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Abstract

We consider the task of predicting subjective fashion

traits from images using neural networks. Specifically, we

are interested in training a network for ranking outfits ac-

cording to how well they fit the user. In order to capture

the variability induced by human subjective considerations,

each training example is annotated by a panel of fashion

experts. Similarly to previous works on subjective data,

the panel votes are converted to a classification or regres-

sion problem and the corresponding network is trained and

evaluated using standard objective metrics. The question is

which objective metric, if any, is most suitable to measure

the performance of a network trained for subjective tasks?

In this paper, we conducted human approval tests for outfit

ranking networks trained using various objective metrics.

We show that these metrics do not adequately estimate the

human approval of subjective tasks. Instead, we introduce

a supervising network that unlike objective metrics, is de-

signed to capture the variability induced by human subjec-

tivity. We use it to supervise our outfit ranking network and

we demonstrate empirically, that training our outfit ranking

network with the suggested supervising network achieves

greater approval ratings from human subjects.

1. Introduction

Training deep networks with millions of parameters over

large-scale data sets has proven itself as a game changer for

computer vision, driving algorithm performance on objec-

tive, type-specific tasks to near human-level performance.

One of the attributing factors to this success is the precise

way in which the tasks are defined. For example, assign-

ing a label to an object from one of n predefined class cat-

egories. Such tasks have a well-established performance

metrics, often directly optimized by the network.

Due to the success of deep networks, several works have

tried to apply the same methodology to solve problems in-

fluenced by human subjective considerations. A few no-

table examples are problems like judging the aesthetic qual-

ity of an image [17, 1] or understanding fashion [12, 13].

If we look at a typical classification or regression prob-

lem each training example is associated with a single value

or a label. The goal is to reduce the label variability as

much as possible to avoid miss labeled examples that makes

the training process much harder. However, for subjective

tasks, the labels have an inherent variability because they

represent the opinions of a group or a panel of human sub-

jects. This variability is not a miss label but an integral part

of the label itself.

The most common way to train a deep convolutional

neural network (CNN) using this type of labels, is to ei-

ther discretize or convert the votes to scalar score. This

effectively converts the subjective task into regular objec-

tive classification or regression problem which is optimized

using common network losses. Since the task is now con-

sidered objective, the performance of the trained network

is measured using standard classification or regression met-

rics like precision/recall or mean square error. In customer-

facing services, these metrics are also used as an estimate

to algorithms’ approval rating from real customers or ex-

perts in the field. Although this approach is true for objec-

tive tasks, it does not extend to subjective tasks because the

human approval rating also varies due to human subjective

considerations.

In this paper, we address the problem of training and

evaluating CNNs for subjective tasks. As a test case, we are

interested in the subjective task of understanding fashion.

Specifically, selecting the most fashionable outfit by rank-

ing pairs of outfits. Following other approaches to learning

from subjective data e.g.[12, 13, 17], we transformed the

subjective labels to objective targets and trained a CNN us-

ing standard objective metrics. As opposed to other meth-

ods, we took an extra step and compared the objective met-

ric to actual human approval rating. Our experiments show

that the actual human approval differs significantly from

the objective metrics. Hence, these metrics are limited in

predicting the quality of an algorithm trained for subjective

tasks.

Intuitively, the best way to produce an algorithm with

high approval rates is to directly maximize the human ap-

proval ratings. However, this requires significant human su-
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pervision and is not practical for most applications. Instead,

we suggest to sample the human approval space and train a

model that mimics human supervision. We then use this

”mimicking” network to supervise the training process of a

ranking network that ranks outfits according to their quality

or fashionability. We demonstrate that using this training

process, the resulting network achieves higher approval rat-

ings from human subjects compared to other methods.

The main contributions of the paper include:

• Understanding the performance gap in conventional

approaches for training CNNs for subjective tasks.

• A new training framework for subjective data to maxi-

mizing human approval.

2. Related works

Automatic detection of image related subjective traits

has been a key research area in computer vision for quite

a long time. In virtually all of the works related to subjec-

tive traits, the training labels are obtained by mapping the

votes of a panel of human subjects to a discrete set of labels

or a single score.

A popular problem associated with subjective traits is es-

timating an image’s aesthetic quality. Datta et al. [2, 1]

estimated the mean vote of the panel and used handcrafted

features, such as color and texture, to train an SVM classi-

fier for estimating aesthetic quality. Lu et al. [9] used a

predefined threshold to binarize the panel votes into either

high or low aesthetic quality and trained a CNN on a bi-

nary classification problem. Workmen et al. [17] explored

several approaches like discretization, mean and panel dis-

tribution for estimating the image scenicness.

Apart from image aesthetics, predicting the mean of an

annotator panel was used to predict facial attractiveness [8],

evaluation of facial beauty [4] and exploring image mem-

orability [7]. Binarization was used to estimate urban per-

ception [11] and to study the phenomenon of image virality

[3].

In this work, we focus on the domain of fashion im-

ages, which has only recently become the focus of research.

Apart from more traditional objective problems like seg-

mentation of garments [19] and style classification [16]

there were also attempts to capture the aesthetics in fash-

ion. Most notable is [12] that introduced the Fashion144K

dataset that assigns a fashionability measure, ranging from

1 (not fashionable) to 10 (very fashionable) to each outfit,

based on users’ votes. The authors used this data set to train

deep networks to estimate the discrete fashionability score.

3. Learning fashion using CNNs

We train a CNN for ranking outfits according to how well

they fit the user. Our dataset consists of image pairs showing

individuals wearing different outfits. Each pair depicts the

same person wearing two different outfits. As in similar

subjective problems, the labels are the votes of a panel of

fashion experts where each fashion expert selects the outfit

he/she thinks is better. The number of experts voting for

each pair varies between 1-100.

We consider the CNN as a function R(IiA, I
i
B ; ΘR),

where IiA, I
i
B are the corresponding outfit images of pair

i and ΘR represents the model parameters. In light of re-

cent works like [18, 17] we evaluate several ways to for-

mulate the problem using objective terms. One option is to

consider this problem as a binary classification task where

the groundtruth represents the majority vote in the experts’

panel. Using this formulation, the output of the model is the

probability of each outfit receiving the majority vote of the

panel of experts. Training usually involves minimizing the

typical Cross-Entropy loss:

argmin
ΘR

{−
1

N

N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)}, (1)

where yi, ŷi are the binary indicator of the majority vote

in of the panel of experts and the predicted panel consen-

sus produced by R(IiA, I
i
B ; ΘR), respectively. The above

approach assumes an underlying binary value representing

the majority vote in a winner-takes-all manner. However,

for many outfits, there is high variability in the expert votes

and the selected outfit might be only marginally better. In

this case, the mean or the consensus of the experts panel

may serve as a better representative value. The panel con-

sensus for a pair of outfits IiA, I
i
B is:

ĉi =
#votes(IiA)

#votes(IiA) + #votes(IiB)
(2)

where ĉi ∈ [0, 1]. When ĉi > 0.5 the majority of experts

voted for IiA and when ĉi < 0.5 the majority of the experts

voted for IiB . Training a network to predict ĉ involves some

form of a regression loss like Cross-Entropy (1) or some ℓp
metric:

argmin
ΘR

{
1

N

N∑

i=1

|R(IiA, I
i
B ; ΘR)− ĉi|

p}. (3)

Each loss function provides a different penalty for devia-

tions from the ground-truth. The question is which of them

correlates well with human perceived errors? To answer

this , we empirically tested each method on our data set and

computed the accuracy of each model. In order to make

this comparison valid, each experiment has the same model

(Siamese Inception-Resnet v2) with the same initialization

weights. For the binary case, we trained the network using

Cross-Entropy (1) and for the panel consensus we trained

with Cross-Entropy (1), Mean Square Error (MSE) , Mean

Absolute Error (MAE) and Huber loss.
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3.1. Traning CNN’s for outfit ranking

Our data set consists of images showing people wearing

different outfits. Since the input to the network is a pair

of images, we compose pairs of images showing the same

person wearing different outfits. We allow each image to be

part of several different pairs.

To obtain the groundtruth labels each pair of outfit im-

ages is annotated by 1 to 15 fashion experts, where the me-

dian number of annotations per pair is 9. Our data set is di-

vided into three non-overlapping sets: train, validation and

test. The sets are divided such that the pairs showing the

same person can only appear in one set. To avoid sampling

errors [10], all the outfit pairs in the test set were annotated

by a panel of at least 40 fashion experts.

For each label definition, we trained a network using sev-

eral loss functions. Two quantitative metrics are used for

evaluation each network variant: (1) Binary accuracy - mea-

sures only the accuracy in predicting the ”winning” outfit ,

and (2) rMSE - measures the deviation in the consensus pre-

diction. Table 1 summarize the performance of the various

models.

3.2. Comparison with Human Ratings

In order to evaluate the compatibility of the approaches

above with human subjective perception of error, we con-

ducted a human rating test. The test was performed by pre-

senting a human subject, in our case a fashion expert, with

a pair of outfits together with the algorithm prediction. The

human subject is asked to either approve or disapprove (0 or

1) the algorithm prediction. Our test set contains the rating

of 62 fashion experts for 3.7K outfit pairs. For each ap-

proach, we compute the average approval on the entire test

set. Since we don’t expect that any approach would reach a

perfect 100% approval rate we computed an upper bound

for the performance by considering the average approval

rate of the perfect consensus estimator (prediction equals

groundtruth). This approach achieves only 75.5% approval

rate, due to subjective considerations of the fashion experts.

We can see that all of the approaches achieved com-

parable binary accuracy. However, a network trained us-

ing binary labels scored 2.6% less in human approval than

the same network trained on panel consensus labels. This

shows that the errors induced by the binary labels approach

were perceived by the fashion experts as more significant

than the other methods. In addition, we can see some cor-

relation between the rMSE metric and the human approval

ratings, although the Huber loss achieved comparable hu-

man approval with slightly bigger rMSE.

To understand the root cause of this outcome, we col-

lected the raw data of the human approval test and estimated

the approval/disapproval surface. We discretize the space

into 10K equally spaced bins of predicted and groundtruth

consensuses ĉpred, ĉgt ∈ [0, 1]. For each bin, we computed

the average approval (AP) and disapproval (1-AP) of the

fashion experts votes. Figure 1 shows the disapproval (1-

AP) approval surface for the fashion experts votes (a) com-

pared to Cross-Entropy and RMSE (b& c). Below each sur-

face, we plot the corresponding level sets for ground-truth

consensus values [0.5, 1].

(a) Human disapproval (1-AP) (b) Level sets of human approval

for GT values [0.5, 1]

(c) Cross-Entropy error (d) Level sets Cross-Entropy

for GT values [0.5, 1]

(e) Root Mean Square error (f) Level sets Root Mean Square

for GT values [0.5, 1]
Figure 1. Human subjects disapproval surface (a) and its cor-

responding level set (b). For comparison we’ve added the error

surfaces of CE loss (c) and rMSE loss (e), their corresponding sur-

face level sets are shown in (d & f). Note how different the Human

subjects disapproval surface from both loss surfaces).

It is interesting to see that the human disapproval surface

is quite different from both Cross-Entropy and rMSE. The

correlation between rMSE and the human approval shown

in the empirical evaluation (Table 1) does not imply causa-

tion. If we look at the disapproval surface, one can see that

for large groundtruth consensus values (> 0.8 or < 0.2),
the human approval has an inflections point on 0.5. As the

predicted consensus moves towards the ground true value

there is only a minor increase in the approval rating. This
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Labels Loss Accuracy rMSE MAE Human approval

Binary Cross-Entropy 0.682 0.263 0.208 0.668

Panel consensus Cross-Entropy 0.689 0.249 0.200 0.694

Panel consensus MSE (ℓ2) 0.686 0.243 0.199 0.699

Panel consensus MAE (ℓ1) 0.685 0.248 0.198 0.693

Panel consensus Huber 0.679 0.246 0.201 0.699

Table 1. Performance comparison between objective loss functions for the outfit ranking task.

behavior is similar to binary classification where only a

change in the winning outfit and not the value of the con-

sensus triggers a change in the approval. On the other hand,

we see a very different behavior in consensus values close

to 0.5, where the absolute distance between the predicted

and groundtruth value trigger changes in the approval.

It is clear from our evaluation. that human disapproval

is quite different from losses like CE and rMSE. It is there-

fore natural to ask whether we can design a loss function

that captures more accurately human perceived errors. We

next show a how we utilize it for training a CNN for outfit

ranking.

4. Fashion Ranking using Simulated Supervi-

sion Network

Our goal is to train a CNN for outfit ranking. From the

previous section, it is clear that we need a better way to

estimate the approval/disapproval manifold of our fashion

experts. Our proposed approach uses a CNN to estimate the

approval/disapproval manifold, this network is then used to

supervise the outfit ranking network by providing gradients

to update the ranking network weights. We argue, that this

supervising network is able to capture more accurately the

variations induced by subjectivity and therefore can provide

more accurate supervision to the ranking network. First, we

show how the simulated supervision network (denoted SN )

is constructed and discuss several different variants of this

network. Finally, we show how this network serves as a

building block for the fashion ranking network optimiza-

tion.

4.1. Simulated Supervision Network

We construct a network that performs a simulation of

the human approval test. If we recall Section 3.2, the hu-

man approval test is conducted by presenting the fashion

experts a pair of outfits together with the algorithm’s pre-

diction ĉpred ∈ [0, 1]. The fashion expert is then asked to

either approve or disapprove (0 or 1) the algorithm’s predic-

tion.

The suggested supervising network (SN ) shares a sim-

ilar structure to the human approval test. Given an input

return a binary value that either approve or disapprove the

input. To collect data to train our supervising network, we

conducted a similar approval test as above, but instead of

the algorithm’s prediction ĉpred we show the fashion ex-

perts a uniform random prediction ĉrand ∼ Uniform(0, 1).
The human annotators were not aware that the predictions

were randomly generated.

4.2. Dataset for training the Simulated Supervision
Network

We collected 7,289 different outfit pairs, generating

60,000 training examples. Each example (ĉgt, ĉrand) is as-

sociated with a corresponding binary value indicating ap-

proval/disapproval. The pairs were generated by discretiz-

ing the space spanned by all potential ĉgt, ĉpred combina-

tions into 100 bins. We sampled enough points such that

the standard error of the average approval rate in each bin

is below 0.01. The ground-truth value for each pair ĉgt was

estimated by computing the mean votes of a panel of 20

fashion specialists. We optimize the supervising network

parameters, ΘSN , by maximizing the approval prediction

accuracy using Cross-Entropy loss

argmin
ΘSN

{−
1

N

N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)}. (4)

where yi, ŷi are the groundtruth expert approval and the pre-

dicted approval produced by SN(ĉigt, ĉ
i
pred; ΘSN ), respec-

tively.

We train two variants of the supervising network. The

first only considers the approval/disapproval as a function

of the groundtruth and the predicted value. The second also

considers the two outfit images as inputs to the network. We

discuss the performance of both networks in the Section 5.

4.3. Training the Ranking Network

We train a network, denoted R, for outfit ranking. We

train R to maximize the expected approval rating of the su-

pervising network SN . During the training process, the

ranking network R performs a simulated approval test on

the mini-batch using the current model parameters. The

simulated network SN in-turn provides gradients for R to

improve its approval rating.

Formally, given a simulated supervision network SN

with parameters ΘSN the ranking network R attempts to

maximize the approval:
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argmax
ΘR

{
1

N

N∑

i=1

SN(ĉigt, R(IiA, I
i
B ; ΘR); ΘSN )}. (5)

5. Experiments

We trained an outfit ranking network using the super-

vising network. In our experiments, we consider two vari-

ants of the supervising network. The first is consensus

only, denoted by SNc. The network receives two inputs,

the ground-truth consensus ĉgt and the algorithm predic-

tion ĉpred and outputs a binary value - approve/disapprove.

The network is modeled by two fully connected layers with

ReLU activations. The second layer outputs two logits that,

after a soft-max normalization, represent Pr(approval)
and Pr(disapproval).

We require that network should be invariant to the or-

der of input images. Formally, given a supervising network

SN , we require that the following relation holds:

SNc(ĉgt, ĉpred) = SNc(1− ĉgt, 1− ĉpred). (6)

To enforce this symmetry, we generate a second input, 1 −
ĉgt and 1 − ĉpred, in addition to the original ĉgt, ĉpred .

We pass both symmetrical inputs through the network and

average the output logits.

The second network, denoted SNI , is an image based

network. The network inputs are a pair of images IA and

IB , the ground-truth consensus ĉgt, and the algorithm pre-

diction ĉpred. As with SNc, the network outputs a binary

value - approve/disapprove. For each image IA, IB we com-

pute a visual descriptor using the global pooling layer of a

Resnet50 network [5] trained on fashion domain images.

We reduce the descriptor dimensions using a single fully

connected layer resulting in two d-dimensional descriptors,

fd
A and fd

B corresponding to images IA and IB . The input

to the network SNI is the concatenation of fd
A, fd

B , ĉgt and

ĉpred. Similarly to SNc, we require that the network should

be invariant to the order of input images. In this case, for

each IA, IB , ĉgt, ĉpred we require:

SNI(IA, IB , ĉgt, ĉpred) = SNI(IB , IA, 1− ĉgt, 1− ĉpred)
(7)

To enforce this symmetry, we generate a second feature vec-

tor by concatenating fd
B , fd

A, 1 − ĉgt and 1 − ĉpred. Both

symmetrical inputs are passed through the network, the out-

put logits are averaged to form a symmetry input. The rest

of the the network is modeled by two fully connected layers

with ReLU activations. The final output is two logits nor-

malized by a soft-max function to estimate approval proba-

bility.

We train both SN networks on 60,000 examples gener-

ated from 7,289 different outfit pairs (see Section 4.2) with

10% of the pairs left for evaluation. We evaluate three vari-

ants of the supervising network.

Outfit

A

Outfit

B

Inception-Resnet 

V2

Inception-Resnet 

V2

Score A

(1X1)
P(A)

(1X1)

Approval 

0/1

(1X1)

Ground 

Truth

Simulated 

supervision 

network 

(SN)

Outfit ranking network (R) 

(2X1)

S
o

ftm
a

x

Score B

Figure 2. Our network architecture - the ranking network R is an

Inception-Resnet v2 Siamese network. The supervising network

SN is used to provide gradients for the training of R

1. SNc - a supervising network that considers the ap-

proval ratings only as a function of the predicted con-

sensus and the groundtruth consensus.

2. SNI8 - a supervising network that considers the ap-

proval ratings only as a function of the outfit images

and the groundtruth consensus. The size of the image

descriptor is 8.

3. SNI32 - a supervising network that considers the ap-

proval ratings only as a function of the outfit images

and the groundtruth consensus. The size of the image

descriptor is 32.

Potentially the length of the image descriptor can the size

of the Resnet50 global pooling layer output (2048). How-

ever, due to a small number of training images, the networks

with larger descriptor over-fit very quickly. Therefore, we

reduced the descriptor’s size by adding a fully-connected

layer with output sizes of 8 and 32. The approval rate pre-

diction accuracy of different variants of the SN networks is

shown in Table 2.

Network variant Accuracy

SNc 0.698

SNI8 0.693

SNI32 0.688

Table 2. Accuracy of the different variants of the SN networks on

the data collected from sampling the approval space of the fashion

specialists.

5.1. Outfit ranking network

We train the outfit tanking network R to estimate the

consensus of the panel of fashion experts ĉpred given a pair

of outfit images IA, IB . The training is performed by maxi-

mizing the approval rate using Eq.(5) for each variant of the

supervising network SN . We implemented R as a Siamese

neural net [6]. The network branches are modeled by In-

ception Resnet v2 [14] with a single output fully connected

layer added after the global pooling layer. The pair of outfit

images is fed into the respective branches of R resulting in
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Labels Loss Accuracy rMSE MAE Human approval

Panel consensus

(best network from Table 1) Huber 0.679 0.246 0.201 0.699

Panel consensus SNc(ĉgt, ĉpred) 0.679 0.248 0.210 0.715

Panel consensus SNI32(IA, IB , ĉgt, ĉpred) 0.666 0.258 0.221 0.704

Panel consensus SNI8(IA, IB , ĉgt, ĉpred) 0.680 0.264 0.227 0.690

Table 3. Performance comparison between subjective loss functions for the outfit ranking task.

a score for each outfit. The outfit scores are normalized by

a soft-max function to the estimated panel consensus ĉpred.

We trained all the layers of R without changing the pa-

rameters of the supervising network SN . Throughout our

experiments, we used a learning rate of 0.003, decayed ev-

ery two epochs using an exponential rate of 0.9. The net-

work is optimized using RMSProp [15] with decay 0.9,

momentum 0.9 and epsilon 0.1.

We train our network on the same database shown in Sec-

tion 3.1. We show quantitative results in Table 3 on three

metrics: binary accuracy, rMSE, and human approval. All

the metrics were computed in the same manner as shown

in Section 3. All the networks are based on the same

Inception-Resnet v2 architecture with identical initializa-

tion weights. Table 3 shows the performance of the rak-

ing network using the supervision of each variant of SN ,

for reference we included the best performing network from

Table 1.

Our algorithm achieved better human approval ratings

than the other approaches. Our best performing network

achieved approval rating of 71.5%. The 1.6% improvement

over the objective loss is not negligible since the perfor-

mance upper bound is 75.5% (see Section 3). We see that

the network with the highest human approval rating had a

higher rMSE than the network trained with MSE loss. This

contradicts the trend shown in Table 1 where, for objective

tasks, low rMSE was correlated with a high approval rating.

We also notice that the best network in terms of human ap-

proval had one of the lowest accuracies among all the tested

networks. In fact, the second best network, in terms of hu-

man approval, had the lowest accuracy compared to all the

other networks. It is interesting to point out, that the super-

vising network based on images was less effective than the

consensus only supervising network. We think that reasons

for that the relatively low number of images ( 7K) used for

training. We intend to extend the data set to further improve

its performance.

The empirical findings shown in this section indeed indi-

cate that for subjective tasks, standard objective metrics do

not adequately predict how humans would perceive the net-

work results. We demonstrated that for subjective tasks, be-

sides ground-truth labels, it’s highly beneficial to also col-

lect data on how humans perceive or approve the networks’

predictions. Having this data allows to better model the

variations induced by human subjective considerations and

provide better gradients for training networks for subjective

tasks.

6. Conclusions

In this paper, we have shown that metrics used for clas-
sification and regression are a poor estimate for human ap-
proval when applied for subjective tasks. To better estimate
the human approval, we suggested a scheme in which we
first learn a supervising network that better estimates the
errors as perceived by human subjects. Then, this auxiliary
network is used to supervise the network trained on the sub-
jective task. We have demonstrated the effectiveness of our
method by applying it to the subjective task of outfit rank-
ing. An empirical evaluation showed that our approach was
able to achieve higher human approval rating than standard
metrics used for classification and regression.
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