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1. Introduction

We are surrounded by events that can be perceived via

distinct audio and visual cues. Be it a ringing phone or a

car passing by, we instantly identify the audio-visual (AV)

components that characterize these events. This remarkable

ability helps us understand and interact with our environ-

ment. For building machines with such scene understanding

capabilities, it is important to design algorithms for learn-

ing audio-visual representations from real-world data. This

work is a step in that direction, where we aim to learn such

representations through weak supervision i.e., supervision

only in the form of video-level event labels without any tim-

ing information.

To motivate our tasks and method, consider a video la-

beled as “train horn”. Assuming that the train is both visible

and audible at some time in the video, in addition to identi-

fying the event, we are interested in learning representations

that help us answer the following questions:

• Where is the visual object or context that distinguishes

the event? In this case it might be the train (object)

or platform (context) etc. We are thus aiming for their

spatio-temporal localization in the image sequence.

• When does the sound event occur? Here it is the train

horn. We thus want to temporally localize the audio

event.

The variety of noisy situations that one may encounter in

unconstrained videos adds to the difficulty of this very chal-

lenging problem. Apart from modality-specific noise such

as visual clutter or low audio SNR, in real-world scenarios,

the audio and visual elements characterizing the event are

often unsynchronized in time. This is to say that the train

horn in the previous example may sound before or after the

train is visible. In the extreme, not so rare case, the train

may not appear at all. We are interested in designing a sys-

tem to tackle the aforementioned questions and situations.

Prior research has utilized AV modalities for classifi-

cation and localization tasks in various contexts. Fusing

modality-specific hand-crafted or deep features has been a

popular approach for problems such as multimedia event

detection [5]. Lately, several inspiring multimodal deep

networks have been proposed [7, 1], focusing primarily on

unsupervised representation learning and synchronous AV
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training. However, to our knowledge, a unified framework

for simultaneous event classification and characteristic AV

cue localization, especially in asynchronous situations, has

not been extensively studied in literature.
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Figure 1. Proposed approach: Given a video, we consider the de-

picted pipeline for going from audio and visual proposals to local-

ization and classification. Here Wcls and Wloc refer to the fully-

connected classification and localization streams respectively; σ

denotes softmax operation over proposals for each class, ⊙ refers

to element-wise multiplication; Σ to a summation over proposals

and ℓ2 to a normalization of scores.

2. Proposed Approach

Our tasks can be naturally interpreted as multiple in-

stance learning (MIL) problems [3]. MIL is typically ap-

plied to cases where labels are available over bags (sets of

instances) instead of individual instances. The task then

amounts to jointly selecting appropriate instances and es-

timating classifier parameters.

In our case, a video, V can be decomposed as a bag

of M selected image regions, R = {r1, r2, . . . , rM}, ob-

tained from sub-sampled frames and T audio segments,

S = {s1, s2, . . . , sT }. Each region/segment proposal is

dealt with in separate visual & audio sub-modules. The

key idea is to extract features from generated proposals and

transform them for: (1) scoring each according to their rel-

evance for class labels; (2) aggregating these scores in each

modality & fusing them for video-level classification. This

allows us to train both the sub-modules together through

weak-supervision and learn representations for event classi-

fication and localization. Moreover, use of both the modal-

ities makes the system robust against noisy scenarios.

An overview of our approach is provided in Fig. 1. For

the visual network, we use class-agnostic bounding box pro-

posals and for audio, short overlapping temporal segments.

Following [2], we employ a parallel two-stream architec-
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System F1 Precision Recall

(a) Proposed AV Two Stream 64.2 59.7 69.4

(b) TS Audio-Only 57.3 53.2 62.0

(c) TS Video-Only 47.3 48.5 46.1

(d) TS Video-Only WSDDN-Type [2] 48.8 47.6 50.1

(e) AV One Stream 55.3 50.4 61.2

(f) CVSSP - Fusion system [8] 55.6 61.4 50.8

(g) CVSSP - Gated-CRNN-logMel [8] 54.2 58.9 50.2

Table 1. Results on DCASE smart cars task test set. We report

here the micro-averaged F1 score, precision and recall values and

compare with state-of-the-art. TS is an acronym for two-stream.

ture for the scoring network in each modality. As in earlier

studies, we find that the two-stream architecture gives better

results than a straightforward one-stream log-sum-exp

operation implementation (soft approximation to max).

3. Experiments

We validate the system’s performance, both quantita-

tively and qualitatively over DCASE challenge smart cars

data [6], a large-scale multi-label weakly labeled dataset for

audio events consisting of 17 classes, spread over approxi-

mately 50K YouTube videos from AudioSet [4].

Baselines. In Table 1, systems (b) and (c) only utilize

the audio and visual sub-modules, respectively; (d) refers

to the system proposed in [2]; (e) uses a single stream

with log-sum-exp operator and (f)-(g) are systems from

DCASE 2017 smart cars challenge event classification task

winners [8], using only audio and no external data. All the

systems are evaluated on the micro-averaged F1 score. This

was the official metric used by the task organizers for rank-

ing systems. For further insight, we also compute the class-

wise F1 scores.

Table 1 shows event classification results for all the

methods. Our system achieves state-of-the-art perfor-

mance. We also find that the audio-visual complementarity

is clearly reflected by the class-wise F1 scores (reported in

the full paper). Briefly, the data can be categorized into two

sets: (i) classes with well defined AV objects like car, mo-

torcycle etc. and (ii) warning sounds, like, siren, car alarm.

Well-defined visual cues enhance the performance of the

proposed multimodal system over audio-only approaches.

On the other hand, for warning sounds, frames alone are in-

sufficient. For such cases, audio assists in improving system

performance. Fig. 2 displays results for object localization

in video frames and Fig. 3 illustrates an example of asyn-

chronous AV cues. For more examples, please refer to ad-

ditional material at https://youtu.be/C-jrZ9SDMDY
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