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Abstract

We investigate a simple pipeline to achieve high-quality

image compression under very low bit-rate. The pipeline is

a stack of BPG image compression and deep network based

restoration. Wide-activated deep residual networks from re-

cent advances in image super-resolution are adopted for im-

age restoration. Experiments demonstrate that the pipeline

significantly reduces the quantity loss and remove visual ar-

tifacts for compressed images.

1. Introduction

Image compression is a task to convert images into small

footprint. Lossy image compression aims a higher compres-

sion ratio while allows some distortion of decompressed

images. Given specific compression ratio, lossy image

compression algorithms are designed to minimize recon-

struction distortion in terms of peak signal-to-noise ratio

(PSNR), structural similarity (SSIM) or other metrics.

Traditionally, lossy image compression algorithms (e.g.

JPEG and BPG) are based on block-wise discrete cosine

transform (DCT), quantization and entropy coding. The

DCT and quantization steps introduce losses and distortions

(e.g. blocking, blurring and ringing). The DCT is based on

the spacial continuity of image signals, however, ignores the

prior distribution of photographs.

Recently, learned image compression algorithms with

deep networks [2, 9, 12, 13, 17] are developed and achieve

better image quality than traditional approach. Many of

the deep networks based algorithms utilize deep model to

transform images instead of DCT. Comparing to DCT trans-

formed representations, the deep networks encoded features

are not orthogonal between dimensions, and not discrimi-

native for low and high frequencies, which make it more

difficult to ignore high frequency redundancies to further

minimize features entropy. Mentzer, et al. [12] proposed to

use context models (PixelCNN [19]) as entropy coder and

achieved better results than others.

In this work, we investigate a simple pipeline cascading

BPG image compression and deep networks based image

restoration. The deep networks for image restoration are

supposed to learn the prior distribution of images, so that

can enhance BPG-compressed images both quantitatively in

term of peak signal-to-noise ratio (PSNR), and qualitatively

for human perception.

2. Related Work

Deep neural networks are widely used for low-level im-

age restoration problems [11, 20] recently. Deep networks

based restoration for compressed images is firstly intro-

duced by Dong et al. [4]. The work is inspired by Super-

Resolution Convolutional Neural Network (SRCNN) [5],

in which convolutional networks show potential in low

level vision tasks. Since then, several follow-up work

[3, 7, 15, 16] further improve the power of deep networks

to remove artifacts.

Recently, the Enhanced Deep residual networks for

Super-Resolution (EDSR) [10] achieves significant im-

provement for image super-resolution. In EDSR, the deep

networks consist of multiple blocks with linear residuals.

The residual blocks have 2 convolutional layers connected

with ReLU activation.

We further improve the EDSR with wide activation SR

networks (WDSR) (Fig. 1) from three aspects: wide activa-

tion, weight normalization in training and simplified global

residual pathway. The WDSR are more effective in term of

PSNR for image super-resolution. In this work for image

restoration, we adopt the WDSR by removing up-sampling

pixel-shuffle layers in the final stage.

3. Wide-activated Deep Residual Networks

In this section, we briefly review wide-activated deep

residual networks and compare to its baseline EDSR [10].
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Figure 1. Our WDSR networks compared with EDSR [10].

3.1. Wide Activation

We use a deep residual network (two-layer residual

blocks) following baseline EDSR [10]. Assume the width

of identity mapping pathway (Fig. 1) is w1 and width before

activation inside residual block is w2. We introduce expan-

sion factor before activation as r, and we have w2 = r×w1.

Then the vanilla residual networks (e.g., used in EDSR and

MDSR) is with w2 = w1 and have parameters 2×w2

1
× k2

in each residual block. The computational (Mult-Add oper-

ations) complexity is a constant scaling of parameter num-

bers when we fix the input patch size. To have same com-

plexity w2

1
= ŵ1 × ŵ2 = r × ŵ1

2, the residual identity

mapping pathway need to be slimmed as a factor of
√
r and

the activation can be expanded with
√
r times. The simple

idea forms our wide-activated deep residual networks. Ex-

periments show that the proposed networks are extremely

effective for improving accuracy.
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Figure 2. Under same parameter and computation complexity,

wider features before ReLU activation has significantly better per-

formance. Left: vanilla residual block in EDSR [10]. Right:

residual block with wider activation in wide-activated deep resid-

ual networks.

3.2. Improved Training with Weight Normalization

We introduce weight normalization for training deep and

wide restoration networks for the first time, which performs

better than batch normalization or no normalization. Batch

normalization re-calibrates the mean and variance of inter-

mediate features to solve the problem of internal covariate

shift [8] in training deep neural networks. It has different

formulations in training and testing, which potentially cause

Figure 3. Training L1 loss and validation PSNR with weight nor-

malization, batch normalization or no normalization. The pro-

posed weight normalization yields better performance.

following problems. 1) For image super-resolution, com-

monly only small image patches (e.g. 48 × 48) and small

mini-batch size (e.g. 16) are used to speedup training, thus

the mean and variance of small image patches differ a lot

among mini-batches, making theses statistics unstable. It

is demonstrated in our experiments. 2) BN is also believed

to act as a regularizer and in some cases can eliminate the

need for Dropout [8]. However, it is rarely observed that

regression networks overfit on training datasets. Instead,

many kinds of regularizers, for examples, weight decaying

and dropout, are not used in regression networks. 3) Unlike

image classification tasks where softmax (scale-invariant)

is used at the end of networks to make prediction, for im-

age restoration, the different formulations of training and

testing may deteriorate the accuracy for dense pixel value

predictions. Thus, in recent image super-resolution net-

works [6, 10, 18], batch normalization is abandoned.

Weight normalization [14], on the other hand, is a reparam-

eterization of the weight vectors in a neural network that

decouples the length of those weight vectors from their di-

rection. It does not introduce dependencies between the ex-

amples in a mini-batch, and has the same formulation in

training and testing. It is also noteworthy that naively intro-

ducing weight normalization in training image restoration

networks may not help that much. We find empirically that

weight normalization allows higher learning rate (i.e. 10×),

with which the loss of training normal networks explodes.

The advantages of weight normalization are shown in Fig-

ure 3.
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Figure 4. Qualitative comparison of restoration effects for BPG-compressed images. Up: BPG-compressed images. Bottom: adding

proposed restoration.

3.3. Simplified Global Residual Pathway

We start with EDSR [10] super-resolution network. We

find that the global residual pathway is a linear stack of

several convolution layers, which is computational expen-

sive. We argue that these linear convolutions are redundant

(Fig. 1) and can be absorbed into residual body to some ex-

tent. Thus, we slightly modify the network structure and

use single convolution layer with kernel size 5 × 5 that di-

rectly take 3 ×H ×W LR RGB image/patch as input and

output 3S2×H×W HR counterparts, where S is the scale.

This results in less parameters and computation. In our ex-

periments we have not found any accuracy drop with our

simpler form.

4. Experimental Results

4.1. BPG Image Compression

For BPG image compression, we use the libbpg imple-

mentation. To meet the requirements of 0.15 bits per pixel

(bpp), we use the JCT-VC encoder with quantizer parame-

ter at 38 and convert images in YCoCg color space with bit

depth at 9.

4.2. Networks Training

4.2.1 Dataset

The image restoration networks are trained on DIV2K

dataset [1]. The input images are reconstructed from BPG

compressed ones. The ground-truth targets are original un-

compressed images.

4.2.2 Networks Structure

To compromise between speed and accuracy, the networks

are designed to have 16 residual blocks, with 32 nodes in

identity mapping pathway and 4x expansion for wide ac-

tivation (128 nodes). The networks input is RGB images

in 3 channels normalized to 0-1 and subtracted the global

mean of each channel, and the output is also corresponding

to RGB channels and de-normalized with inverse process.

4.2.3 Hyper parameters

The restoration networks are trained based on square im-

age patches whose height and width are 224. The training

objective function is L1 loss, and optimized with a fixed

learning rate of 1e-3.

4.3. Results

The proposed approach is evaluated on the validation

dataset in challenge on learned image compression (CLIC)

2018.

4.3.1 Quantitative Results

Compared with BPG compression, in Table 1. , the pro-

posed restoration can significantly improve PSNR for re-

constructed images.
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Method PSNR (dB)

BPG 31.09

+ Restoration 31.71

Table 1. Comparison of restoration effects for BPG-compressed

images

4.3.2 Qualitative Results

In Figure 4, some representative patches are selected to

demonstrate improvements over BPG-compressed images.

The proposed approach can remarkably remove the arti-

facts for BPG-compressed images and provide more pleas-

ing photographs.

5. Conclusion

We successfully adopt the recent advances of wide-

activated deep residual networks in image super-resolution.

The deep networks can remarkably restore compressed im-

ages to reduce the loss and remove artifacts in image com-

pression.
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