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Abstract

Image compression has been investigated for many

decades. Recently, deep learning approaches have achieved

a great success in many computer vision tasks, and are

gradually used in image compression. In this paper, we

develop three overall compression architectures based on

convolutional autoencoders (CAEs), generative adversar-

ial networks (GANs) as well as super-resolution (SR), and

present a comprehensive performance comparison. Accord-

ing to experimental results, CAEs achieve better coding ef-

ficiency than JPEG by extracting compact features. GANs

show potential advantages on large compression ratio and

high subjective quality reconstruction. Super-resolution

achieves the best rate-distortion (RD) performance among

them, which is comparable to BPG.

1. Introduction

Image compression has been a fundamental and signifi-

cant research topic in the field of image processing for sev-

eral decades. Traditional image compression algorithms,

such as JPEG [1], JPEG2000 [2] and BPG [3], rely on hand-

crafted encoder/decoder (codec) block diagrams. They use

fixed transforms, i.e. Discrete Cosine Transform (DCT) and

Discrete Wavelet Transform, together with the quantization

and the entropy coder to reduce spatial redundancy for nat-

ural scene images. However, they are not expected to be an

optimal and flexible image coding solution for all types of

image contents and formats.

Deep learning approaches has the potential to enhance

the performance of image compression. Recently, sever-

al methods have been proposed using different neural net-

works. The works [4][5] proposed a differentiable approx-

imation of the quantization and the entropy rate estimation

for an end-to-end autoencoder. The work [6] used a recur-

rent network for compressing full-resolution images. Prim-

ing and spatially adaptive bit rate were further considered

in [7]. Generative adversarial networks (GANs) were used

for image compression in [8] and [9], which achieved bet-

ter performance than BPG. Neural networks based super-

resolution methods achieve better quality than conventional

interpolation methods, so it can be used as a post filter to en-

hance the compression performance. Deep learning based

approaches not only achieve better coding efficiency, but al-

so can adapt much quicker to new media contents and new

media formats [4]. Therefore, learned image compression

is expected to be more efficient and more general.

In this paper, we propose three architectures using

convolutional autoencoders (CAEs), GANs and super-

resolution (SR) for lossy image compression, respective-

ly. Moreover, we discuss their coding performance and

present a comprehensive comparison. Experimental result-

s demonstrate that CAEs achieve higher coding efficiency

than JPEG due to the property of compact representation

of autoencoders. GANs show potential advantages on large

compression ratio and high subjective quality reconstruc-

tion. Super-resolution achieves the best rate-distortion (RD)

performance among three methods.

2. Three Image Compression Methods

2.1. Convolutional Autoencoders for Compression

Generally, an autoencoder can be regarded as an encoder

function, y = fθ(x), and a decoder function, x̂ = gφ(y),
where x, x̂, and y are original images, reconstructed images,

and compressed data, respectively. θ and φ are optimized

parameters in the encoder and the decoder function.

We propose a CAE network to replace conventional

transforms, such as DCT and wavelet transform. The over-

all architecture is shown in Figure 1. Consecutive down-

sampling operations destroy the quality of reconstructed im-

ages. Therefore, we use a pair of convolution/deconvolution

filters for one upsampling or downsampling operation. The

CAE network structure is shown in Figure 2. As for the ac-

tivation function after each convolutional layer, we utilize

the Parametric Rectified Linear Unit (PReLU) function, in-

stead of ReLU, which is commonly used in related work-
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Figure 1. Block diagram of CAE based image compression.

Figure 2. The CAE network structure.

s, because we find that PReLU can improve the quality of

reconstructed images compared to ReLU, especially with

high bit rate. Inspired by the RD cost function in traditional

codecs, the loss function is defined as

J(θ, φ;x) = ||x− x̂||2 + λ · ||y||2

= ||x− gφ(fθ(x) + µ)||2 + λ · ||fθ(x)||
2

(1)

where ||x− x̂||2 denotes the mean square error (MSE) dis-

tortion between original images x and reconstructed images

x̂. µ denotes uniform noises. λ controls the tradeoff be-

tween the rate and the distortion. ||fθ(x)||
2 denotes the am-

plitude of compressed data y, which reflects the number of

bits used to encode compressed data. We use a subset of

ImageNet database [11] consisting of 5500 images to train

the CAE network. We used the Adam optimizer [10] and a

batch size of 16 to train the model up to 8× 105 iterations.

The learning rate was kept at a fixed value of 0.0001, and

the momentum β1 was set as 0.9. Then we apply the prin-

ciple component analysis (PCA), uniform quantization and

the JPEG2000 entropy coder to generate a bit stream.

2.2. Generative Adversarial Networks for Compres­
sion

For the GAN based image compression, we add one con-

volutional layer to make the input size as 128× 128, based

on the architecture of DCGAN [8][13]. The activation func-

tion is kept the same as DCGAN. Because DCGAN only

includes the generator as the decoder function, we add an

encoder function, which has the same structure as the dis-

criminator. To implement the end-to-end training, the loss

function of the generator is defined as

JG(x) = ||x− x̂||2 + β
∑

i∈[0,4]

||Dhi(x)−Dhi(x̂)||
2 (2)

Figure 3. The GAN structure.

Figure 4. Block diagram of super-resolution based compression.

where ||x − x̂||2 denotes the MSE distortion between the

original images x and reconstructed images x̂. Adding the

discriminator network benefits the high quality reconstruc-

tion [9], so we add the second distortion term in Eq.(2).

Dhi(x) and Dhi(x̂) are the outputs of the i-th convolution-

al layer in discriminator network for inputs x and x̂, respec-

tively. β is set as 0.01 in our experiments. The loss function

of the discriminator is kept the same as DCGAN.

We use the training set of the Workshop and Challenge

on Learned Image Compression (CLIC). The Adam opti-

mizer [10] with a batch size of 128 was used for training.

The learning rate was kept at a fixed value of 0.0001. The

model is trained up to 25 epoches. The GAN structure is

shown in Figure 3. The GAN based architecture has three

differences from the CAE based architecture. First, the in-

put has RGB components, so color space conversion from

RGB to YCbCr is not applied. Second, we do not add u-

niform noises during the training process since GAN inher-

ently reconstructs images from noises. Third, we use the

range coder [15], instead of the JPEG2000 entropy coder.

2.3. Super­Resolution for Compression

Using super-resolution as a post filter is an intuitive

method for compression. We present a SR based compres-

sion architecture in Figure 4. We use a SRCNN architecture

in [14] with three convolutional layers. The kernel sizes are

set as 9, 1, 5, and the numbers of convolutional filters are set

as 64, 32, 1. We retrain this SRCNN model with the scale

of 2 using the CLIC training dataset. The loss function and

training parameters are kept the same as [14].

However, for images with complex textures or with s-

mall resolution, SR will become the bottleneck of high qual-

ity reconstruction. Thus, we propose an adaptive strategy
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Case PSNR (dB) MS-SSIM Rate (bpp)

qp=32, Non-adaptive 29.418 0.949 0.151

qp=35, Adaptive 30.002 0.945 0.156

Table 1. The effect of adaptive strategy for super-resolution.

(a) (b) 39.2dB, 1.31bpp (c) 39.2dB, 0.99bpp

Figure 5. One image and corresponding 32 feature maps of Y-

component generated by CAE, arranged in raster-scan order and

rotated feature maps by PCA, arranged in vertical scan order.

by building a reconstruction loop in the encoder. This loop

calculates the distortion only caused by SR, i.e. Pre PSNR

in Figure 4. When Pre PSNR is larger than a pre-defined

threshold, images are downsampled to (0.5W, 0.5H) and a

SRCNN filter is conducted after decoding. Otherwise, im-

ages are downsampled to (0.7W, 0.7H) and a lanczos filter

is alternatively applied for interpolation. The effect of adap-

tive strategy is listed in Table 1. The threshold is set as 33.0
dB in our experiments and about 30% of images are select-

ed to use SRCNN filters. For the CLIC challenge, the entry

Kattolab uses adaptive SR-based architecture.

3. Performance Discussion and Comparison

To measure the coding efficiency, the rate is measured by

bit per pixel (bpp). PSNR (dB) and MS-SSIM are used to

measure objective and subjective qualities, respectively.

3.1. Discussion on CAE­based Compression

The feature maps generated by CAEs are not energy-

compact, thus, we further decorrelate feature maps using

the PCA. Examples of generated feature maps and the ro-

tated feature maps by the PCA are shown in Figure 5. It is

observed that more zeros are generated in the bottom-right

corner and large values are centered in the top-left corner in

the rotated feature maps, which benefits the following en-

tropy coder to reduce the rate. The CAE-based method out-

performs JPEG and achieves a 13.7% BD-rate decrement

on the Kodak database images compared to JPEG2000. The

detailed discussions refer to the paper [12].

3.2. Discussion on GAN­based Compression

We conduct some experiments on the CLIC validation

dataset to discuss the performance. First, the effect of input

sizes for one image is listed in Table 2, where 64×64×3 →
1024 denotes that the input size is 64 × 64 × 3 and the

code size N is 1024. It is observed that the input size

128× 128 obtains the best PSNR because the tested image

size is around 1080p, resulting that 128 × 128 is a prop-

Input size PSNR(dB) MS-SSIM Rate(bpp)

64× 64× 3 → 1024 22.73 0.745 0.781

128×128×3 → 1024 23.95 0.897 0.225

256×256×3 → 1024 17.18 0.699 0.050

Table 2. The effect of different input sizes.

Code size Interp. Size PSNR(dB) MS-SSIM Rate(bpp)

64 (W,H) 22.195 0.753 0.024

(2W,2H) 24.213 0.856 0.086

(4W,4H) 26.451 0.928 0.329

128 (W,H) 23.126 0.791 0.042

(2W,2H) 25.335 0.901 0.162

(4W,4H) 27.801 0.941 0.389

256 (W,H) 23.962 0.831 0.071

(2W,2H) 26.308 0.924 0.274

(4W,4H) 29.262 0.957 0.792

1024 (W,H) 25.121 0.896 0.261

(2W,2H) 27.474 0.947 0.981

Table 3. The effect of different code sizes and interpolation sizes.

Quan. bit PSNR (dB) MS-SSIM Rate (bpp)

8 bit 27.932 0.952 0.764

7 bit 27.788 0.942 0.472

6 bit 27.313 0.901 0.352

5 bit 25.179 0.784 0.233

Table 4. The effect of different quantization bits.

er size for semantics reconstruction of GANs. Second, the

effect of code sizes and interpolation sizes is given in Ta-

ble 3. Code size is the length of generated compressed code

N . We set the input size as 128 × 128. Along with the in-

crease of code sizes, PSNR and MS-SSIM increases. The

GAN with fixed code size cannot provide good performance

for all the images with different textures, so an adaptively

switchable encoder for GANs with different code sizes will

be studied in the future. To obtain variable bit rates, we

add one bicubic interpolation filter with different scales as

the preprocessing. From Table 3, by interpolating the size

from (W, H) to (2W, 2H), PSNR increases by about 2.2dB,

MS-SSIM increases by around 0.10. Meanwhile, the rate

increases up to almost 4 times. The effect of different quan-

tization bits is shown in Table 4. We set the code size as

256 with (4W, 4H) interpolation. Too few bits, e.g. 5 bit,

will destroy the reconstruction quality significantly. Similar

to CAE-based method, we also apply PCA to further reduce

the code size. For the CLIC challenge, the entry Gcode us-

es the architecture of 128× 128× 3 → 128 with (3W, 3H)

interpolation, 8-bit quantization and PCA rotation.

3.3. Comparison Results

In this section, we use the CLIC validation dataset for

a fair evaluation. The RD curves with MS-SSIM and P-

SNR are shown in Figure 6. RD curves for super-resolution

is short because it is conducted by changing the threshold

in the adaptive strategy with the fixed quantization param-
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Figure 6. RD curves of three methods.

Codecs PSNR (dB) MS-SSIM Rate (bpp)

JPEG 25.82 0.853 0.133

CAE 26.48 0.825 0.151

GAN 26.53 0.915 0.148

SR 30.00 0.947 0.143

BPG 30.85 0.948 0.149

Table 5. Performance comparison with 0.15bpp constraint.

eter (QP) value in BPG codec. By changing the QP, super-

resolution can also achieve a wide range of RD curves. Sev-

eral observations are summarized from RD curves. 1) CAEs

are better than JPEG in case of lossy compression due to

the inherent property of autoencoder. Autoencoders can re-

duce the dimension to extract the compressed presentation

from images, so CAEs outperform JPEG and JPEG2000. 2)

GANs perform better with low bit rate than that with high

bit rate, so GANs tend to achieve large compression ratio.

Meanwhile, GANs have better performance on MS-SSIM

than PSNR, because the reconstruction of GANs is based on

the distribution of the image data, which is friendly to hu-

man visual system. Especially for MS-SSIM, GANs have

stable performance from 0.2bpp to 0.8bpp. 3) SR achieves

the best performance among these three methods, because it

takes the advantages of both emerging algorithms BPG and

machine learning based super-resolution filters. Promising

results can be expected to outperform BPG by adding bet-

ter super-resolution filters, if more computational resources

can be provided.

The comparison for three methods with the rate con-

straint of 0.15bpp is shown in Table 5. It is observed that

SR-based method is quite close to BPG. GAN and CAE

based architectures are better than JPEG. Especially, GANs

and CAEs have the similar PSNR, but GANs are much bet-

ter than CAEs in terms of relatively subjective MS-SSIM.

4. Conclusion and Future Work

End-to-end deep learning based compression is a chal-

lenging work. In this paper, we propose three architectures

using CAEs, GANs and SR, for compression, and discuss

their performance. Results demonstrate that 1) CAEs are

better than traditional transforms for lossy compression, and

are expected to be used as a feature extractor. 2) GANs

show potential advantages on large compression ratio and

subjective quality reconstruction. 3) SR-based compression

achieves the best coding performance among them. In the

future work, we will design a target-adaptive encoders by

switching multiple GANs with variable code sizes. We will

add mean opinion scores (MOS) evaluations to illustrate

the effectiveness. Combining individual advantages of each

method will contribute to a better compression algorithm.
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