-cut algorithm to binarize

the sub-volumes, a multi-scale Laplacian of Gaussian fil-

ter to convert the nuclei to blob masks, fast clustering to

delineate the nuclei, and nuclear contour refinement using

graph-cuts with alpha-expansions.

After segmentation of the DAPI channel sub-volumes,

Fig. 2A, data were converted to 16-bit 3D TIFF files, each

segmented nucleus was represented as a binary mask, and

given a unique index value. Post-segmentation processing

of nuclear masks included 3D hole filling and a filtering step

that removed the objects if they span the edge of a tile, are

connected to other objects, or their compactness or voxel

count values were outside of the empirically estimated in-

terval. This quality control protocol allowed to remove most

of the artifacts, as confirmed by visual inspection.

3.2. Nucleolar segmentation

Since nucleolar labels are not very specific and produce

strong background, see Fig. 1, segmentation of nucleoli us-

ing model-based approaches did not demonstrate acceptable

results. Therefore, segmentation of objects within the nu-

cleus was performed using the Trainable Weka Segmenta-

tion [2], a machine learning tool for microscopy pixel clas-

sification bundled with Fiji [29], a commonly used bioim-

age analysis framework. The Trainable Weka Segmenta-

tion plugin is the most popular segmentation tool in ImageJ

ecosystem [30], and it is convenient to use for labeling bi-

ological structures in 3D images, since it does not require

the exact mask contour tracing. Instead, it allows the ex-
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traction of a number of features from scarcely labeled pixel

groups from both classes, which then are used train a clas-

sification algorithm from the WEKA Data Mining software

package [9]. Intra-nuclear segmentation was independently

performed on EtBr and anti-fibrillarin stained nucleoli. Nu-

clear masks were used to isolate sub-nuclear segmentations

in the EtBr and anti-fibrillarin channels to objects within a

nucleus. An individual Random Forest classifier model [18]

was created for each channel by using a random selection

of 10% of the sub-volumes within that channel for train-

ing. Trained models were then applied to all sub-volumes

and nucleolar masks were created from the resulting proba-

bility maps and labeled as connected components, Fig. 2B.

Finally, both EtBr and anti-fibrillarin segmented volumes

were used as input to a co-localization algorithm to validate

the segmented EtBr-stained nucleoli based on the presence

of anti-fibrillarin, Fig. 2C.

The quality control protocol for nucleolar masks was

similar to that for the nuclear masks. Since uneven staining

can cause occasional segmentation artifacts, filtering step

also measured spherical compactness of identified objects

[23] and removed the masks if their compactness were out-

side of the empirically estimated interval.

3.3. Voxel­based morphometry

We measure 2D and 3D voxel-based morphometric fea-

tures of both nuclear and nucleolar binary masks, see

Fig. 2D, using image processing library, scikit-image [33].

The 2D feature set includes: area of the object, area of

the 2D bounding box, diameter of a circle with the same

area as the object, ratio of the object area to the bounding

box area, convex hull area, eccentricity, two biggest eigen-

values of the inertia tensor of the region, major and minor

axis of an ellipse fitted to the region, the angle between the

X-axis and the major axis of the fitted ellipse, perimeter of

an object which approximates the contour of the region, the

ratio of the region area to the convex hull area.

The set of 3D morphometry features includes: object

volume, volume of the 3D bounding box, diameter of a

sphere with the same volume as the object, and ratio of the

object volume to the bounding box volume.

In oder to aggregate the nucleolar features per nucleus

we compute median, minimum, maximum, and standard

deviation for each morphometry measure across the nucle-

oli within one nucleus. Correspondingly, nuclei that do not

have any internally positioned nucleoli are excluded from

the further analysis. The number of detected nucleoli per

nucleus is included as an individual feature. Thus, the total

number of features per nucleus is 5 × N + 1, where N is

the number of either 2D or 3D morphometric measures.

We perform exploratory visual analysis of extracted fea-

tures using SOCRAT [16], a web platform for interactive

visual analytics. The goal of visual analytics is to support

analytical reasoning and decision making with a combina-

tion of highly interactive visualizations and data analysis

techniques. SOCRAT implements a visual analytics work-

flow that encompasses an iterative process, in which data

analysts can interactively interrogate extracted morphome-

tric measures in the form of interactive dialogue supported

by visualizations and data analysis components. As an ex-

ample, we include t-Distributed Stochastic Neighbor Em-

bedding (t-SNE) [19] visualizations of both 2D and 3D fea-

tures generated by SOCRAT [16].

3.4. Classification

We compare various supervised classification algorithms

from scikit-learn, a popular Python machine learning toolkit

[24], including Gaussian Naive Bayes (NB), Linear Dis-

criminant Analysis (LDA), k nearest neighbors classifier

(kNN), support vector machines with linear (SVM) and

Gaussian kernels (RBF), Random Forest (RF), Extremely

Randomized Trees (ET), and Gradient Boosting (GBM).

All classifiers use default hyper-parameters. Feature pre-

processing includes feature standardization by subtracting

the mean and scaling to unit variance of the training set. In

this study, we assign the label of the whole image to every

single cell extracted from it.

3.5. Cross­validation

To evaluate the possible batch effect that could occur

during the image acquisition [4], we compare traditional

k-fold cross-validation (CV) scheme with the suggested

Leave-2-Opposite-Groups-Out (L2OGO) scheme. L2OGO

ensures that: (1) all masks derived from one image fall ei-

ther in the training or testing set, and (2) testing set always

contains masks from 2 images of different classes. Un-

like Leave-One-Group-Out CV, L2OGO enables per-split

evaluation of performance metrics such as the Area under

the Precision-Recall curve (AUPR) and the Area Under the

Receiver Operating Characteristic curve (AUROC). Since

original volumes are of different size and contain different

number of nuclei, we joined smaller volumes into bigger

groups to reduce class imbalance in testing sets and the vari-

ance of the performance metric estimates. Given the class

imbalance in L2OGO, we compute AUC, AUPR, and F1

score to compare algorithms [28].

4. Results

4.1. Fibroblast cells morphometric analysis

After the curation process and the exclusion of nuclei

without detected nucleoli, the full collection of segmented

fibroblasts consists of total 965 nuclear (498 SS and 470

PROLIF) and 2,181 nucleolar (1,151 SS and 1,030 PRO-

LIF) binary masks. 2D and 3D morphometric measures of

nuclear and nucleolar masks are merged into per-nucleus
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Figure 3. A t-SNE projection of 2D and 3D voxel-based morpho-

metric features extracted from binary masks of the fibroblast data.

Visualized using SOCRAT [16].

Figure 4. The comparison of cross-validation strategies and com-

monly used algorithms to evaluate the classification performance

and possible batch effects using combined morphometric features

of 2D and 3D fibroblast nuclear and nucleolar binary masks.

feature vectors as described above. To assess the variabil-

ity of data, we use t-SNE [19], a dimensionality reduction

technique that is well suited for the visualization of high-

dimensional datasets on the 2D space. Fig. 3 suggests that

the projection of 3D morphometric measures provides bet-

ter separability of nuclei clusters in the feature space, al-

though still not perfect.

Next, we evaluate the performance of algorithms for

Fibroblast morphometric classification on 2 different CV

schemes: 20 splits in L2OGO and a 7 times repeated 4-

fold CV. Results in Fig. 4 do not show any apparent batch

effects in the 2D classification setting. However, 3D perfor-

mance estimates for all classifiers using L2OGO are more

Figure 5. A t-SNE projection of 2D and 3D voxel-based morpho-

metric features extracted from binary masks of the PC3 data. Vi-

sualized using SOCRAT [16].

Figure 6. The comparison of cross-validation strategies and com-

monly used algorithms to evaluate the classification performance

and possible batch effects using combined morphometric features

of 2D and 3D PC3 nuclear and nucleolar binary masks.

pessimistic compared to 4-fold CV, which indicates the pos-

sibility of batch effects and overly optimistic classification

results in 4-fold CV. As expected, L2OGO led to a large

variance of metrics, especially in the F1 score, which can

be explained by classifiers’ sensitivity to different class im-

balances in each iteration of this scheme. Within L2OGO,

a number of algorithms showed higher performance on 3D

morphometry compared to 2D features. The best overall re-

sult is achieved by the Gaussian SVM (RBF) classifier in

3D with the median AUC = 0.814 ± 0.245, AUPR =
0.724± 0.206, and F1 = 0.709± 0.185).
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4.2. PC3 cells morphometric analysis

After the exclusion of nuclei without detected nucle-

oli, the segmented PC3 collection consists of 458 nuclear

(310 EPI and 148 EMT) and 1,101 nucleolar (649 EPI and

452 EMT) binary masks. Fig. 5 shows t-SNE projection,

demonstrating better cluster separation produced from 3D

morphometric measure space, suggesting that 3D feature

representations are more informative compared to their 2D

counterparts.

After merging smaller EMT groups, L2OGO scheme

produced 4 pairs of groups as training and testing sets.

Given smaller number of volumes and apparent class im-

balance, we compared L2OGO to 4-fold CV repeated 2

times. Similar to the previous experiment, 2D morphome-

try classification performance was quite similar for both CV

schemes, see Fig. 6. However, in 3D, the performance of al-

gorithms degraded as measured by L2OGO CV, such that no

methods performed better than in 2D. This can indicate pos-

sible batch effects, given the perfect performance estimates

for 3 classifiers on 2D features. However, it is hard to judge

given the large performance metrics’ variation in 3D. In this

case, the best classification by single classifier was the result

of applying the Gradient Boosting classifier (GB) with the

median AUC = 0.774± 0.017, AUPR = 0.875± 0.019,

F1 = 0.818± 0.018.

Results of classification on both collections suggest that

the combination of the voxel-based morphometry and com-

mon algorithms with default parameters can provide a good

baseline performance. Using 3D masks can improve the

performance as it did in Fibroblast classification. How-

ever, it suggests that having the three-dimensional informa-

tion sometimes can lead to more apparent batch effects and,

thus, require more complex validation schemes.

5. Discussion

A lack of publicly available 3D cell imaging datasets

limits the evaluation of various 3D cell and nuclear mor-

phology analysis solutions. To address this limitation, we

present a new dataset that consists of two collections of 3D

volumetric microscopic images. Each collection includes

images of cells in two phenotypic states and, thus, poses a

binary classification problem that can be used for the assess-

ment of cell nuclear and nucleolar morphometry analysis

methods. We share these data publicly to promote results

reproducibility, facilitate open-scientific development, and

enable collaborative validation. To the best of our knowl-

edge, this 3D imaging dataset is one of the largest publicly

available datasets of its type.

In order to establish baseline evaluation of simple voxel-

based morphometric analysis methods, we provide an ex-

ample of 3D image processing workflow: from segmenta-

tion, to feature extraction, to morphometric analysis. First,

we use both model-based and machine learning segmenta-

tion methods to extract individual nuclear and nucleolar bi-

nary masks in 3D. Then, we extract commonly used 2D and

3D voxel-based measures of binary mask morphology and

combine them into per-nucleus feature vectors. Variability

of extracted measures between classes is demonstrated via

t-SNE projection visualizations. We compare a number of

commonly used machine learning classification algorithms

on both collections of data using voxel-based morphometric

measures. To account for batch effects, while enabling cal-

culations of AUROC and AUPR performance metrics, we

also propose a specific cross-validation scheme (L2OGO).

Our results indicate potential usefulness of 3D cell imaging

data for morphology analysis. However, they also indicate

the possibility of stronger batch effects compared to the 2D

setting.

As a limitation of this work, the microscope settings did

not meet the Nyquist sample rates and may have created

distortions in the digitized images [7]. Bigger variability

of the performance estimates in 3D using the suggested CV

scheme (L2OGO) may be reduced by better class balanc-

ing or loss weighting during the each iteration of the cross-

validation process. Although produced nuclear and nucleo-

lar binary masks are visually inspected, they are produced

by segmentation algorithms rather than hand-labeled by an

expert. Thus, these masks should not be considered as a

ground truth for segmentation. We provide an example of

3D image processing workflow, which, in general, does not

have to always include segmentations step [4]. The size

of the produced 3D morphological dataset should be big

enough to use segmentation-free deep learning-based mor-

phology analysis approaches [5, 15]. Recent examples in

medical image analysis have already demonstrated success-

ful applications of such models in the small data regime

[13, 26]. Finally, we assume each cell in the same image

to be representative of the same phenotypic label that is

provided on the level of the whole image. However, this

assumption does not always hold. One 3D volumetric im-

age can contain cells of multiple phenotypes. This can be

addressed by using methods for weakly-supervised classifi-

cation that are robust to label noise.

Imaging protocols, original and segmented data, and the

source code are made publicly available on the project web-

page: http://www.socr.umich.edu/projects/

3d-cell-morphometry/data.html. Additionally,

extracted morphometric features are made available for in-

teractive exploration and analysis online via our visual ana-

lytics platform SOCRAT [16].

6. Conclusion

3D cell microscopy is a powerful technique that enables

investigation of biological mechanisms related to morpho-

logical changes in cell nucleus through quantitative analysis
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of changes in its size and shape. The ability to analyze these

changes can significantly impact clinical decision-making

and fundamental investigation of cell deformation. To our

knowledge, we provide the biggest publicly available 3D

cell imaging dataset to the date. We describe the data ac-

quisition process and suggest an image processing work-

flow to establish baseline morphological classification per-

formance. This approach allows an informative evaluation

of cell nuclear and nucleolar shapes in the provided imag-

ing data. Public availability of our workflows, source code,

documentation, and all derived data from this study facili-

tates result reproducibility, collaborative method validation,

and broad knowledge dissemination in the bioimage analy-

sis community and beyond.
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