
DeepVQ: A Deep Network Architecture for Vector Quantization

Dang-Khoa Le Tan∗ Huu Le∗ Tuan Hoang∗ Thanh-Toan Do Ngai-Man Cheung†

Singapore University of Technology and Design (SUTD)

∗ indicates equal contribution †
ngaiman cheung@sutd.edu.sg

Abstract

Vector quantization (VQ) is a classic problem in signal

processing, source coding and information theory. Lever-

aging recent advances in deep neural networks (DNN), this

paper bridges the gap between a classic quantization prob-

lem and DNN. We introduce – for the first time – a deep net-

work architecture for vector quantization (DeepVQ). Apply-

ing recent binary optimization theory, we propose a training

algorithm to tackle binary constraints. Notably, our net-

work outputs binary codes directly. As a result, DeepVQ

can perform quantization of vectors with a simple forward

pass, and this overcomes the exponential complexity issue

of previous VQ approaches. Experiments show that our

network is able to achieve encouraging results and out-

performs recent deep learning-based clustering approaches

that have been modified for VQ. Importantly, our network

serves as a generic framework which can be applied for

other networks in which binary constraints are required.

1. Introduction

Vector quantization (VQ) is a classical and important

problem in source coding and information theory [6, 2].

Given a vector of source symbols of length D: x ∈ R
D,

the problem considers representing x by one of the K re-

production vectors x
′ ∈ R

D. The primary goal of vector

quantization is data compression: Given the input x, at the

encoder, the index b of the corresponding reproduction vec-

tor is computed; this index can be can be represented in

binary using L = log
2
K bits in a transmission/storage sys-

tem. At the decoder, the reproduction vector (codeword) x′

corresponding to the index b is used as the reconstruction

of the input x.

VQ is motivated by the fundamental result of Shan-

non’s rate-distortion theory [6, 2]: better performance can

always be achieved by coding vectors instead of scalars,

even if the sequence of source symbols are independent

random variables. In particular, VQ is theoretically opti-

mal: for sufficiently large D, at a given rate, the distortion

(mean-squared-error MSE1 between x and x
′) is arbitrar-

ily close to the minimum distortion as stated in Shannon’s

rate-distortion theory. However, this information-theoretic

1We focus on MSE although other distortion may be used.

result is asymptotic and non-constructive. Previous meth-

ods for VQ cannot use very long block size due to practical

constraints, therefore performance is suboptimal.

Our contribution is to propose a novel deep neural net-

work to address the classical VQ problem that overcomes

the complexity issues of previous VQ methods. Our pro-

posed Deep Vector Quantization (DeepVQ) is a new auto-

encoder design that directly outputs binary index of the

codeword (i.e., b) with a simple forward pass. As the net-

work outputs binary code directly, there is no need to store

reproduction vectors. DeepVQ addresses the scalability is-

sue of previous VQ methods, enabling long block size to

be used to achieve good performance. Furthermore, a deep

network can learn intrinsic and robust features, and our ap-

proach has much better generalization capability to handle

out-of-sample data. Training DeepVQ is very challeng-

ing as this involves non-smooth objective function and bi-

nary constraints. We attack it using alternating optimization

and very recent binary optimization theory [16]. Note that

DeepVQ is not only specific to the quantization problem; it

is applicable when there involves integer constraints in the

objective function of training a DNN, and image hashing is

a notable example [3].

2. Related works

K-means (Generalized Lloyd algorithm) is the prime

method for VQ. Given a set of training data {xi}
N
i=1

, where

xi ∈ R
D, the K-means algorithm partitions the N points

into K clusters. Each vector is represented by its nearest

centroid in C = [c1, c2, · · · , cK ]. The training of K-means

is achieved by minimizing the following objective function:

min
C,{si}

∑N

i=1
‖xi −Csi‖

2

2
,

s.t. si ∈ {0, 1}K , ‖si‖1 = 1 ∀i,

(1)

where si is the assignment vector, which contains only one

1 element and the remaining (K − 1) elements are 0, corre-

sponding to the data point xi; ‖ · ‖1 denotes the l1 norm.

However, K-means based VQ has exponential complex-

ity in encoding (computation and memory) and decoding

(memory). Specifically, suppose L is the code size, and

K-means needs to determine K = 2L centroids. This pre-

vents K-means from using long block size. For example,

to use D = 784 (e.g., x is a 28 × 28 image), and at a

12579



rate of 0.05 bits per sample, this requires code of L = 40
bits, or K = 240 centroids. It is impractical to store in

the encoder/decoder such large number of centroids, which

are required in coding process. Furthermore, the number of

training data required and the complexity of training is im-

practical for K-means. Various improvements of K-means

have been proposed to address the complexity issues (e.g.

product quantization) [5], but they are sub-optimal in per-

formance. Notably, our DNN approach is fundamentally

different from K-means for VQ design.

Recently, there are many works that apply deep learn-

ing to the clustering problem [15, 9, 12]. The main idea

is to exploit DNN to map input data from the original high-

dimensional space to the latent space with lower dimension-

ality. Then, K-means is applied to the latent codes. How-

ever, K-means in the latent space is sub-optimal for VQ, as

Euclidean distances between data points are not preserved

in the latent space. In our experiment, we show that adopt-

ing these works for VQ has sub-optimal performance. In

addition, since K-means is still needed in these works, they

still suffer from poor scalability when being used in VQ.

Constrained objective functions in deep learning appear

not only in VQ problem but also in image hashing [3] and

image compression [4, 13]. In image compression, the main

barrier is the round function which is non-differentiable and

thus it causes vanishing gradient. Instead of replacing the

round function completely by a smooth function, [13] ap-

proximated the derivative by the identity function. [4] in-

stead used a learnable uniform scale quantization in a con-

volutional autoencoder. In general, the current approach is

to approximate the non-differentiable functions by smooth

functions and then use SGD to train the whole network pa-

rameters. Even though these approximations help the quan-

tization learnable via SGD, they could degrade the perfor-

mance of the models as the loss function is not precise.

Recently, Do et al. [3] introduced a binary auto-encoder

for image hashing, in which the task of binary optimization

is approached by cyclic coordinate descent. However, their

method cannot be applied to a stack of layers with nonlin-

earities. Recent works [11, 10] proposed novel reparame-

terization methods to handle the non-gradient issue for dis-

crete random variables in Variational Auto-Encoder. VQ-

VAE [14] avoids such problem by the identity function,

namely copying gradients from the decoder input to en-

coder output. Nevertheless, our work addresses a different

problem of optimizing a network with the strict binary con-

straint.

3. Proposed method

3.1. Network architecture

Given the set of input data {xi}
N
i=1

, where xi ∈ R
D,

VQ – in the context of data compression – seeks to encode

xi into its compact binary code bi ∈ {−1, 1}L(L < D).

Our solution is an auto-encoder with the innermost hidden

layer outputting binary code. Let f(x) : RD 7→ {−1, 1}L

denote the encoding network, and g(b) : {−1, 1}L 7→ R
D

be the decoding network, which maps a compressed data

point bi back to the original space R
D. The task of finding

the set of binary codes {bi} and the mapping functions f(.)
and g(.) can be mathematically formulated as solving this

optimization:

min
W1,W2

∑N

i=1
‖g(f(xi))− xi‖

2

2

s.t. f(xi) ∈ {−1, 1}L ∀i ∈ {1, . . . , N}

(2)

Here, W1 and W2 are the parameters of the network f and

g, respectively. The binary codes can be computed directly

as bi = f(xi). The reproduction vector can be computed

as x′
i = g(bi). Comparing to K-means, no storing of cen-

troid is needed with our approach. During encoding, no

searching of codeword is required. Significantly, in con-

trast to the conventional auto-encoder, the output of the en-

coder in our proposed method is constrained to be binary,

i.e., f(xi) = bi ∈ {−1, 1}L, which in fact can be inter-

preted as an index of its corresponding centroid g(bi).
The encoder of our network consists of three hidden lay-

ers and one binary layer as the the encoder’s output. In

this work, we let the decoder and encoder share the same

weights, thus the decoder is mirrored from the encoder.

Since we aim at providing a generic framework for multiple

types of input data, the layers in our network are chosen to

be fully connected in this work. We use tanh as activation

functions for the layers. Our method can later be modified

with other structures for other types of input signals, e.g.,

convolutional layers for images.

3.2. Optimization method

Solving (2) is a challenging task, since in addition to

the fact that f and g can be heavily non-convex, one must

also deal with the binary constraint at the encoder’s out-

put. Consequently, (2) cannot be tackled directly by well-

known smooth optimization methods. To the best of our

knowledge, we are the first to propose a network architec-

ture where f and g are non-linear and the binary constraints

are strictly enforced during the training process.

First, to simplify notation, we reformulate (2) in the ma-

trix form. Let X ∈ R
N×D be the matrix that contains all the

input data, where the i−th row of X represents the data xi.

Similarly, let B be the matrix that contains all the encoded

binary codes corresponding to the input data X. Note that

henceforth, f and g are considered as functions that acts on

every single row of the input matrix. With the newly intro-

duced notations, (2) can now be written as

min
W1,W2,B

‖g(B)−X‖2F ,

s.t B ∈ {−1, 1}N×L, f(X) = B.
(3)

22580



We propose to tackle (3) by penalty method. Specifically,

by incorporating constraint f(X) = B into the cost func-

tion, together with a penalty parameter γ , we have:

min
W1,W2,B

‖g(B)−X‖2F + γ‖f(X)−B‖2F ,

s.t B ∈ {−1, 1}N×L
(4)

Observe that (4) contains three sets of parameters W1, W2

and B, where only B is constrained to be binary. We attack

(4) using alternating optimization. Particularly, one can it-

eratively fix B and update W1,W2, then update B with

W1,W2 fixed.

Updating W1, W2: With B fixed, (4) becomes an un-

constrained optimization problem

min
W1,W2

‖g(B)−X‖2F + γ‖f(X)−B‖2F . (5)

Since the cost function of (5) is differentiable, it can

be solved by popular gradient-descent based optimization

methods.

Updating B: Starting from (4), if W1 and W2 are fixed,

B can be updated by solving

min
B

‖g(B)−X‖2F + γ‖f(X)−B‖2F

s.t B ∈ {−1, 1}N×L
(6)

Unlike (5), as noted previously, (6) cannot be tackled di-

rectly by gradient-based solvers due to the binary restric-

tion. To resolve this, inspired by [16], we develop a

new optimization technique for (6). More specifically, we

first introduce an auxiliary variable V ∈ R
N×L and re-

formulate (6) equivalently as follows:

min
B,V

‖g(B)−X‖2F + γ‖f(X)−B‖2F

s.t. − 1N×L ≤ B ≤ 1N×L,

〈B,V〉 = NL, ‖V‖2F ≤ NL,

(7)

with 1N×L represents a matrix of size N×L in which all el-

ements are equal to one, and 〈., .〉 denotes the inner product

of two matrices.

Note that besides the bi-linear constraint 〈B,V〉 = NL,

the other two constraints in (7) are convex constraints. This

observation encourages us to employ one more time the

penalty method to solve (7). Specifically, with the penalty

parameter ρ, and let h(B) = ‖g(B) − X‖2F + γ‖f(X) −
B‖2F , the penalty problem to solve (7) can be written as

min
B,V

h(B) + ρ (〈B,V〉 −NL)
2

s.t. − 1N×L ≤ B ≤ 1N×L,

‖V‖2F ≤ NL,

(8)

Similarly, (8) can also be optimized by alternatively updat-

ing B and V. Each sub-problem can be solved by gradient-

descent based techniques. Due to space limit, the optimiza-

tion details and convergence proof will be discussed in de-

tails in our extended version of this paper.

4. Experiments

In this section, we compare our method with K-means

and its variants, namely PQ [8] and OPQ [5] which are

able to encode with long code lengths. In addition, we also

compare with the recent method Deep Clustering Network

(DCN) [15]. DCN uses an auto-encoder to learn latent rep-

resentations which are suitable for clustering using the K-

means algorithm. The objective function of DCN is as fol-

lowing:

min
W1,W2

C,{si}

N
∑

i=1

(

‖g(f(xi))− xi‖
2

2
+

λ

2
‖f(xi)−Csi‖

2

2

)

s.t. si ∈ {0, 1}k, ‖si‖1 = 1 ∀i.
(9)

In DCN, the encoder, e.g. f(·), is not constrained to pro-

duce binary codes. It is worth noting that DCN tries to

conduct clustering in the latent space, which may be dis-

torted and does not preserve the pairwise distances in the

original space. This may not be suitable for VQ. To han-

dle this issue, we propose to modify the DCN network such

that during the training process, it uses the centroids learned

in the latent space instead of the outputs of the encoder to

reconstruct the original input. Specifically, the modification

makes the loss function of DCN become:

min
W1,W2

C,{si}

N
∑

i=1

(

‖g(Csi)− xi‖
2

2
+

λ

2
‖f(xi)−Csi‖

2

2

)

s.t. si ∈ {0, 1}k, ‖si‖1 = 1 ∀i.
(10)

This modification is denoted as Modified DCN (MDCN).

We use the common MNIST dataset for our evalua-

tion. The MNIST dataset comprises of 70k handwritten

grayscale images of 10 digits. We adopt the standard data

split of 60k training images and 10k testing images in

our experiments. Each image is represented by a 784-D

grayscale feature vector by using its intensity.

4.1. Implementation details

All datasets are normalized into the range of [−1, 1]. The

proposed method is implemented by Python, and we de-

sign the deep auto-encoder model by Theano. In our pro-

posed DeepVQ, the encoder includes 3 fully connected lay-

ers with the tanh activation function followed by batch nor-

malization [7]. The sizes of the hidden layers are: 500,

255, L, where L is the latent dimension. The decoder

plays a role as an inverse of the encoder; hence, we share

weights between the encoder and the decoder, and decoder

layers are symmetric to encoder layers. To initialize the pa-

rameters of DeepVQ, we apply the layer-wise pre-training

method [1]. To update the network, we use SGD with mo-

mentum where learning rate η = 10−5 and the momentum

parameter α = 0.9. We train 3 epochs in which we set batch

32581



Table 1. MSE of training and testing data on MNIST dataset

Training Testing (lower is better)

L 10 12 15 24 32 10 12 15 24 32

DeepVQ 0.1439 0.1358 0.1254 0.1101 0.1123 0.1525 0.1438 0.1335 0.1162 0.1180

OPQ [5] 0.2324 0.2138 0.2016 0.1495 0.1220 0.2303 0.2123 0.2001 0.1492 0.1240

PQ [8] 0.2649 0.2406 0.2313 0.1654 0.1330 0.2672 0.2390 0.2293 0.1645 0.1341

DCN [15] 0.9386 0.8935 0.8560 – – 0.9361 0.8947 0.8961 – –

MDCN 0.9113 0.8902 0.8558 – – 0.9112 0.8922 0.8754 – –

K-means 0.1786 0.1609 0.0421 – – 0.1791 0.1704 0.1658 – –

size at 128 for each configuration. Regarding the penalty

optimization, we solve Equation 8 with ρ = 0.05 and 10

iterations in each batch. The penalty parameter γ = 1 over

all settings. For other compared methods, we use the pub-

lished code and recommended parameters from the authors.

4.2. Results

Table 1 shows the MSE of the training and testing data

of the MNIST dataset. As shown in Table 1, our proposed

method significantly outperforms DCN and the modified

DCN methods with large margins in the MNIST dataset.

Note that DCN applies K-means on the low-dimensional

latent representations. Even though K-means works very

well in low-dimensional space, DeepVQ still manages to

achieve better performances than DCN. At L = 15 we ob-

serve overfitting with using K-means, but this does not hap-

pen in our proposed DeepVQ network. In fact, this is be-

cause our network does not necessarily produce 2L different

centroids which obviously causes the overfitting problem in

K-means. At higher code lengths, our method gets better

MSE than PQ and OPQ. Furthermore, our approach is very

computationally-efficient for encoding. Additional results

will be discussed in the extended version.

5. Conclusion

We introduce the deep network architecture for the vec-

tor quantization task, named DeepVQ. Specifically, we train

an auto-encoder in which the encoder is constrained to pro-

duce binary code and the decoder plays the role of gener-

ating codewords from indexes on-the-fly. The experiments

show that our method can achieve competitive or more fa-

vorable quantization errors in comparison to the common

used method, e.g. K-means, and recent deep learning ap-

proaches. Moreover, our proposed method, in fact, can be

applied to other applications which require the binary con-

straint on any layer of DNNs. In the extended version, we

will introduce the convergence proof: binary constraints are

strictly enforced using our proposed training algorithm.

References

[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.

Greedy layer-wise training of deep networks. In NIPS, 2007.

[2] T. M. Cover and J. A. Thomas. Elements of Information

Theory. Wiley, 2006.

[3] T.-T. Do, D.-K. Le Tan, T. T. Pham, and N.-M. Cheung. Si-

multaneous feature aggregating and hashing for large-scale

image search. In CVPR, 2017.

[4] T. Dumas, A. Roumy, and C. Guillemot. Autoencoder based

image compression: can the learning be quantization inde-

pendent? 2018.

[5] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quanti-

zation. TPAMI, 36(4):744–755, 2014.

[6] A. Gersho and R. M. Gray. Vector Quantization and Signal

Compression. Kluwer Academic Publishers, Norwell, MA,

USA, 1991.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015.

[8] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. TPAMI, pages 117–128, 2011.

[9] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid. Deep sub-

space clustering networks. In NIPS, 2017.

[10] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete dis-

tribution: A continuous relaxation of discrete random vari-

ables. In ICLR. 2017.

[11] J. T. Rolfe. Discrete Variational Autoencoders. In ICLR.

2017.

[12] U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, and

Y. Kluger. Spectralnet: Spectral clustering using deep neural

networks. 2018.

[13] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy

image compression with compressive autoencoders. 2017.

[14] A. van den Oord, O. Vinyals, and k. kavukcuoglu. Neural

discrete representation learning. In NIPS, 2017.

[15] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards

k-means-friendly spaces: Simultaneous deep learning and

clustering. In ICML, 2017.

[16] G. Yuan and B. Ghanem. An exact penalty method for binary

optimization based on MPEC formulation. In AAAI, 2017.

42582


