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ABSTRACT 

 

Nuclear segmentation is an important step in 
quantitative profiling of colony organization in 3D cell 
culture models. However, complexities arise from 
technical variations and biological heterogeneities. We 
proposed a new 3D segmentation model based on 
convolutional neural networks for 3D nuclear 
segmentation, which overcomes the complexities 
associated with non-uniform staining, aberrations in 
cellular morphologies, and cells being in different 
states. The uniqueness of the method originates from (i) 
volumetric operations to capture all the three-
dimensional features, and (ii) the encoder-decoder 
architecture, which enables segmentation of the 
spheroid models in one forward pass. The method is 
validated with four human mammary epithelial cell 
(HMEC) lines—each with unique genetic makeup. The 
performance of the proposed method is compared with 
the previous methods and is shown that the deep 
learning model has a superior pixel-based 
segmentation, and an F1-score of 0.95 is reported. 
 

Index Terms— Convolutional neural networks, 3D 
nuclear segmentation, encoder-decoder architecture, 
3D spheroid model, volumetric convolution 

 

1. INTRODUCTION 

 
Cancer is a disease of cellular disorganization, which 
requires delineation of nuclear regions.  The goal of this 
manuscript is to delineate nuclear regions in spheroid 
models of human mammary epithelial cell (HMEC) 
lines. Spheroid models represent the organizations of 
premalignant and malignant HMEC lines uniquely [1, 
2] and in terms of specific genetic aberrations. In other 
words, while image-based classification of cells is 
nearly impossible in 2D assays, 3D colony organization 
tends to be unique with respect to genetic aberrations.  
The first step for characterizing colony organization is 
nuclear segmentation in 3D spheroid models that have 
been imaged with confocal microscopy. The traditional 

approach for 3D nuclear segmentation involves a 
cascaded of custom-designed processes for making the 
solution tractable. However, in this paper, we show that 
extension of emerging methods in deep learning can be 
trained to learn complex patterns. The complexities 
arise from cells being in different states, non-uniformity 
in staining, nuclear size, overlapping nuclei, and the fact 
that cancer cells tend to have large nucleoli.  
Organization of this paper is as follows. In section 2, 
previous research is summarized. Section 3 outlines the 
approach. Section 4 outlines experimental design, 
which includes validation of the computational pipeline 
with a diversity of cell lines--each with a specific 
mutation. Section 5 concludes the paper.  
 

2. LITERATURE REVIEW 

 
Nuclear segmentation is an important step in profiling 
colony organization, disease progression, and 
quantifying protein expression. It has been widely 
studied in 2D (e.g., histopathology) problems [3, 4]. 
However, for this paper, we summarize the previous 
research as they relate to 3D samples that are imaged by 
fluorescence microscopy.  The main complexities arise 
from differentially expressed fluorescent signals (e.g., 
cells being at different states, staining non-
uniformities), cells being at different scales, or cells 
having different morphologies. At the same time, 
overlapping cells, as a result of fixation, increased 
complexities.   
       Classical techniques are based either on the 
geometrical morphology of the nuclear shapes, or on 
features that are derived from intensity (e.g., gradient), 
or a hybrid combination of shape and intensity derived 
features. In [5], a segmentation method based on 
gradient flow tracking (GFT) has been presented, which 
is a generalization of regularized centroid transform [6] 
to 3D data. The steps of this method include 
computation of regularized gradient vector field, 
tracking gradient flow, and labeling each voxel based 
on a converged sink position that corresponds to the 
nucleus centroid. In [7], a hybrid method based on 
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iterative voting and geometric partitioning have been 
proposed. In [8, 9], a cascade of 3D operations was 
implemented to homogenize intensity distributions 
within each nucleus, and overlapping nuclei were 
partitioned based on surface curvatures. In [10], nuclei 
segmentation of fluorescence microscopy images has 
been obtained using inter- and intra-region 
discriminative information in three steps. First, an 
initial segmentation has been achieved by dynamically 
thresholding local regions. Second, the false positive 
regions have been filtered by computing similarity 
features for the adjacent nuclei. Third, nuclei 
localization has been performed by using intra-region 
contrast information. Although [5, 7] are successful for 
the nuclei with homogeneous intensity, they will fail for 
the nuclei with aberrant nuclear morphometry (e.g., 
elongated nuclei) and with heterogeneous internal 
structures (e.g., large nucleoli). This is in part due to the 
facts that these methods were developed for normal and 
premalignant cells. However, cancer cells can present 
heterogeneous aberrant structures. In [11], an atlas-
based model has been proposed for 3D nuclei 
segmentation based on the assumption that a prior 
model exists for the cellular organization. However, due 
to the organizational heterogeneity of spheroids [12] 
and mutation properties of each cell line, corresponding 
to a phenotype, it is rather difficult to find a prior model 
for the growth of 3D cell culture models.  
       In the recent years, convolutional neural networks 
[13] have become popular for addressing a range of 
problems (e.g., image classification [14-16], image 
recognition [17], image segmentation [18-21]). The 
main advantage of the convolutional neural networks, 
compared to the traditional computer vision methods, is 
that complex patterns can be learned automatically with 
sufficient sample size. For example, it is difficult to 
model a nucleus with a large nucleolus. In fact, since 

the presence of nucleoli interferes with the task of 
segmentation, previous researchers have developed 
methods to filter them out [8]. In [22], a ten-layer 
convolutional neural network has been trained with a 
synthetic dataset for segmentation of nuclei in 
fluorescence microscopy images. The synthetic dataset 
has been generated based on the assumption that a 
nucleus can be modeled as an ellipsoid shape. 
Therefore, each data sample contains a few ellipsoid 
volumes, which has been blurred by a Gaussian filter. A 
Poisson noise has been added to the final samples to 
crease more realistic dataset. Although the network 
performs well on the synthetic data set, it performs 
poorly on the real data. The reasons are (i) nuclei have 
different and complex shapes, not only elliptic, (ii) the 
intensity of voxels inside a nucleus is not uniform, and 
(iii) the synthetic data does not include touching nuclei. 
In [23], the two-dimensional U-Net [20] model has been 
trained for segmenting 3D microscopy images of plant 
cell boundaries. In [24] , the two-dimensional SegNet 
[18] model has been used for segmentation of yeast cell 
in multi-modal fluorescence microscopy images. In 
[25], we have shown that 3D convolutional neural 
network has superior performance for nuclear detection 
of 3D cell colonies. In this paper, we proposed to use 
the convolutional neural network for 3D nuclear 
segmentation. To this aim, we generalize the encoder-
decoder architecture for 3D image segmentation by 
performing volumetric convolution and pooling. 
Moreover, we have validated the proposed model with 
manually annotated data of human mammary epithelial 
cell lines. 

3. METHOD 

 

The proposed nuclear segmentation framework consists 
of a deep convolutional neural network for region-based 

 
Fig. 1. The middle section of 3D spheroids shows diverse phenotypes (from left to right) MCF10A, MCF7, MDA-MB-
468, and MDA-MB-231. 
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segmentation of 3D images, and a post-processing stage 
for separating overlapping of nuclei. 
 
3.1. Proposed convolutional neural network for 3D 

image segmentation 
 

A convolutional neural network is constructed by 
stacking layers of convolution and pooling in an 
alternating fashion. In a typical 2D CNN, convolution 
and pooling operations are performed spatially to 
compute feature maps from the local neighborhood, 
which originated from the previous layer. We suggest 
that for the problem of 3D segmentation, it is desirable 
to capture the local neighborhood information in the 
third dimension as opposed a series of 2D convolutions 
for each slice [26], i.e., volumetric convolution and 
pooling are preferred. However, volumetric 
convolution and pooling, for construction of the feature 
maps, increase the computation significantly. We 
address this issue in two ways. First, all 3D 
convolutions are 3-by-3-by-3, which has a low 
computational cost. Second, a 1-by-1-by-1 convolution 
is applied to each feature map layer, which significantly 
reduces the dimensionality of the data.  
       More recently, the concept of volumetric 
operations, in deep learning, have been applied for the 
task of classification and segmentation [27, 28], where 
classification is typically through layers of convolution 
and pooling and segmentation is through the encoder-
decoder architecture. The encoder-decoder architecture 
was first introduced in SegNet [1].  

The encoder-decoder network is a cascade of two 
convolutional neural networks (e.g., an encoder and a 
decoder), where the encoder module performs feature 
extraction from the input sample, and the decoder 
module is used to up-sample the output of the encoder. 
The existing models are either symmetric (have the 
same architecture for encoder and decoder, e.g., 
SegNet[18], UNet[20]), or asymmetric (have shallower 
decoder than the encoder, e.g., ENet [29]). Most of the 
successful 2D models are constructed from a stack of 
series blocks named bottleneck, where each bottleneck 
is a parallel combination of a convolution layer and a 
pooling layer. Similar to 2D, the proposed 3D model, is 
constructed from stacking of bottlenecks. The 
architecture of the bottleneck is shown in Fig. 2. The 
pooling branch can perform both up-sampling and 
down-sampling. The convolutional branch includes 
three convolutional layers: (i) two 1-by-1-by-1 
convolutions at the beginning and end of a branch, and 
(ii) a primary convolutional layer with the filter size of 
3-by-3-by-3. After each convolution layer, there are 
Batch Normalization and ReLU as the activation 
function. The outputs of these two branches then merge 
through element-wise addition.  
       After comparing several configurations, the 
architecture of Table 1 demonstrated the best 
performance for a specific patch-size, but we are 
continuing with our evaluation. The proposed 

 
Fig. 2.  The Bottleneck module consists of two parallel 
branches of pooling and convolutional. The output of 
these two branches are then added element-by-element.  

Table 1: Architecture of the Encoder and Decoder 
modules for training with patch size of 120-by-120-by-
48 pixels.  

Encoder 

Module 
Input/Output 
dimension 

Filter 
dimensions 

Input 120×120×48×1  
Conv. 120×120×48×16 3×3×3 
Max-Pooling 60×60×24×16 2×2×2 
Bottleneck 1 30×30×12×64 3×3×3 
Bottleneck 2 30×30×12×64 3×3×3 
Bottleneck 3 30×30×12×64 3×3×3 
Bottleneck 4 30×30×12×64 3×3×3 
Bottleneck 5 15×15×6×128 3×3×3 
Bottleneck 6 15×15×6×128 3×3×3 

 
Decoder 

Module 
Input/Output 
dimension 

Filter 
dimensions 

Bottleneck 7 30×30×12×64 3×3×3 
Bottleneck 8 30×30×12×64 3×3×3 
Bottleneck 9 60×60×24×16 3×3×3 
   
Full conv. 120×120×48×C 2×2×2 
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architecture is an asymmetric one (i.e., the decoder 
module is smaller than the encoder.) This helps to 
reduce the computational cost, which is more important 
for 3D volumetric analysis.  
 
3.2. Post-processing for separation of touching nuclei 

 

Separation of the clump of nuclei after segmentation is 
a necessary step for delineating nuclei. Therefore, a 
final post-processing step is added. There are various 
techniques to separate a clump of nuclei, which include: 
marker-based watershed and curvature based 
partitioning [8]. Each of these methods has their 
advantages and disadvantages. However, the current 
post-processing step is limited to the marker-based 
watershed method because of its computational 
simplicity and open source availability. 
 

4. EXPERIMENTAL SETUPS AND RESULTS 

 

This section outlines the experimental design, 
validation of the trained model, and the performance 
results. An important component of the experimental 
design is that segmentation needs to be validated with 
multiple cell lines, where each line has a unique genetic 
aberration. Experimental design includes 4 cell lines: 
(a) MCF7, which is progesterone positive, estrogen 
positive, and ERBB2 negative; (b) MDA-MB-468, 
which is ERBB2 negative with EGFR amplification; (c) 
MDA-MB-231, which is progesterone negative, 
estrogen negative, and ERBB2 negative; and (d) 
MCF10A, which is non-transformed and recapitulate 
lumen formation. Subsequently, colony formations 
were harvested in days 2, 5, 7, and 12. Each cell line 
contributes uniquely to 3D colony organization for 
validating higher order bioinformatics analysis.  
The dataset consists of 68 image stacks (e.g., colonies), 
which were imaged with confocal microscopy and were 
also used in [8]. Each sample is imaged at 0.25-micron 

resolution in the XY directions and 1-micron resolution 
in the Z direction. The size of each sample is 
approximately 256-by-256-by-80 pixels. Each sample 
data has been divided into four non-overlapping patches 
of size 120-by-120-by-48. Data augmentation (e.g., 
rotation, flipping) has been applied to increase the 
number of data. The samples were divided equally 
between training and testing datasets (50% -50%).  
       Training of the network is achieved by the Adam 
optimization algorithm [30]. The learning rate is set at 
1e-5 initially, and then it is decreased by a factor of 10 
in every100 iterations. Dropout regularization is added 
after each convolution layer to avoid overfitting. L2 
weight norm regularization is also used with the 
coefficient of 5e-4. All convolutional layers are 
initialized with a zero-mean Gaussian distribution with 
a variance of 0.01.  
       Performance of the proposed model is compared 
with the previous methods, which include curvature-
based partitioning (CBP) [8], gradient flow tracking 
(GFT) [5], and Watershed (Table 2). The results are 
evaluated based on pixel- and object- level precision, 
recall, and F1-score defined as below.  
݊݋�ݏ���ݎ�  =  ܶ�ܶ� + �� 

 ������ =  ܶ�ܶ� + �� 

 �ͳ − �ݎ݋�ݏ =  ʹ ∗ ݊݋�ݏ���ݎ� ∗ ݊݋�ݏ���ݎ������� + ������  

 
In the object-level evaluation, a nucleus considered to 
be a true positive (TP), if its intersection over union 
(IoU) with a ground truth object is more than 50%. The 
IoU of object A and B is defined as below. 
 

 
Fig. 3. Visualization of nuclear segmentation and colony organization for (a) premalignant MCF10A versus malignant cell 
lines of (b) MCF7, (c) MDA-MB-468, and (d) MDA-MB-231.  

2355



 

 
Fig. 4. Nuclei are segmented and overlaid on a single section of 3D colonies. (a) original image, (b) ground truth, (c) 
segmentation results. 

2356



,ܣሺܷ݋� ሻܤ = ܣ  ת ܣܤ ׫  ܤ

 
 The pixel-based accuracy of the proposed method is 
about 7% superior to the other approaches. However, 
the object-based accuracy of the curvature-based 
partitioning [8] is higher than our method. There are a 
few possible explanations for this observation: (i) it is 
the effect of down-sampling in the encoder module, 
which causes loss of nuclei boundaries, (ii) 
convolutional neural networks cannot capture higher-
level information such as the shape of the objects. 
Therefore, the proposed model cannot distinguish 
touching nuclei. Examples of nuclear segmentations for 
each of the cell lines are shown in Fig. 3 and Fig. 4.  
 

5. CONCLUSION AND FUTURE WORK 

 
In this paper, we proposed a novel 3D convolutional 
neural network design based on the encoder-decoder 
architecture for nuclear segmentation in 3D organoid 
models.   The advantages of the proposed model are 
that: (i) its encoder-decoder architecture generates the 
segmentation results in one forward pass through the 
network; and (ii) its pixel-based accuracy is higher than 
previous methods. Future works include: (a) integrating 
engineered feature with the deep learning model; (b) 
constraining the proposed model with the nuclear 
shapes; and (c) extending the model with high-level 
features to complete perceptual surface boundaries for 
delineating adjacent nuclei. 
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