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Abstract

We present a lossy image compression method based on

deep convolutional neural networks (CNNs), which outper-

forms the existing BPG, WebP, JPEG2000 and JPEG as

measured via multi-scale structural similarity (MS-SSIM),

at the same bit rate. Currently, most of the CNNs based

approaches train the network using a l-2 loss between the

reconstructions and the ground-truths in the pixel domain,

which leads to over-smoothing results and visual quality

degradation especially at a very low bit rate. Therefore,

we improve the subjective quality with the combination of

a perception loss and an adversarial loss additionally. To

achieve better rate-distortion optimization (RDO), we also

introduce an easy-to-hard transfer learning when adding

quantization error and rate constraint. Finally, we evalu-

ate our method on public Kodak and the Test Dataset P/M

released by the Computer Vision Lab of ETH Zurich, result-

ing in averaged 7.81% and 19.1% BD-rate reduction over

BPG, respectively.

1. Introduction

Images record the visual scene of our natural world and

are often compressed for efficient network exchange and lo-

cal storage. The most well known image compression al-

gorithms are JPEG and its successors JPEG 2000. In the

meantime, there are other alternatives such as WebP, BPG1,

and so on, shown quite impressive performance gains to fur-

ther reduce the image size at the same quality. However,

all of them present annoying artifacts (e.g., ringing, block-

ing, etc) at a high compression ratio, resulting in unpleasant

user experience. With the exponential growth of the multi-

media data, it is inevitable to develop another lossy image

compression algorithms with higher performance (a.k.a.,

using tiny compressed size but presenting high-quality re-

construction).

Recent works have revealed the great potential in lossy

1An image compression method uses the modified HEVC Intra Profile.

image compression using deep learning [7, 2]. These meth-

ods utilize a single autoencoder or recurrent autoencoders

to generate feature maps (fMaps) at the bottleneck layer

for subsequent quantization and entropy coding. Quanti-

zation induced error/distortion would be utilized for end-to-

end optimization.

For instance, Toderici et al. [7] have applied the Re-

current Neural Network (RNN) to produce entropy-coded

bits progressively and to generate layered image reconstruc-

tions at different quality scales. Ballé et al. [2] have tried

to optimize both distortion loss and entropy (rate) loss to

improve the overall compression efficiency. In the mean-

time, Li et al. [5] have proposed a content-weighted ap-

proach to further optimize the compressed bit rates. All

aforementioned methods have demonstrated the outstand-

ing coding efficiency that outperform JPEG and JPEG2000

objectively and subjectively. Note that the objective metric

utilized for distortion/quality evaluation is the multi-scale

structural similarity (MS-SSIM) because of its superior cor-

relation with the subjective opinion score.

On the other hand, Generative Adversarial Networks

(GAN) and perceptual loss based approaches [4] have

shown a great success in generating images with better vi-

sual quality. Instead of calculating distortions directly in

pixel domain, these methods measure the similarity in high-

level feature domain using a discriminator network or a pre-

trained VGG network to mimic the discriminative charac-

teristics of the human visual system (HVS).

Therefore, in this work, we have proposed a deep

CNN, deep residual network specifically [3], based im-

age compression scheme that optimizes the end-to-end rate-

distortion performance of image compression jointly. Over-

all structure is consisted of a forward encoder, a quantizer,

a backward decoder, a rate-distortion optimization (i.e., rate

estimation and distortion measurement) and a visual en-

hancement subsystems.

To ensure the fast convergence of the deep neural net-

work, we train the network progressively via transfer learn-

ing, i.e., using the networked trained at light compression

(lower quantization) to learn the network at higher com-
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Figure 1. Illustration of a residual unit, (a) the default architec-

ture [3]. (b) our proposed architecture with ReLU modifications.

pression ratio (higher quantization). In the meantime, mo-

tivated by the aforementioned perceptual enhancements us-

ing GAN and VGGnet, we have also introduced the per-

ception loss and adversarial loss into the end-to-end opti-

mization pipeline to generate texture and sharp details for

noticeable visual quality improvement.

Compared with BPG (with input source sampled at YUV

4:2:0), our method has presented an impressive perfor-

mance improvement with averaged 7.81% BD-Rate reduc-

tion (i.e., BD-Rate is measured using the MS-SSIM and Bits

Per Pixel) on Kodak dataset, and averaged 19.1% on the

Test Dataset P/M released by the Computer Vision Lab of

ETH Zurich.

2. End-to-End Learning Framework

We utilize the deep residual network (ResNet) [3] in our

framework because of its superior efficiency and fast con-

vergence. To achieve a better convergence speed, we re-

place the default rectified linear units (ReLU) with the para-

metric rectified linear units (PReLU) and remove the non-

linear mapping after the short connection for each residual

unit, as shown in Fig. 1.

Overall, the forward encoder network contains eight

residual units as shown in Fig. 2 and all the down-sampled

operations are using a stride-2 4×4 convolutional layer. The

decoder has a symmetrical architecture to reconstruct the

signal from the compressed fMaps. We choose the pixel-

shuffle layers as up-sampled operations considering its de-

cent performances in super resolution (SR). The other con-

volutional layers all have 3×3 kernel size except the first

and last layer using 5×5.

In addition, we use a rate estimation module to approxi-

mate the derivable rate loss for back propagation during the

training step. The amount of the output features of encoder

determine the upper limit of the rate. To adapt images with

different content, we dynamically control the bit rates by

using different network models. In one word, we apply less

compression on images (i.e., more fMaps) with rich details

and vice versa.

2.1. Quantization and Entropy Coding

A simple scalar quantization is employed first to reduce

the number of bits for representing the extracted fMaps in

encoder. First, we scale all the floating coefficients to 6-bit

integer via,

XQ = Round(XE ∗ (2Q − 1)), (1)

where XE ∈ (0, 1) represents the coefficient value of fMaps

after the sigmoid activation, Q is the quantization level and

set to 6. Then we applied PAQ (a lossless entropy coding

method) for the quantized feature cofficients XQ to gener-

ate the binary stream. Then the de-quantized feature co-

efficients XQ/(2
Q − 1) is fed into the decoder to finally

reconstruct the image signals. We just skip the Round func-

tion during backpropagation.

2.2. Rate Estimation

The actual bitrates depend on the entropy of the quan-

tized feature maps. We propose to apply the Lagrangian

optimization framework to jointly consider the rate loss LR

and l-2 distortion loss. Here the rate loss LR is defined as

LR = −E[log
2
Pq], (2)

where LR is the entropy approximation of the fMaps at bot-

tleneck layer. Since the derivatives of the quantization func-

tion are almost zero, we apply a piecewise linear approxi-

mation of the discrete Pq to ensure it continuous and differ-

entiable. Note that Ballé [2] also applied similar idea to do

joint rate and distortion optimization.

2.3. Network Training

Here, we present more details on how to train CNNs

used in the work. In practice, we use the open source data

sets released by the Computer Vision Lab of ETH Zurich in

CLIC competition. All the images in the training sets are

split into 128x128 patches randomly with a data augmenta-

tion method such as rotation or scaling, resulting in 80000

patches in total. The objective of training is to minimize the

following loss function:

L =
1

N

N∑

n=1

||Yn −Xn||
2 + λLR, (3)

where Xn is the input image, Yn is the decoded image, N
represents the batch size. We introduce the parameter λ to

control the penalty of rate loss LR which is generated from

the rate estimation module as shown in Eq. (2). Inspired

by transfer learning, we also apply an easy-to-hard learning

method mentioned in the deblocking method named AR-

CNN and first set λ to 0. Without any rate control, we use

the optimizer Adam (an adaptive learning rate method) with
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Figure 2. The entire end-to-end learning framework is consisted of a encoder, a quantizer, a decoder and a rate-distortion optimization

subsystem with rate estimation and distortion measurement.

the learning rate 0.0001 to make fast convergence and gen-

erate the pre-training model first after 100 epochs. Then

we increase the value of λ with a interval of 0.0001 from 0

to 0.002 every 5 epochs to progressively improve the level

of rate constrain. Finally, it generates a lot of models with

different rate and distortion to make a sophisticated RD op-

timization as shown in Fig. 3.

2.4. Visual Enhancement

We use another two loss functions to improve the sub-

jective quality of the reconstructed image especially at low

bit rate.

2.4.1 Perception Loss

Previous works have showed that optimizing the distortion

in the feature domain can obviously increase the perceptual

information. We choose the last convolutional layer of the

0.2 0.3 0.4 0.5 0.6

Bpp (Bit Per Pixel)

0.5

1

1.5

2

M
S

E

10
-4 RD optimization

Figure 3. Illustrations of the different rate and distortion generated

by different λ with a fixed amount of features. We can do a rate-

distortion optimization (RDO) on these discrete points to get the

optimized red curve that covers all points on its up-right side.

31-layer VGGnet [6] for feature extraction. The following

Eq. 4 define the perception loss:

Lpercept =
1

N

N∑

n=1

||Ψ(Yn)−Ψ(Xn)||
2, (4)

where Ψ is the VGGnet to compute the features.

2.4.2 Adversarial Loss

We introduce another loss following the spirit of GANs.

Then, a discriminated neural network D is established to

distinguish whether a image is real or fake. For easier train-

ing, we replace the DCGAN with the improved Wasserstein

GAN (WGAN) [1] to achieve faster convergence and more

stable performance.

The WGAN uses an Earth-Move divergence to measure

the similarity of two probabilities and enforce the generator

to generate more realistic images. We add the new measure-

ment into the loss function to encourage the reconstructed

image having a high probability:

Lgenerator = −D(Yn), (5)

The D loss is defined in Eq. (6):

Ldiscriminator = D(Yn)−D(Xn) + βLpenalty, (6)

where D is the discriminative neural network, Lpenalty is

the penalty term mentioned in the improved WGAN, β is

the parameter of the Lpenalty . Here we set it to 10.

In the end, we merge the different loss functions to build

the final measurement component:

Lfinal = L2 + λ1LR + λ2Lpercept + λ3Lgenerator, (7)

with λ2 = 0.003 and λ3 = 0.0001.
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Figure 4. Compression performance on Kodak Dataset, measured

in RGB domain, compared with JPEG, JPEG2000 and BPG

(a) casey-fyfe-3340 (b) lou-levit-369

(c) IMG-20161123-181711 (d) IMG-20170211-145346

Figure 5. Four images sampled from CLIC test dataset

3. Performance Evaluation

We evaluate our performance on the dataset released

by CLIC and Kodak PhotoCD data set, and compare with

existing codecs including JPEG, JPEG2000, and BPG.

Fig. 4 shows MS-SSIM performance over all 24 Kodak im-

ages and achieves averaged 7.81% BD-Rate reduction over

BPG2. Moreover, we have more impressive performance

on CLIC test dataset. We select four typical images with

different types from the dataset as test samples, as shown

in Fig. 5. Finally, the BD-Rate has separately reduced by

33.54%, 9.65%, 13.31% and 19.96%, as illustrated in Fig. 6

As can be seen from the results, our approach outperforms

BPG and JPEG2000 for both overall performance and sep-

arate comparison using individual test image.

2Given that BPG demonstrates the state-of-the-art coding efficiency, we

mainly present the comparison against it.
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Figure 6. Compression performance on four images, all measured

in RGB domain, compared with JPEG, JPEG2000 and BPG.

4. Conclusion

An end-to-end learning framework based deep image
compression scheme is detailed in this work, with inno-
vations among residual unit, content adaptive fMaps, La-
grangian optimized rate-distortion adaptation, linear piece-
wise rate estimation, image visual quality enhancement
with adversarial loss and perceptual loss included, and so
on. Our network coder is trained using the public data set
released by CLIC2018. Simulations are performed on inde-
pendent images, resulting in impressive gains over the BPG
and JPEG2000, both objectively and subjectively.
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