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Figure 1: Images produced by our global generative com-
pression network trained with an adversarial loss, along
with the corresponding results for BPG.

Abstract

We propose a framework for extreme learned image
compression based on Generative Adversarial Networks
(GANSs), obtaining visually pleasing images at significantly
lower bitrates than previous methods. This is made possible
through our GAN formulation of learned compression com-
bined with a generator/decoder which operates on the full-
resolution image and is trained in combination with a multi-
scale discriminator. Additionally, our method can fully syn-
thesize unimportant regions in the decoded image such as
streets and trees from a semantic label map extracted from
the original image, therefore only requiring the storage of
the preserved region and the semantic label map. A user
study confirms that for low bitrates, our approach signif-
icantly outperforms state-of-the-art methods, saving up to
67% compared to the next-best method BPG.

1. Introduction

Image compression systems based on deep neural net-
works (DNNs), or deep compression systems for short, have
become an active area of research recently. These sys-
tems often outperform state-of-the-art engineered codecs
such as BPG, WebP, and JPEG2000 on perceptual met-

*Equal contribution.

rics [13, 3, 11, 4, 10]. Besides achieving higher compres-
sion rates on natural images, they can be easily adapted to
specific target domains such as stereo or medical images,
and promise efficient processing and indexing directly from
compressed representations [16]. However, for bitrates be-
low 0.1 bits per pixel (bpp) these algorithms still incur
severe quality reductions and common training objectives
such as peak signal-to-noise ratio (PSNR) or multi-scale
structural similarity (MS-SSIM) become meaningless as
they favor exact preservation of local (high-entropy) struc-
ture over preserving texture. To further advance deep image
compression it is therefore of great importance to develop
new training objectives beyond PSNR and MS-SSIM. A
promising candidate towards this goal are adversarial losses
[6] which were shown recently to capture global semantic
information and local texture, yielding powerful generators
that produce visually appealing high resolution images from
semantic label maps [7, 17].

In this paper, we propose and study a generative adver-
sarial network (GAN)-based framework for extreme image
compression, targeting bitrates below 0.1 bpp. We present
a principled GAN formulation for deep image compression
that allows for different degrees of content generation. In
contrast to prior works on deep image compression which
applied adversarial losses to image patches for artifact sup-
pression [ |, 5] and generation of texture details [9] or rep-
resentation learning for thumbnail images [12], our gener-
ator/decoder operates on the full-resolution image and is
trained with a multi-scale discriminator [17].

We study two modes of operation (corresponding to un-
conditional and conditional GANs), namely

e global generative compression (GC), preserving the
overall image content while generating structure of dif-
ferent scales such as leaves of a tree or windows in the
facade of buildings, and

e selective generative compression (SC), completely
generating parts of the image from a semantic label
map while preserving user-defined regions with a high
degree of detail.

A typical use case for GC are bandwidth constrained sce-
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(a) Global generative compression (b) Selective generative compres-
(GC) sion (SC)

Figure 2: Structure of the proposed compression networks.
FE is the encoder for the image  and optionally the seman-
tic label map s. ¢ quantizes the latent code w to w. G is
the generator, producing the decompressed image &, and D
the discriminator used for adversarial training. For SC, F'
extracts features from s and the subsampled heatmap mul-
tiplies 2 (pointwise) for spatial bit allocation.

narios, where one wants to preserve the full image as much
as possible, while falling back to synthesized content in-
stead of blocky/blurry blobs for regions where there are not
sufficient bits to store the original pixels. SC could be ap-
plied in a video call scenario where one wants to fully pre-
serve people in the video stream, but a visually pleasing
synthesized background serves our purpose as well as the
true background. In the GC operation mode the image is
transformed into a bitstream and encoded using arithmetic
coding. SC requires a semantic/instance label map of the
original image which can be obtained using off-the-shelf se-
mantic/instance segmentation networks, and which is stored
as a vector graphic. This amounts to a small, image dimen-
sion independent overhead in terms of coding cost. On the
other hand, the size of the compressed image is reduced
proportionally to the area which is generated from the se-
mantic label map, typically leading to a significant overall
reduction in storage cost.

Due to space limitations, we focus on GC in the present
paper and refer to the full version [2] for a description of
SC and a corresponding evaluation. Here, we present a
comprehensive user study showing that our GC compres-
sion system yields visually considerably more appealing re-
sults than BPG (the current state-of-the-art engineered com-
pression algorithm) and the recently proposed autoencoder-
based deep compression (AEDC) system [10]. In particu-
lar, for the street scene images from the Cityscapes data set,
users prefer the images produced by our method over BPG
even when BPG uses more than double the bits. To the best
of our knowledge, these are the first results showing that a
deep compression method outperforms BPG in a user study.

Related work The most popular DNN architectures for
image compression are to date auto-encoders [13, 3, 1, 16]
and recurrent neural networks (RNNs) [14, 15].

Generative adversarial networks (GANs) [6] have
emerged as a popular technique for learning generative
models for intractable distributions in an unsupervised man-
ner. [12] uses a GAN framework to learn a generative model

over thumbnail images, which is then used as a decoder for
thumbnail image compression. Other works use adversarial
training for compression artifact removal [1 |, 5] and single
image super-resolution [9].

2. GANs s for extreme image compression

Our proposed GANs for extreme image compression can
be viewed as a combination of (conditional) GANs and
learned compression. With an encoder I and quantizer
q, we encode the image x to a compressed representation
w = ¢q(E(x)). This representation is optionally concate-
nated with noise v drawn from a fixed prior p,, to form
the latent vector z. The decoder/generator G then tries to
generate an image & = (/(z) that is consistent with the
image distribution p, while also recovering the specific en-
coded image « to a certain degree (see Fig. 2 (a)). Using
z = [w,v], this can be expressed by our saddle-point ob-
jective for (non-conditional) generative compression,

minmax  E[f(D(x))] + E[g(D(G(2))]

+AE[d(z, G(2))] + fH(w), (1)

where A > 0 balances the distortion term against the GAN
loss and entropy terms. Using this formulation, we need
to encode a real image, w = E(x), to be able to sample
from p.;. However, this is not a limitation as our goal is to
compress real images and not to generate completely new
ones.

We note that equation (1) has completely different dy-
namics than a normal GAN, because the latent space z
contains w, which stores information about a real image
@. A crucial ingredient is the bitrate limitation on H (w).
If we allow w to contain arbitrarily many bits by setting
B = 0 and letting L and dim(w) be large enough, E and
G could learn to near-losslessly recover x from G(z) =
G(q(E(x))), such that the distortion term would vanish. In
this case, the divergence between p, and pg(.) would also
vanish and the GAN loss would have no effect.

By constraining the entropy of w, E and G will never
be able to make d fully vanish. In this case, E, G need to
balance the GAN objective Lgan and the distortion term
AE[d(x,G(2))], which leads to G(z) on one hand looking
“realistic”, and on the other hand preserving the original
image. For example, if there is a tree for which F cannot
afford to store the exact texture (and make d small) G can
synthesize it to satisfy Lgan, instead of showing a blurry
green blob.

3. Experiments

We only present the most important aspects; please
see [2] for a full description.
Network architecture: The architecture for our encoder £
and generator G is based on the global generator network
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proposed in [17], which in turn is based on the architecture
of [8]. For the discriminator D we use the multi-scale ar-
chitecture of [17], which measures the divergence between
Pz and pg(z) both locally and globally. For the distortion
term we adopt d(x,&) = MSE and the feature matching
and VGG perceptual losses as proposed in [17].

Datasets: We train the proposed method on two popu-
lar data sets that come with hand-annotated semantic label
maps, namely Cityscapes and ADE20k. Both of these data
sets were previously used with GANs [7], hence we know
that GANs can model their distribution—at least to a certain
extent. To assess how well our models generalize, we test
the GC model with C' = 4 on Kodak .

Training: We employ the ADAM optimizer with a learning
rate of 0.0002 and set the mini-batch size to 1. Our networks
are trained for 50 epochs on Cityscapes and for 20 epochs
on ADE20Kk, aside from the network tested on Kodak which
was trained for 50 epochs on ADE20k.

Baselines: We compare our method to the HEVC-based
image compression algorithm BPG (in the default 4:2:2
chroma format) and to the AEDC network [10], trained for
an operating point of 0.07 bpp (which obtains a slightly
higher MS-SSIM than BPG at the same bpp).

User study: Quality measures such as PSNR and MS-
SSIM commonly used to assess the quality of compression
systems become meaningless at very low bitrates as they pe-
nalize changes in local structure rather than preservation of
the global content. Therefore, to quantitatively evaluate the
perceptual quality of our GC networks in comparison with
BPG and AEDC we conduct a user study using the Amazon
Mechanical Turk (AMT) platform.

For each pairing of methods on Cityscapes and
ADE20K, we compare the decompressed images obtained
for a set of 20 randomly picked validation images at differ-
ent bpp, having as reference the downscaled 1024 x 512px
images. For each pairing on Kodak, we used all 24 images
of the dataset. 9 randomly selected users were asked to se-
lect the best decompression result for each test image and
pairing of methods.

See [2] for quantitative evaluation of how well the differ-
ent networks preserve the image semantics.

3.1. Results

In Tables 1 and 2 we report the percentages of prefer-
ence of the image produced by the proposed method over
the image produced by the other compression method for
Cityscapes and ADE20k, respectively. For each method vs.
method comparison 180 human opinions were collected.
For both data sets, the perceptual quality of our results is
better than that of the baseline approaches at comparable
bpp. For Cityscapes, at 0.036 bpp our method is picked
by the users over BPG in 81.87% of the cases, while at
0.072 bpp our method is preferred over BPG and AEDC

in 70.18% and 84.21% of the cases, respectively.

In Fig. 1 we present example validation images from
Cityscapes produced by our GC networks at different bpp
along with the images obtained from the baseline algo-
rithms at the same bpp. The GC produces images with finer
structure than BPG, which suffers from smoothed patches
and blocking artifacts. AEDC and our network trained for
MSE both produce blurry images.

Preference of BPG AEDC [10]
our results [%] vs. | 0.039 bpp ‘ 0.056 bpp ‘ 0.072 bpp ‘ 0.079 bpp ‘ 0.1 bpp | 0.069 bpp
C'=2,0.018 bpp 76.02 52.05 45.03 38.01 29.24 71.93
é C'=4,0.036bpp | 8187 67.25 59.65 50.88 35.67 80.12

' =8,0.072bpp | 83.63 74.27 70.18 67.84 50.88 84.21

Table 1: User study quantitative preferences results [%] on
Cityscapes. For each pairing of methods we report the per-
centage of cases in which the image produced by our GC
method was preferred by human subjects over the result of
the other compression method.

Preference of BPG
our results [%] vs. 0.054 bpp | 0.064 bpp | 0.072 bpp | 0.082 bpp | 0.1 bpp
5 C = 4,0.036 bpp 66.67 52.63 36.26 / /
S ¢ =8,0.072bpp, w. sem. | 80.12 73.68 57.31 5263 | 41.52

Table 2: User study quantitative preferences results [%] on
ADE20k. For comparable bpp our method is clearly pre-
ferred.

Preference of BPG
our results [%] vs. | 0.038 bpp | 0.060 bpp | 0.065 bpp | 0.072 bpp

our C'=4,0036bpp| 8710 [ 5760 [ 54.84 [ 47.00

Table 3: User study quantitative preferences results [%] on
Kodak. Our method is preferred over BPG at 0.065bpp,
which corresponds to a 45% bitrate reduction.

Generalization to Kodak: We show the results for an
example Kodak image in Figure 3, obtained with a model
trained on ADE20K for GC (without semantics) using C' =
4 channels (0.036 bpp). While there is some color shift
noticeable (which could be accounted for by reducing the
domain mismatch and/or increasing the weight of the per-
ceptual loss), we see that our method can realistically syn-
thesize details where BPG fails.

The user study results in Table 3 shows that our method
is preferred over BPG, even when BPG uses an 80% larger
bitrate of 0.065 bpp compared to our method at 0.036 bpp.

4. Discussion

Qualitatively, our GC networks preserve more and
sharper structure than the baseline methods, for both the
Cityscapes and ADE20k images. For both data sets, the
user study shows that at a given target bpp humans on aver-
age prefer the pictures produced by our GC networks over
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Figure 3: Original Kodak Image 13 along with the decom-
pressed version used in the user study (Ours), obtained us-
ing our GC network.

BPG. For Cityscapes, where we trained an AEDC model,
our images are on average also preferred over AEDC. The
Cityscapes images obtained by our GC networks with C' =
2 (0.018bpp) and C' = 4 (0.036 bpp) were even preferred
over BPG at 0.056 and BPG at 0.079 bpp, respectively,
showing that our method outperforms BPG even when BPG
uses more than twice as many bits. For ADE20k, the results
produced by our GC networks were preferred on average by
a considerable margin over BPG, although the preference is
less pronounced than for Cityscapes.

Furthermore, we found that our model trained on
ADE20K can also generalize well to the Kodak dataset, be-
ing preferred over BPG for C' = 4 (0.036bpp) even when
BPG uses 80% more bits.

We note that while prior works [11, 10, 4] have outper-
formed BPG in terms of MS-SSIM, they have not demon-
strated improved visual quality over BPG (which is opti-
mized for PSNR). In particular, [4, 10] show a visual com-
parison but do not claim improved visual quality over BPG,
whereas [ | 1] does not compare with BPG visually. To the
best of our knowledge, this is the first time that a deep
compression method is shown to outperform BPG in a user
study—and that with a large margin.
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