This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

DeepVQ: A Deep Network Architecture for Vector Quantization

Dang-Khoa Le Tan* Huu Le*

Tuan Hoang*

Thanh-Toan Do~ Ngai-Man Cheung!

Singapore University of Technology and Design (SUTD)

* indicates equal contribution
Abstract

Vector quantization (VQ) is a classic problem in signal
processing, source coding and information theory. Lever-
aging recent advances in deep neural networks (DNN), this
paper bridges the gap between a classic quantization prob-
lem and DNN. We introduce — for the first time — a deep net-
work architecture for vector quantization (DeepVQ). Apply-
ing recent binary optimization theory, we propose a training
algorithm to tackle binary constraints. Notably, our net-
work outputs binary codes directly. As a result, DeepVQ
can perform quantization of vectors with a simple forward
pass, and this overcomes the exponential complexity issue
of previous VQ approaches. Experiments show that our
network is able to achieve encouraging results and out-
performs recent deep learning-based clustering approaches
that have been modified for VQ. Importantly, our network
serves as a generic framework which can be applied for
other networks in which binary constraints are required.

1. Introduction

Vector quantization (VQ) is a classical and important
problem in source coding and information theory [6} 2.
Given a vector of source symbols of length D: x € RP,
the problem considers representing x by one of the K re-
production vectors x’ € RP. The primary goal of vector
quantization is data compression: Given the input x, at the
encoder, the index b of the corresponding reproduction vec-
tor is computed; this index can be can be represented in
binary using L = log, K bits in a transmission/storage sys-
tem. At the decoder, the reproduction vector (codeword) x’
corresponding to the index b is used as the reconstruction
of the input x.

VQ is motivated by the fundamental result of Shan-
non’s rate-distortion theory [6l [2]]: better performance can
always be achieved by coding vectors instead of scalars,
even if the sequence of source symbols are independent
random variables. In particular, VQ is theoretically opti-
mal: for sufficiently large D, at a given rate, the distortion
(mean-squared-error MS between x and x’) is arbitrar-
ily close to the minimum distortion as stated in Shannon’s
rate-distortion theory. However, this information-theoretic

'We focus on MSE although other distortion may be used.

Tngaiman,cheung@ sutd.edu.sg

result is asymptotic and non-constructive. Previous meth-
ods for VQ cannot use very long block size due to practical
constraints, therefore performance is suboptimal.

Our contribution is to propose a novel deep neural net-
work to address the classical VQ problem that overcomes
the complexity issues of previous VQ methods. Our pro-
posed Deep Vector Quantization (DeepVQ) is a new auto-
encoder design that directly outputs binary index of the
codeword (i.e., b) with a simple forward pass. As the net-
work outputs binary code directly, there is no need to store
reproduction vectors. DeepVQ addresses the scalability is-
sue of previous VQ methods, enabling long block size to
be used to achieve good performance. Furthermore, a deep
network can learn intrinsic and robust features, and our ap-
proach has much better generalization capability to handle
out-of-sample data. Training DeepVQ is very challeng-
ing as this involves non-smooth objective function and bi-
nary constraints. We attack it using alternating optimization
and very recent binary optimization theory [16]. Note that
DeepVQ is not only specific to the quantization problem; it
is applicable when there involves integer constraints in the
objective function of training a DNN, and image hashing is
a notable example [3]].

2. Related works

K-means (Generalized Lloyd algorithm) is the prime
method for VQ. Given a set of training data {x;}¥ ;, where
x; € RP, the K-means algorithm partitions the N points
into K clusters. Each vector is represented by its nearest
centroid in C = [c1, ¢a, - - - , ¢k]. The training of K-means
is achieved by minimizing the following objective function:

. N 2
min o |Ixi — Csqll3,

Cfs) “ist ()
s.t. 8; € {0, I}K, HSzHI =1 Vi,

where s; is the assignment vector, which contains only one
1 element and the remaining (K — 1) elements are 0, corre-
sponding to the data point x;; || - ||1 denotes the [; norm.
However, K-means based VQ has exponential complex-
ity in encoding (computation and memory) and decoding
(memory). Specifically, suppose L is the code size, and
K-means needs to determine K = 2” centroids. This pre-
vents K-means from using long block size. For example,
touse D = 784 (e.g., x is a 28 X 28 image), and at a

2579

rate of 0.05 bits per sample, this requires code of L = 40
bits, or K = 240 centroids. It is impractical to store in
the encoder/decoder such large number of centroids, which
are required in coding process. Furthermore, the number of
training data required and the complexity of training is im-
practical for K-means. Various improvements of K-means
have been proposed to address the complexity issues (e.g.
product quantization) [5], but they are sub-optimal in per-
formance. Notably, our DNN approach is fundamentally
different from K-means for VQ design.

Recently, there are many works that apply deep learn-
ing to the clustering problem [15} 9 [12]. The main idea
is to exploit DNN to map input data from the original high-
dimensional space to the latent space with lower dimension-
ality. Then, K-means is applied to the latent codes. How-
ever, K-means in the latent space is sub-optimal for VQ, as
Euclidean distances between data points are not preserved
in the latent space. In our experiment, we show that adopt-
ing these works for VQ has sub-optimal performance. In
addition, since K-means is still needed in these works, they
still suffer from poor scalability when being used in VQ.

Constrained objective functions in deep learning appear
not only in VQ problem but also in image hashing [3] and
image compression [4}[13]. In image compression, the main
barrier is the round function which is non-differentiable and
thus it causes vanishing gradient. Instead of replacing the
round function completely by a smooth function, [13]] ap-
proximated the derivative by the identity function. [4] in-
stead used a learnable uniform scale quantization in a con-
volutional autoencoder. In general, the current approach is
to approximate the non-differentiable functions by smooth
functions and then use SGD to train the whole network pa-
rameters. Even though these approximations help the quan-
tization learnable via SGD, they could degrade the perfor-
mance of the models as the loss function is not precise.

Recently, Do et al. [3]] introduced a binary auto-encoder
for image hashing, in which the task of binary optimization
is approached by cyclic coordinate descent. However, their
method cannot be applied to a stack of layers with nonlin-
earities. Recent works [[11} [10] proposed novel reparame-
terization methods to handle the non-gradient issue for dis-
crete random variables in Variational Auto-Encoder. VQ-
VAE [14]] avoids such problem by the identity function,
namely copying gradients from the decoder input to en-
coder output. Nevertheless, our work addresses a different
problem of optimizing a network with the strict binary con-
straint.

3. Proposed method
3.1. Network architecture

Given the set of input data {xi}ij\il, where x; € RP,
VQ - in the context of data compression — seeks to encode
x; into its compact binary code b; € {—1,1}*(L < D).

Our solution is an auto-encoder with the innermost hidden
layer outputting binary code. Let f(x) : RP s {—1,1}F
denote the encoding network, and g(b) : {-1,1}f — RP
be the decoding network, which maps a compressed data
point b; back to the original space R”. The task of finding
the set of binary codes {b; } and the mapping functions f(.)
and g(.) can be mathematically formulated as solving this
optimization:

min S llo(76xi) —xil3

Wi, W,
s.t. f(xi) € {~1,1}* Vie {1,...,N}

(@)

Here, W1 and Wy, are the parameters of the network f and
g, respectively. The binary codes can be computed directly
as b; = f(x;). The reproduction vector can be computed
as x; = g(b;). Comparing to K-means, no storing of cen-
troid is needed with our approach. During encoding, no
searching of codeword is required. Significantly, in con-
trast to the conventional auto-encoder, the output of the en-
coder in our proposed method is constrained to be binary,
ie., f(x;) = b; € {—1,1}%, which in fact can be inter-
preted as an index of its corresponding centroid g(b;).

The encoder of our network consists of three hidden lay-
ers and one binary layer as the the encoder’s output. In
this work, we let the decoder and encoder share the same
weights, thus the decoder is mirrored from the encoder.
Since we aim at providing a generic framework for multiple
types of input data, the layers in our network are chosen to
be fully connected in this work. We use tanh as activation
functions for the layers. Our method can later be modified
with other structures for other types of input signals, e.g.,
convolutional layers for images.

3.2. Optimization method

Solving (@) is a challenging task, since in addition to
the fact that f and g can be heavily non-convex, one must
also deal with the binary constraint at the encoder’s out-
put. Consequently, (2)) cannot be tackled directly by well-
known smooth optimization methods. To the best of our
knowledge, we are the first to propose a network architec-
ture where f and g are non-linear and the binary constraints
are strictly enforced during the training process.

First, to simplify notation, we reformulate (2) in the ma-
trix form. Let X € RV *? be the matrix that contains all the
input data, where the ¢:—th row of X represents the data x;.
Similarly, let B be the matrix that contains all the encoded
binary codes corresponding to the input data X. Note that
henceforth, f and g are considered as functions that acts on
every single row of the input matrix. With the newly intro-
duced notations, @]) can now be written as

i B) — X||2
whiin o llg(B) 1%, .

s.t B e {-1,1}"*L f(X)=B.

2580

We propose to tackle (3) by penalty method. Specifically,
by incorporating constraint f(X) = B into the cost func-
tion, together with a penalty parameter v , we have:

i B) — X7 X) — B2
win o l9(B) = X[+9IIf(X) - Bl7,

s.t B e {-1,1}V*F

Observe that (4) contains three sets of parameters W1, W
and B, where only B is constrained to be binary. We attack
(@) using alternating optimization. Particularly, one can it-
eratively fix B and update W, Wy, then update B with
Wi, Wy fixed.
Updating W1, Wy: With B fixed, (@) becomes an un-
constrained optimization problem
anin 9B) = X[} +9]5(X) =B} (s)
Since the cost function of () is differentiable, it can
be solved by popular gradient-descent based optimization
methods.
Updating B: Starting from (@), if W, and W, are fixed,
B can be updated by solving
min [lg(B) - X|I3 +71£(X) - BII3

st Be{-1,1}Vxk

Unlike (§), as noted previously, (6) cannot be tackled di-
rectly by gradient-based solvers due to the binary restric-
tion. To resolve this, inspired by [16], we develop a
new optimization technique for (). More specifically, we
first introduce an auxiliary variable V. € RY*% and re-
formulate (6) equivalently as follows:

min [|9(B) - X[+ 7 £(X) - Bl7

(6)

s.t. —1Inxr <B < 1yxy,)
<B,V> =NL, HV”%‘ <NL,

with 1y 1, represents a matrix of size /N x L in which all el-
ements are equal to one, and (., .) denotes the inner product
of two matrices.

Note that besides the bi-linear constraint (B, V) = NL,
the other two constraints in (7)) are convex constraints. This
observation encourages us to employ one more time the
penalty method to solve (7). Specifically, with the penalty
parameter p, and let h(B) = |lg(B) — X||% + 7| f(X) —
BJ|2, the penalty problem to solve (7)) can be written as

iy h(B) +p((B,V) - NL)

s.t. —1nxr <B < 1nxi, ®)
V% < NL,

Similarly, (8)) can also be optimized by alternatively updat-
ing B and V. Each sub-problem can be solved by gradient-
descent based techniques. Due to space limit, the optimiza-
tion details and convergence proof will be discussed in de-
tails in our extended version of this paper.

4. Experiments

In this section, we compare our method with K-means
and its variants, namely PQ [8] and OPQ [5] which are
able to encode with long code lengths. In addition, we also
compare with the recent method Deep Clustering Network
(DCN) [15]. DCN uses an auto-encoder to learn latent rep-
resentations which are suitable for clustering using the K-
means algorithm. The objective function of DCN is as fol-
lowing:

N

i, Y- (Io(sx) 13-+ 510 - Oail)

s.t. s; € {0,1}% |Isi|h =1 Vi.

©)
In DCN, the encoder, e.g. f(-), is not constrained to pro-
duce binary codes. It is worth noting that DCN tries to
conduct clustering in the latent space, which may be dis-
torted and does not preserve the pairwise distances in the
original space. This may not be suitable for VQ. To han-
dle this issue, we propose to modify the DCN network such
that during the training process, it uses the centroids learned
in the latent space instead of the outputs of the encoder to
reconstruct the original input. Specifically, the modification

makes the loss function of DCN become:
N

A
i, > (1a(Cs0 - xlB + 317x) - Cil2)
C,{s:} =1

S.t. S; € {O, 1}k, HSi”l =1 Vi

(10)

This modification is denoted as Modified DCN (MDCN).

We use the common MNIST dataset for our evalua-
tion. The MNIST dataset comprises of 70k handwritten
grayscale images of 10 digits. We adopt the standard data
split of 60k training images and 10k testing images in
our experiments. Each image is represented by a 784-D
grayscale feature vector by using its intensity.

4.1. Implementation details

All datasets are normalized into the range of [—1, 1]. The
proposed method is implemented by Python, and we de-
sign the deep auto-encoder model by Theano. In our pro-
posed DeepVQ, the encoder includes 3 fully connected lay-
ers with the tanh activation function followed by batch nor-
malization [7]. The sizes of the hidden layers are: 500,
255, L, where L is the latent dimension. The decoder
plays a role as an inverse of the encoder; hence, we share
weights between the encoder and the decoder, and decoder
layers are symmetric to encoder layers. To initialize the pa-
rameters of DeepVQ, we apply the layer-wise pre-training
method [1]. To update the network, we use SGD with mo-
mentum where learning rate 7 = 10~° and the momentum
parameter o = 0.9. We train 3 epochs in which we set batch

2581

Table 1. MSE of training and testing data on MNIST dataset

Training Testing (lower is better)
L 10 12 15 24 32 10 12 15 24 32
DeepVQ | 0.1439 | 0.1358 | 0.1254 | 0.1101 | 0.1123 || 0.1525 | 0.1438 | 0.1335 | 0.1162 | 0.1180
OPQ [5] 0.2324 | 0.2138 | 0.2016 | 0.1495 | 0.1220 || 0.2303 | 0.2123 | 0.2001 | 0.1492 | 0.1240
PQ [8] 0.2649 | 0.2406 | 0.2313 | 0.1654 | 0.1330 || 0.2672 | 0.2390 | 0.2293 | 0.1645 | 0.1341
DCN [15] | 0.9386 | 0.8935 | 0.8560 - - 0.9361 | 0.8947 | 0.8961 - -
MDCN 0.9113 | 0.8902 | 0.8558 - - 0.9112 | 0.8922 | 0.8754 - -
K-means | 0.1786 | 0.1609 | 0.0421 - - 0.1791 | 0.1704 | 0.1658 - -
size at 128 for each configuration. Regarding the penalty [2] T. M. Cover and J. A. Thomas. Elements of Information
optimization, we solve Equation [§] with p = 0.05 and 10 Theory. Wiley, 2006.
iterations in each batch. The penalty parameter v = 1 over [3] T.-T. Do, D.-K. Le Tan, T. T. Pham, and N.-M. Cheung. Si-
all settings. For other compared methods, we use the pub- multaneous feature aggregating and hashing for large-scale
lished code and recommended parameters from the authors. image search. In CVPR, 2017.
[4] T. Dumas, A. Roumy, and C. Guillemot. Autoencoder based
4.2. Results image compression: can the learning be quantization inde-
Table [T] shows the MSE of the training and testin pendent? 2018,
of thibl\?[ISST?\gasltatlszt. [ES scl)lozvrel3 itnaTabli (3)1tlﬁr38tr0g (()j:etg 51 T .Ge’ K. He, Q. Ke, and J. Sun. Optimized product quanti-
A OUL prope zation. TPAMI, 36(4):744-755, 2014.
method significantly outperforms DCN and the modified i oo .
. R [6] A. Gersho and R. M. Gray. Vector Quantization and Signal
DCN methods with ¥arge margins in the MNIST dat.aset. Compression. Kluwer Academic Publishers, Norwell, MA,
Note that DCN applies K-means on the low-dimensional USA. 1991.
latent representations. Even though K-means works very [7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
well in low-dimensional space, DeepVQ still manages to deep network training by reducing internal covariate shift. In
achieve better performances than DCN. At L = 15 we ob- ICML, 2015.
serve overfitting with using K-means, but this does not hap- [8] H. Jégou, M. Douze, and C. Schmid. Product quantization
pen in our proposed DeepVQ network. In fact, this is be- for nearest neighbor search. TPAMI, pages 117-128, 2011.
cause our network does not necessarily produce 2% different [9] P.Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid. Deep sub-
centroids which obviously causes the overfitting problem in space clustering networks. In NIPS, 2017.
K-means. At higher code lengths, our method gets better [10] C.J. Maddison, A. Mnih, and Y. W. Teh. The concrete dis-
MSE than PQ and OPQ. Furthermore, our approach is very tribution: A continuous relaxation of discrete random vari-
computationally-efficient for encoding. Additional results ables. In ICLR. 2017.
will be discussed in the extended version. [11] J. T. Rolfe. Discrete Variational Autoencoders. In ICLR.
2017.
5. Conclusion [12] U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, and
Y. Kluger. Spectralnet: Spectral clustering using deep neural
We introduce the deep network architecture for the vec- networks. 2018.
tor quantization task, named DeepVQ. Specifically, we train [13] L. Theis, W. Shi, A. Cunningham, and F. Huszar. Lossy
an auto-encoder in which the encoder is constrained to pro- image compression with compressive autoencoders. 2017.
duce binary code and the decoder plays the role of gener- [14] A. van den Oord, O. Vinyals, and k. kavukcuoglu. Neural
ating codewords from indexes on-the-fly. The experiments discrete representation learning. In NIPS, 2017.
show that our method can achieve competitive or more fa- [15] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards
vorable quantization errors in comparison to the common k-means-friendly spaces: Simultaneous deep learning and
used method, e.g. K-means, and recent deep learning ap- clustering. In ICML, 2017.
[16] G. Yuan and B. Ghanem. An exact penalty method for binary

proaches. Moreover, our proposed method, in fact, can be
applied to other applications which require the binary con-
straint on any layer of DNNs. In the extended version, we
will introduce the convergence proof: binary constraints are
strictly enforced using our proposed training algorithm.

References

[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In NIPS, 2007.

2582

optimization based on MPEC formulation. In AAAZ, 2017.

