This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Block-optimized Variable Bit Rate Neural Image Compression

Caglar Aytekin, Xingyang Ni, Francesco Cricri, Jani Lainema, Emre Aksu, Miska Hannuksela
Nokia Technologies
Tampere, Finland

{caglar.aytekin, xingyang.ni.ext, francesco.cricri}@nokia.com

{jani.lainema, emre.aksu, miska.hannuksela}@nokia.com

Abstract

In this work, we propose an end-to-end block-based
auto-encoder system for image compression. We in-
troduce novel contributions to neural-network based im-
age compression, mainly in achieving binarization simu-
lation, variable bit rates with multiple networks, entropy-
friendly representations, inference-stage code optimization
and performance-improving normalization layers in the
auto-encoder. We evaluate and show the incremental per-
formance increase of each of our contributions.

1. Introduction

Image compression has traditionally been addressed by
transform-based methods such as JPEG [14]] and BPG [11].
Recently, neural network based approaches have also been
utilized such as hybrid approaches, where neural networks
are used together with a traditional codec, or end-to-end
learned approaches, where the codec consists solely of neu-
ral networks.

Regarding the hybrid approach, several works involve
using neural networks as post-processing filters ([Sl, [6]),
to enhance the decoded image. In [8]] and [15] both pre-
processing and post-processing neural networks are used.
In [8] and [15], due to the non-differentiable traditional
codec, an end-to-end training cannot be achieved. [15]
proposes to utilize alternate training to overcome this is-
sue. In the first stage, the pre-processing network is trained
via a differentiable virtual codec. In the second stage, the
real codec is used and only the post-processing network is
trained.

Regarding the end-to-end learned approach, a typical ar-
chitecture consists of an auto-encoder (see [9]], [12]), where
the encoder maps the input image to a low-dimensional ten-
sor, and the decoder reconstructs the image.

The encoder’s output, which typically consists of
floating-point values, needs to be quantized in order to
achieve reasonable compression rates. The quantization op-

eration would provide zero gradients almost everywhere. In
order to approximate the quantization, [4] propose to add
a random sample from a uniform distribution. [13] uses a
random mapping of floating-point values to binary values
with a probability derived from the floating-point value.

Training of auto-encoders for data compression needs
to account for both decoding quality and compression effi-
ciency. One straightforward training loss for decoding qual-
ity is the mean squared error (MSE) between input and out-
put of the auto-encoder. Minimizing the MSE maximizes
the peak signal to noise ratio (PSNR), which is a widely
used evaluation metric in data compression. However, a
model trained with MSE loss tends to result into blurred de-
coded images. Alternative losses are variational losses [[7],
adversarial losses [2] and structural similarity loss [12]].

Regarding the compression efficiency, [9] proposes to
use an adaptive codelength regularization term which en-
courages structure in the code, so that the arithmetic coder
can exploit it for adapting the final codelength to the com-
plexity of the input. In [4] and [[12] the authors optimize for
rate-distortion performance, where the rate is represented
by the entropy.

Other neural network architectures used for image com-
pression include recurrent models, such as in [[13].

In this paper, we propose a system for block-based image
compression using auto-encoders. In particular, our contri-
butions are:

e Using multiple networks for variable bit rate, with
inference-stage code optimization.

e Using L, normalization layer as the first layer of decoder,
which improves the training and inference performance.

e An entropy-friendly loss designed for block-based neural
auto-encoders.

e Fine-tuning each network on a separate sub-set of blocks,
according to the blocks’ encoding difficulty.

e Interval-preserving binarization noise, which ensures that
the noisy signal is in a certain interval to provide consis-
tent input to the decoder during training.

2551



2. Method

In this section, we describe the method used in our end-
to-end image compression. Our method is based on fully-
convolutional deep auto-encoders and is applied on 32x32
blocks from the image.

2.1. Network Description

Auto-Encoder Network: The encoder part contains five
consecutive convolutional blocks. Each block consists of
a convolutional layer with stride 2 followed by a paramet-
ric rectified linear unit (PReLU). These five blocks are fol-
lowed by a 1x1 convolutional layer and a sigmoid activa-
tion. The output of this layer is the compressed signal and
will be referred to as block-codes from now on. The block-
codes are 1-dimensional, as the input to the network is of
size 32x32 and there exits 5 downsampling convolutions.

The first layer of the decoder is an Lo normalization
layer. It has been shown that mapping auto-encoder rep-
resentations to the hypersphere surface improves clustering
[3]]. We also find L, normalization beneficial for this work,
and we will provide more details about the benefits later in
the experimental results. The Lo normalization layer is fol-
lowed by five consecutive deconvolutional blocks, each up-
sampling to double size. Each deconvolutional block con-
sists of a deconvolutional layer followed by PReLU. The
five deconvolutional blocks are followed by a final 1x1 con-
volutional layer with sigmoid activation.

Multiple Networks: The block-code length (number of
vector’s entries) for the above network is fixed and equal to
the number of convolutional kernels in the last layer of the
encoder. Setting up a fixed code-length for all blocks can be
suboptimal, as blocks may have different content complex-
ity and thus different compression difficulty. To allow for
variable bit rate encoding (other than entropy coding), we
make use of three separate networks with different code-
lengths. We encode/decode each block with the network
that provides the smallest bit rate for a target PSNR value.

Deblocking Network: Due to block-based compression,
the decoded image contains blocking artefacts. To suppress
these artefacts, we employ a fully-convolutional deblocking
filter that operates over the entire image. The network’s
structure is similar to U-Net [10]].

2.2. Inference

During encoding, first the image is divided into 32x32
blocks by raster-scan. Each block is encoded by the lowest
bit rate neural network (out of three) which satisfies a target
PSNR. The output of the encoder is binarized.

We optimize each block-code by optimizing the encoder
per block: we keep the weights of the decoder frozen and
fine-tune the encoder for a single block. To this end, we set
a target PSNR and start optimizing the encoder of lowest bit

rate neural network. If this network cannot achieve the tar-
get PSNR, we move on to the higher bit rate neural network
and optimize its encoder. This process is continued until the
target PSNR is achieved and the corresponding block-code
is selected as the final one.

We use two-bit indicator signal for each block indicat-
ing which neural network was used for encoding that block.
All the indicator signals are concatenated and one long in-
dicator vector is obtained for the entire image. The indi-
cator vector is entropy-coded for further bit rate reduction.
Similarly, each block-code is concatenated to obtain a long
image-code. This image-code is first difference-coded and
then entropy-coded. In the end, each image is encoded
into three vectors: 1) entropy-coded image-code 2) entropy-
coded indicator vector 3) shape of the original image.

During decoding, first the entropy-coded vectors are de-
coded. Then, the next two bits from indicator vector is read
and based on the indicator, the decoder knows which of the
three decoder network needs to be used for the current block
and therefore the encoding dimension. Then the next bit se-
quence of same length as this encoding dimension is read
from the image-code and is decoded by the selected neu-
ral decoder. We repeat the above procedure for all blocks.
Next, we combine all blocks to reconstruct the entire image,
by using the read shape information. Finally, the recon-
structed image is passed through the deblocking network as
a post-processing step.

2.3. Training

Binarization Simulation: The block-codes consist of
floating-point numbers in the interval [0,1], which need to
be binarized in order to achieve a reasonable compression
rate. Yet, binarization operation is non-differentiable and
cannot be used as is for training the auto-encoder end-to-
end. Therefore, during training, we simulate the binariza-
tion by adding noise to a value x[i] in the block-code . The
noise is random with a uniform distribution within the inter-
val [—|nint(x[i]) — z[i]], |nint(x[i]) — z[i]|] , where nint
denotes the rounding to nearest integer operation and |.| is
the absolute value operator. The noise is selected such that
the resulting value with additive noise remains in the inter-
val [0, 1]. This is to be able to provide a consistent input to
the decoder when we use this approximation and when we
use the real binarization.

Entropy-Friendly Loss: We concatenate the 1-
dimensional block codes from the image, and the resulting
image code is entropy-coded to achieve higher compression
rates. To make the image code more suitable for entropy
coding, we propose the loss in Eq. [T}

N
1
Lentropy = m Z(xp[Y] - xp[7 - 1])2 (1)

=2

2552



In Eq. [T} z, is obtained by padding the code x with 0
from both sides, where x corresponds to a block-code and
N is the number of elements in x,,. This padding is benefi-
cial since in the end we will concatenate all the block codes,
thus enforcing both beginning and ends of each block-code
to be zero helps achieving a smooth image-code after con-
catenation.

Training Process: During training, we use MSE-based
reconstruction loss L. and the entropy loss with a regular-
ization parameter A as follows: L = Ly cc + ALentropy-

Although we simulate the binarization via additive ran-
dom noise as previously discussed, we found it further ben-
eficial to utilize an alternate training. In each epoch, we first
train the auto-encoder end-to-end with binarization simula-
tion over the entire training dataset. Next, we freeze the
encoder part, perform actual binarization on the codes and
train only the decoder over the entire training dataset.

Since we are going to use each of three neural networks
for a different encoding difficulty level, the above training
can be suboptimal. In fact, training for example the low-
est bit rate neural network with all blocks (including the
hardest blocks), would not be consistent with the inference
stage, when that network would never been used on hard to
encode blocks. To make each network expert to their tar-
geted blocks, we fine-tune each network with the blocks for
which that network satisfies the target PSNR.

To make the decoder even more suitable to binarized
codes, we keep the encoder frozen, use real binarization and
fine-tune each expert decoder on its own training blocks.

The training of the deblocking network is performed sep-
arately where input images are the images reconstructed
via the inference stage (except the deblocking part) and the
ground truth are the original images.

3. Experimental Results

In this section, we quantitatively evaluate our method in
CLIC image compression dataset [1]]. As an evaluation met-
ric we use the peak signal-to-noise ratio (PSNR). We calcu-
late a single mean-squared-error (MSE) from the entire im-
age dataset and calculate the corresponding PSNR accord-
ing to Eq. 2] Note that the MSE is calculated on RGB
images.

PSNR = 20log;,255 — 10log,y MSE )
3.1. Implementation Details

All the convolutional or deconvolutional layers have 3x3
kernel size. The number of filters in the first five encoder’s
layers are 64, 128, 256, 512, 1024. The number of filters
in the last layer of the encoder is different in each neural
network: 64, 216 and 368 — these determine the number of
values output by each encoder. The decoder simply follows
the filter sizes for encoder in reverse order. The final layer

has 3 filters to convert back to RGB space. The training
is performed on 32x32 blocks extracted from images from
training dataset with half-overlapping blocks. We refer to
the half-overlapping variant as data augmentation training.
The regularization parameter for entropy coding loss is se-
lected as A = 0.001. All neural networks were trained us-
ing a batch size of 256 and Adam optimizer with learning
rate 0.001. We have two variants: NTcodec where we apply
deblocking filter on blocks of size 255x255 for memory ef-
ficiency, and NTcodecFull where we apply deblocking filter
on the entire image.

3.2. Effect of Each Contribution

First, we investigate the effect of each contribution by
controlled experiments. In particular, we investigate the ef-
fect of noise simulation, Ly normalization, data augmenta-
tion, alternate training and entropy loss. In each of these ex-
periments, one of the above properties were removed and all
others were kept fixed. We also compare our full model with
a standard architecture where after each convolution and de-
convolution layer there is a batch-normalization layer. In
this standard model, we remove the introduced Lo normal-
ization layer, but keep all other components same. We have
conducted the experiments only on the 216-bit neural net-
work. We report the obtained validation PSNR in Table

Noise simulation and alternate training have significant
effects, as they are crucial for approximating the bina-
rization process. The network with Ls normalization re-
sults into a compression rate of 0.151 bits per pixel (bpp),
whereas the one without to 0.134 bpp. The network without
L5 normalization can achieve the same performance (both
in bpp and PSNR) with the network with Lo normalization,
however at encoding dimension of 236. As the encoding di-
mension increases, the training of the network takes longer,
moreover the network size increases. Therefore, Lo nor-
malization has a positive effect in training speed and final
network size. Data augmentation has a very minor effect
on the performance due to already large number of train-
ing blocks and correlated blocks in the data augmentation.
The model with batch-normalization behaves similarly to
no-normalization network in terms of bit-rate and PSNR,
i.e. Lo normalization achieves similar performance with
faster training and lower number of network parameters. Fi-
nally, since the entropy-loss acts as a regularization loss, it
reduces the final PSNR value. However, the validation set
bit rate (after entropy coding) with entropy-loss is 0.151 bits
per pixel (bpp) whereas without the entropy-loss it is 0.216
bpp. Therefore, the huge compression rate improvement
dominates the slight PSNR decrease.

Next, we investigate the effect of multiple networks,
expert neural network training, final decoder fine-tuning,
code-optimization and deblocking post-processing. Each
experiment is done incrementally to each other in the above

2553



Table 1. Effect of Each Contribution for a Single Neural Network with 216 encoding dimension (on Validation Dataset)

No Noise Sim. | No L, | No Data Aug. | No Alt. Train. | No Entropy Loss | Batch-norm | Full Model
PSNR 23.882 26.778 26.946 25.751 27.258 26.882 27.055
Table 2. Effect of Additinal Operations (on Validation Dataset)
Single NN | Multiple NN | Expert NN | Decoder Fine-Tune | Deblocking | Code Optimize
PSNR 27.055 27.691 27.779 27.792 28.088 28.929

Table 3. Comparison on Test Set [3] C. Aytekin, X. Ni, F. Cricri, and E. Aksu. Clustering and un-
JPEG BPG | OURS supervised anomaly detection with L2 normalized deep auto-

PSNR | 25.612 | 29.587 | 27.920 encoder representations. CoRR, abs/1802.00187, 2018.
bpp 0.149 | 0.148 | 0.148 [4] J. Ball, V. Laparra, and E. P. Simoncelli. End-to-end opti-

order. We report the validation PSNRs and the bit rates
for each incremental training in Table E} As we observe,
using multiple neural networks provide a decent perfor-
mance increase whereas expert trainings and decoder fine-
tuning has only a minor incremental effect. Deblocking
post-processing was aimed to help achieving visually better
quality images, yet we also observe that it increases the per-
formance too. Finally, block-wise code optimization greatly
improves the performance and achieves a decent PSNR. We
would like to note here that the average bit rate for the fi-
nal model with code optimization is 0.149 bpp, which is
below our baseline with single network with no additional
processing (0.151 bpp).

Test-set results: Table [3| reports PSNR and bit rates on
the test-set for our method and for two traditional codecs
(JPEG and BPG).

4. Conclusion

We have proposed an end-to-end block-based auto-
encoder system for learned image compression. We have
evaluated each building block of our method and have
shown that each building block contributes to the perfor-
mance to a degree. Our novel contributions Ly normaliza-
tion, concatenation-enabling entropy-friendly loss, expert
neural network fine-tuning and code optimization greatly
contribute to our final performance.

References

[1] Workshop and challenge on learned image compres-
sion (clic). http://www.compression.cc/
challenge/l Accessed: 2018-04-26.

[2] E. Agustsson, M. Tschannen, F. Mentzer, R. Timo-
fte, and L. Van Gool. Generative adversarial networks
for extreme learned image compression. arXiv preprint
arXiv:1804.02958, 2018.

mized image compression. In /CLR, 2017.

[5] L. Cavigelli, P. Hager, and L. Benini. Cas-cnn: A deep
convolutional neural network for image compression artifact
suppression. In International Joint Conference on Neural
Networks (IJCNN), 2017.

[6] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression
artifacts reduction by a deep convolutional network. In In-
ternational Conference on Computer Vision (ICCV), 2015.

[7]1 K. Gregor, F. Besse, D. Jimenez Rezende, 1. Danihelka, and
D. Wierstra. Towards conceptual compression. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 29,
pages 3549-3557. Curran Associates, Inc., 2016.

[8] F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao. An
end-to-end compression framework based on convolutional
neural networks. IEEE Transaction on Circuits and Systems
for Video Technology, 2017.

[9] O. Rippel and L. Bourdev. Real-time adaptive image com-
pression. In International Conference on Machine Learning,
2017.

[10] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,
editors, Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2015, pages 234-241, Cham, 2015.
Springer International Publishing.

[11] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand.
Overview of the high efficiency video coding (hevc) stan-
dard. IEEE Transactions on Circuits and Systems for Video
Technology, 22(12):1649-1668, Dec 2012.

[12] L. Theis, W. Shi, A. Cunningham, and F. Huszr. Lossy im-
age compression with compressive autoencoders. In Inter-
national Conference on Learning Representations, 03 2017.

[13] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Min-
nen, J. Shor, and M. Covell. Full resolution image compres-
sion with recurrent neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[14] G. K. Wallace. The jpeg still picture compression standard.
Communications of the ACM, pages 30-44, 1991.

[15] L. Zhao, H. Bai, A. Wang, and Y. Zhao. Learning a virtual
codec based on deep convolutional neural network to com-
press image. CoRR, abs/1712.05969, 2017.

2554


http://www.compression.cc/challenge/
http://www.compression.cc/challenge/

