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Figure 1: Images produced by our global generative com-

pression network trained with an adversarial loss, along

with the corresponding results for BPG.

Abstract

We propose a framework for extreme learned image

compression based on Generative Adversarial Networks

(GANs), obtaining visually pleasing images at significantly

lower bitrates than previous methods. This is made possible

through our GAN formulation of learned compression com-

bined with a generator/decoder which operates on the full-

resolution image and is trained in combination with a multi-

scale discriminator. Additionally, our method can fully syn-

thesize unimportant regions in the decoded image such as

streets and trees from a semantic label map extracted from

the original image, therefore only requiring the storage of

the preserved region and the semantic label map. A user

study confirms that for low bitrates, our approach signif-

icantly outperforms state-of-the-art methods, saving up to

67% compared to the next-best method BPG.

1. Introduction

Image compression systems based on deep neural net-

works (DNNs), or deep compression systems for short, have

become an active area of research recently. These sys-

tems often outperform state-of-the-art engineered codecs

such as BPG, WebP, and JPEG2000 on perceptual met-
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rics [13, 3, 11, 4, 10]. Besides achieving higher compres-

sion rates on natural images, they can be easily adapted to

specific target domains such as stereo or medical images,

and promise efficient processing and indexing directly from

compressed representations [16]. However, for bitrates be-

low 0.1 bits per pixel (bpp) these algorithms still incur

severe quality reductions and common training objectives

such as peak signal-to-noise ratio (PSNR) or multi-scale

structural similarity (MS-SSIM) become meaningless as

they favor exact preservation of local (high-entropy) struc-

ture over preserving texture. To further advance deep image

compression it is therefore of great importance to develop

new training objectives beyond PSNR and MS-SSIM. A

promising candidate towards this goal are adversarial losses

[6] which were shown recently to capture global semantic

information and local texture, yielding powerful generators

that produce visually appealing high resolution images from

semantic label maps [7, 17].

In this paper, we propose and study a generative adver-

sarial network (GAN)-based framework for extreme image

compression, targeting bitrates below 0.1 bpp. We present

a principled GAN formulation for deep image compression

that allows for different degrees of content generation. In

contrast to prior works on deep image compression which

applied adversarial losses to image patches for artifact sup-

pression [11, 5] and generation of texture details [9] or rep-

resentation learning for thumbnail images [12], our gener-

ator/decoder operates on the full-resolution image and is

trained with a multi-scale discriminator [17].

We study two modes of operation (corresponding to un-

conditional and conditional GANs), namely

• global generative compression (GC), preserving the

overall image content while generating structure of dif-

ferent scales such as leaves of a tree or windows in the

facade of buildings, and

• selective generative compression (SC), completely

generating parts of the image from a semantic label

map while preserving user-defined regions with a high

degree of detail.

A typical use case for GC are bandwidth constrained sce-

12587



q

D

Gx

s

x̂

ŵw
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Figure 2: Structure of the proposed compression networks.

E is the encoder for the image x and optionally the seman-

tic label map s. q quantizes the latent code w to ŵ. G is

the generator, producing the decompressed image x̂, and D

the discriminator used for adversarial training. For SC, F

extracts features from s and the subsampled heatmap mul-

tiplies ẑ (pointwise) for spatial bit allocation.

narios, where one wants to preserve the full image as much

as possible, while falling back to synthesized content in-

stead of blocky/blurry blobs for regions where there are not

sufficient bits to store the original pixels. SC could be ap-

plied in a video call scenario where one wants to fully pre-

serve people in the video stream, but a visually pleasing

synthesized background serves our purpose as well as the

true background. In the GC operation mode the image is

transformed into a bitstream and encoded using arithmetic

coding. SC requires a semantic/instance label map of the

original image which can be obtained using off-the-shelf se-

mantic/instance segmentation networks, and which is stored

as a vector graphic. This amounts to a small, image dimen-

sion independent overhead in terms of coding cost. On the

other hand, the size of the compressed image is reduced

proportionally to the area which is generated from the se-

mantic label map, typically leading to a significant overall

reduction in storage cost.

Due to space limitations, we focus on GC in the present

paper and refer to the full version [2] for a description of

SC and a corresponding evaluation. Here, we present a

comprehensive user study showing that our GC compres-

sion system yields visually considerably more appealing re-

sults than BPG (the current state-of-the-art engineered com-

pression algorithm) and the recently proposed autoencoder-

based deep compression (AEDC) system [10]. In particu-

lar, for the street scene images from the Cityscapes data set,

users prefer the images produced by our method over BPG

even when BPG uses more than double the bits. To the best

of our knowledge, these are the first results showing that a

deep compression method outperforms BPG in a user study.

Related work The most popular DNN architectures for

image compression are to date auto-encoders [13, 3, 1, 16]

and recurrent neural networks (RNNs) [14, 15].

Generative adversarial networks (GANs) [6] have

emerged as a popular technique for learning generative

models for intractable distributions in an unsupervised man-

ner. [12] uses a GAN framework to learn a generative model

over thumbnail images, which is then used as a decoder for

thumbnail image compression. Other works use adversarial

training for compression artifact removal [11, 5] and single

image super-resolution [9].

2. GANs for extreme image compression

Our proposed GANs for extreme image compression can

be viewed as a combination of (conditional) GANs and

learned compression. With an encoder E and quantizer

q, we encode the image x to a compressed representation

ŵ = q(E(x)). This representation is optionally concate-

nated with noise v drawn from a fixed prior pv , to form

the latent vector z. The decoder/generator G then tries to

generate an image x̂ = G(z) that is consistent with the

image distribution px while also recovering the specific en-

coded image x to a certain degree (see Fig. 2 (a)). Using

z = [ŵ,v], this can be expressed by our saddle-point ob-

jective for (non-conditional) generative compression,

min
E,G

max
D

E[f(D(x))] + E[g(D(G(z))]

+ λE[d(x, G(z))] + βH(ŵ), (1)

where λ > 0 balances the distortion term against the GAN

loss and entropy terms. Using this formulation, we need

to encode a real image, ŵ = E(x), to be able to sample

from pŵ. However, this is not a limitation as our goal is to

compress real images and not to generate completely new

ones.

We note that equation (1) has completely different dy-

namics than a normal GAN, because the latent space z

contains ŵ, which stores information about a real image

x. A crucial ingredient is the bitrate limitation on H(ŵ).
If we allow ŵ to contain arbitrarily many bits by setting

β = 0 and letting L and dim(ŵ) be large enough, E and

G could learn to near-losslessly recover x from G(z) =
G(q(E(x))), such that the distortion term would vanish. In

this case, the divergence between px and pG(z) would also

vanish and the GAN loss would have no effect.

By constraining the entropy of ŵ, E and G will never

be able to make d fully vanish. In this case, E,G need to

balance the GAN objective LGAN and the distortion term

λE[d(x, G(z))], which leads to G(z) on one hand looking

“realistic”, and on the other hand preserving the original

image. For example, if there is a tree for which E cannot

afford to store the exact texture (and make d small) G can

synthesize it to satisfy LGAN, instead of showing a blurry

green blob.

3. Experiments

We only present the most important aspects; please

see [2] for a full description.

Network architecture: The architecture for our encoder E

and generator G is based on the global generator network
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proposed in [17], which in turn is based on the architecture

of [8]. For the discriminator D we use the multi-scale ar-

chitecture of [17], which measures the divergence between

px and pG(z) both locally and globally. For the distortion

term we adopt d(x, x̂) = MSE and the feature matching

and VGG perceptual losses as proposed in [17].

Datasets: We train the proposed method on two popu-

lar data sets that come with hand-annotated semantic label

maps, namely Cityscapes and ADE20k. Both of these data

sets were previously used with GANs [7], hence we know

that GANs can model their distribution—at least to a certain

extent. To assess how well our models generalize, we test

the GC model with C = 4 on Kodak .

Training: We employ the ADAM optimizer with a learning

rate of 0.0002 and set the mini-batch size to 1. Our networks

are trained for 50 epochs on Cityscapes and for 20 epochs

on ADE20k, aside from the network tested on Kodak which

was trained for 50 epochs on ADE20k.

Baselines: We compare our method to the HEVC-based

image compression algorithm BPG (in the default 4:2:2

chroma format) and to the AEDC network [10], trained for

an operating point of 0.07 bpp (which obtains a slightly

higher MS-SSIM than BPG at the same bpp).

User study: Quality measures such as PSNR and MS-

SSIM commonly used to assess the quality of compression

systems become meaningless at very low bitrates as they pe-

nalize changes in local structure rather than preservation of

the global content. Therefore, to quantitatively evaluate the

perceptual quality of our GC networks in comparison with

BPG and AEDC we conduct a user study using the Amazon

Mechanical Turk (AMT) platform.

For each pairing of methods on Cityscapes and

ADE20K, we compare the decompressed images obtained

for a set of 20 randomly picked validation images at differ-

ent bpp, having as reference the downscaled 1024× 512px

images. For each pairing on Kodak, we used all 24 images

of the dataset. 9 randomly selected users were asked to se-

lect the best decompression result for each test image and

pairing of methods.

See [2] for quantitative evaluation of how well the differ-

ent networks preserve the image semantics.

3.1. Results

In Tables 1 and 2 we report the percentages of prefer-

ence of the image produced by the proposed method over

the image produced by the other compression method for

Cityscapes and ADE20k, respectively. For each method vs.

method comparison 180 human opinions were collected.

For both data sets, the perceptual quality of our results is

better than that of the baseline approaches at comparable

bpp. For Cityscapes, at 0.036 bpp our method is picked

by the users over BPG in 81.87% of the cases, while at

0.072 bpp our method is preferred over BPG and AEDC

in 70.18% and 84.21% of the cases, respectively.

In Fig. 1 we present example validation images from

Cityscapes produced by our GC networks at different bpp

along with the images obtained from the baseline algo-

rithms at the same bpp. The GC produces images with finer

structure than BPG, which suffers from smoothed patches

and blocking artifacts. AEDC and our network trained for

MSE both produce blurry images.

Preference of BPG AEDC [10]

our results [%] vs. 0.039 bpp 0.056 bpp 0.072 bpp 0.079 bpp 0.1 bpp 0.069 bpp

o
u

r

C = 2, 0.018 bpp 76.02 52.05 45.03 38.01 29.24 71.93

C = 4, 0.036 bpp 81.87 67.25 59.65 50.88 35.67 80.12

C = 8, 0.072 bpp 83.63 74.27 70.18 67.84 50.88 84.21

Table 1: User study quantitative preferences results [%] on

Cityscapes. For each pairing of methods we report the per-

centage of cases in which the image produced by our GC

method was preferred by human subjects over the result of

the other compression method.

Preference of BPG

our results [%] vs. 0.054 bpp 0.064 bpp 0.072 bpp 0.082 bpp 0.1 bpp
o
u

r C = 4, 0.036 bpp 66.67 52.63 36.26 / /

C = 8, 0.072 bpp, w. sem. 80.12 73.68 57.31 52.63 41.52

Table 2: User study quantitative preferences results [%] on

ADE20k. For comparable bpp our method is clearly pre-

ferred.

Preference of BPG

our results [%] vs. 0.038 bpp 0.060 bpp 0.065 bpp 0.072 bpp

our C = 4, 0.036 bpp 87.10 57.60 54.84 47.00

Table 3: User study quantitative preferences results [%] on

Kodak. Our method is preferred over BPG at 0.065bpp,

which corresponds to a 45% bitrate reduction.

Generalization to Kodak: We show the results for an

example Kodak image in Figure 3, obtained with a model

trained on ADE20K for GC (without semantics) using C =
4 channels (0.036 bpp). While there is some color shift

noticeable (which could be accounted for by reducing the

domain mismatch and/or increasing the weight of the per-

ceptual loss), we see that our method can realistically syn-

thesize details where BPG fails.

The user study results in Table 3 shows that our method

is preferred over BPG, even when BPG uses an 80% larger

bitrate of 0.065 bpp compared to our method at 0.036 bpp.

4. Discussion

Qualitatively, our GC networks preserve more and

sharper structure than the baseline methods, for both the

Cityscapes and ADE20k images. For both data sets, the

user study shows that at a given target bpp humans on aver-

age prefer the pictures produced by our GC networks over
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Kodak Image 13 Ours (0.036bpp)

BPG (0.073bpp) JPEG2000 (0.037bpp)

WebP (0.078bpp) JPEG (0.248bpp)

Figure 3: Original Kodak Image 13 along with the decom-

pressed version used in the user study (Ours), obtained us-

ing our GC network.

BPG. For Cityscapes, where we trained an AEDC model,

our images are on average also preferred over AEDC. The

Cityscapes images obtained by our GC networks with C =
2 (0.018bpp) and C = 4 (0.036 bpp) were even preferred

over BPG at 0.056 and BPG at 0.079 bpp, respectively,

showing that our method outperforms BPG even when BPG

uses more than twice as many bits. For ADE20k, the results

produced by our GC networks were preferred on average by

a considerable margin over BPG, although the preference is

less pronounced than for Cityscapes.

Furthermore, we found that our model trained on

ADE20K can also generalize well to the Kodak dataset, be-

ing preferred over BPG for C = 4 (0.036bpp) even when

BPG uses 80% more bits.

We note that while prior works [11, 10, 4] have outper-

formed BPG in terms of MS-SSIM, they have not demon-

strated improved visual quality over BPG (which is opti-

mized for PSNR). In particular, [4, 10] show a visual com-

parison but do not claim improved visual quality over BPG,

whereas [11] does not compare with BPG visually. To the

best of our knowledge, this is the first time that a deep

compression method is shown to outperform BPG in a user

study—and that with a large margin.
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