
Learning Compressible 360◦ Video Isomers

Yu-Chuan Su Kristen Grauman

{ycsu,grauman}@cs.utexas.edu

The University of Texas at Austin

Abstract

Standard video encoders developed for conventional

narrow field-of-view video are widely applied to 360◦ video

as well, with reasonable results. However, while this ap-

proach commits arbitrarily to a projection of the spheri-

cal frames, we observe that some orientations of a 360◦

video, once projected, are more compressible than others.

We introduce an approach to predict the sphere rotation

that will yield the maximal compression rate. Given video

clips in their original encoding, a convolutional neural net-

work learns the association between a clip’s visual content

and its compressibility at different rotations of a cubemap

projection. We validate our idea on thousands of video

clips and multiple popular video codecs. The results show

that this untapped dimension of 360◦ video compression

has substantial potential—“good” rotations are typically

8−10% more compressible than bad ones, and our learn-

ing approach can predict them reliably 82% of the time. The

full report is published in the CVPR main conference [4].

1. Introduction

The focus for 360◦ video compression is to find a proper

projection that transforms a 360◦ frame into a rectangular

planar image that will have a high compression rate. A

current favorite is to project the sphere to a cubemap and

unwrap the cube into a planar image [1–3] (see Fig. 2).

Cubemaps can improve the compression rate by up to 25%
compared to the previously popular equirectangular projec-

tion [3].

One unique property of 360◦ video is that each spheri-

cal video has an infinite number of equivalents related by

a rotation. Therefore, each 360◦ video could be trans-

formed into multiple possible cubemaps by changing the

orientation of the cube, yet all of them represent the very

same video content. We refer to these content-equivalent

rotations as 360◦ isomers. We observe, however, that iso-

mers are not equivalents in terms of compression. Different

isomers interact differently with a given compression algo-

rithm and so yield different compression rates (See Fig. 1).

This is because the unwrapped cubemap is not a homoge-

x y

z

T

Ω1

z Ω2
z Ω3

z
Ω4

z

ΩV
id
eo

S
iz
e

Figure 1: Our approach learns to automatically rotate the

360◦ video axis before storing the video in cubemap for-

mat. While the 360◦ videos are equivalent under rotation

(“isomers”), the bit-streams are not because of the video

compression procedures. Our approach analyzes the video’s

visual content to predict its most compressible isomer.

nous perspective image. Therefore, some of the proper-

ties that current compression algorithms exploit in perspec-

tive images do not hold. For example, while the content

is smooth and continuous in perspective images, this need

not be true along an inter-face boundary in an unwrapped

cubemap. The discontinuity can introduce artificial high

frequency signals and large abrupt motions, both of which

harm the compression rate. Because the effect is content de-

pendent, different orientations result in different compres-

sion rates.

We propose a learning-based approach to predict—from

the video’s visual content itself—the cubemap orientation

that will minimize the video size [4]. First, we demonstrate

empirically that the orientation of a cubemap does influence

the compression rate, and the difference is not an artifact of

a specific encoder but a general property over a variety of

popular video formats. Based on that observation, we pro-

pose to automatically re-orient the cubemap for every group

of pictures (GOP). Given encoded videos in a fixed orienta-

tion, we train a Convolutional Neural Network (CNN) that

takes both the segmentation contours and motion vectors

12606

x y

z

x y

z

Figure 2: Cubemap format transformation. The 360◦ video is first projected to a cube enclosing the unit sphere and then

unwrapped into 6 faces. The 6 faces are re-arranged to form a rectangular picture to fit video compression standards (2×3
frame on the right).

in the encoded bit-stream and predicts the orientation that

will yield the minimum video size. By avoiding rendering

and encoding the video clip in all possible orientations, our

approach is computationally efficient and strikes a balance

between speed and compression rate.

The key benefit of our approach is a higher compression

rate for 360◦ video that requires only to re-render the cube-

map. In particular, our idea does not require changing the

video format nor the compression algorithm, which makes

it fully compatible with any existing video codec. The only

additional information that our method needs to encode is

the selected orientation of each GOP, which can easily be

encoded as meta data (and may become the standard [2]).

2. Cubemap Orientation Analysis

First, we verify that the orientation of a cubemap projec-

tion is indeed important for 360◦ video compression.

Data Preparation To study the correlation between cube-

map orientation and compression rate, we collect a 360◦

video dataset from YouTube with 4K quality. The dataset

covers a variety of video content and recording situations,

including aerial, underwater, sports, animal, news, and

event videos, and the camera can be either static or mov-

ing. We download the videos in equirectangular projection

with 3,840 pixels width encoded in H264.

We next transcode the video into cubemap format and

extract the video size in different orientations. We divide

the video into 2 second clips and encode each clip indepen-

dently following the GOP structure in video codecs. This

results in a dataset consisting of 7,436 video clips from 80

videos with 4.2 hours total length. For each clip, we sample

the cubemap orientation

Ω = (φ, θ) ∈ Φ×Θ (1)

with different yaw (φ) and pitch (θ) in Θ =
Φ = {−45◦,−40◦, · · · , 45◦}, i.e., every 5◦ between

[−45◦, 45◦]. This yields |Φ × Θ| = 361 different orien-

tations. We restrict the orientation within 90◦ because of

the rotational symmetry along each axis.

For each orientation, we transform the video into cube-

map format using FFMPEG with 960 pixels resolution for

each face. Fig. 2 illustrates the transformation. The video is

H264 HEVC VP9

Video r (%)
Avg. 8.43± 2.43 8.11± 2.03 7.83± 2.34

Range [4.34, 15.18] [4.58, 13.67] [3.80, 14.72]

Clip r (%)
Avg. 10.37± 8.79 8.88± 8.23 9.78± 8.62

Range [1.08, 76.93] [1.40, 74.95] [1.70, 75.84]

Table 1: Achievable video size reduction through rotation

for different formats. We can reduce the video size by up to

77% by optimally changing the cubemap orientation.

then encoded using off-the-shelf encoders into three popu-

lar formats—H264 using x264, HEVC using x265, and VP9

using libvpx. We use lossless compression for all three for-

mats and extract the size of the final encoded bit-stream.

The dataset is available on our project webpage1.

Data Analysis Next we examine the size reduction we

can achieve by changing the cubemap orientation. In par-

ticular, we compute the reduction

r = 100×
SΩmax − SΩmin

SΩmax

, (2)

where SΩ is the encoded bit-stream size with orientation Ω
and Ωmax/Ωmin corresponds to the orientation with maxi-

mum/minimum bit-stream size.

Table 1 shows the results. The average video size re-

duction r is 8.43% for H264, which means that we can re-

duce the overall 360◦ video size by more than 8% through

rotating the video axis. This corresponds to a 2GB reduc-

tion in our 80 video database and would scale to 25.3TB

for a million video database. The range of r for each clip

is [1.08, 76.93], which indicates that the compression rate

is strongly content dependent, and the size reduction can

be up to 77% for a single video if we allow the encoder to

re-orient the 360◦ video. Finally, we see that the average

and range of reductions are quite similar across encoders,

indicating that compressibility of isomers is not unique to a

particular codec.

3. Approach

Next, we introduce our approach for improving 360◦

video compression rates by predicting the most compress-

1http://vision.cs.utexas.edu/projects/360isomers

2607

http://vision.cs.utexas.edu/projects/360isomers

T

(A)Divide input

Avg. Motion

Appearance

(B)Extract seg-
ment features

(C)Convolutions
(VGGarchitecture)

(D)Temporal
Concatenation

Skip connection
−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

(E) 1x1Conv.
+JoinFeature

(F)Predict
relative size

arg min

Ω

Figure 3: Our model takes a video clip as input and predicts Ωmin as output. (A) It first divides the video into 4 segments

temporally and (B) extracts appearance and motion features from each segment. (C) It then concatenates the appearance and

motion feature maps and feeds them into a CNN. (D) The model concatenates the outputs of each segment together and joins

the output with the input feature map using skip connections to form the video feature. (F) It then learns a regression model

that predicts the video size SΩ for all Ω and takes the minimum one as the predicted optimally compressible isomer.

ible isomer. Given a 360◦ video clip, our goal is to iden-

tify Ωmin to minimize the video size. A naive solution is

to render and compress the video for all possible Ω and

compare their sizes. While this guarantees the optimal so-

lution, it introduces a significant computational overhead,

i.e., 360 times more computation than encoding the video

with a fixed Ω. For example, it would take more than 1.5

hours to encode one clip using the default x264 encoder on

a 48 core machine. Moreover, the computational cost will

grow quadratically if we allow more fine-grained control.

Therefore, enumerating Ω is not practical.

Instead, we propose to predict Ωmin from the raw in-

put without rerendering the video. Given the input video

in cubemap format, we extract both motion and appearance

features (details below) and feed them into a CNN that pre-

dicts the video size SΩ for each Ω. We treat it as a regres-

sion problem and learn a model that predicts 361 real values

using L2 loss. The final prediction of the model is

Ωmin = argmin
Ω

SΩ. (3)

See Fig. 3. The computational cost remains roughly the

same as transcoding the video because the prediction takes

less than a second, which is orders of magnitude shorter

than encoding the video and thus negligible. Since no pre-

dictor will generalize perfectly, there is a chance of decreas-

ing the compression rate in some cases. However, exper-

imental results show that it yields very good results and

strikes a balance between computation time and video size.

More specifically, we first divide the input video into 4

equal length segments. For each segment, we extract the

appearance and motion features for each frame and average

them over the segment. For appearance features, we seg-

ment the frame into regions and take the segmentation con-

tour map as the feature. The segmentation contour captures

edges, which imply object boundaries and high frequency

signals that take more bits in video compression. For mo-

tion features, we take the motion vectors directly from the

input video stream encoding, as opposed to computing op-

tical flow. The motion vectors are readily available in the

input and thus this saves computation. Furthermore, motion

vectors provide more direct information about the encoder.

For regions without a motion vector, we simply pad 0 for

the input regardless of the encoding mode. The final feature

map is the concatenation of appearance and motion feature.

The feature maps for each segment are then fed into a

CNN and concatenated together as the video feature. We

use the VGG architecture except that we increase the num-

ber of input channels in the first convolution layer. Because

fine details are important in video compression, we use skip

connections to combine low level information with high

level features. In particular, we combine the input feature

map and final convolution output as the segment feature af-

ter performing 1x1 convolution to reduce the dimension to

4 and 64 respectively. The video feature is then fed into

a fully-connected layer with 361 outputs as the regression

model. Note that we remove the fully-connected layers in

the VGG architecture to keep the spatial resolution for the

regression model and reduce model size.

4. Experiments

To evaluate our method, we compute the size reduction

it achieves on the 360◦ video dataset introduced in Sec. 2.

Baselines Because we are the first to study how to predict

the cubemap orientation for better compression, we com-

pare our method with the following two heuristics:

• RANDOM — Randomly rotate the cubemap to one of the

361 orientations. This represents the compression rate

when we have no knowledge about the video orientation.

• CENTER — Use the orientation provided by the videog-

rapher. This is a strong prior, usually corresponding to

the direction of the videographer’s gaze or movement and

lying on the horizon of the world coordinate.

Evaluation metrics We compare each method using the

normalized size reduction

r̃ = 100×
SΩmax − SΩ

SΩmax − SΩmin

(4)

for each video. Specifically, we compute the largest full-

video size by choosing Ωmax for every clip and sum the

2608

H264 HEVC VP9

RANDOM 50.75 51.62 51.20

CENTER 74.35 63.34 72.92

OURS 82.10 79.10 81.55

Table 2: Size reduction of each method. The range is

[0, 100], the higher the better.

0 500 1000 1500
0

10

20

30

40

50

R
ed

u
ct

io
n

(M
B

)

H264

0 500 1000 1500 2000

Original size (MB)

0

10

20

30

40

50

60

70
HEVC

0 1000 2000
0

10

20

30

40

50

60

70
VP9

Figure 4: Absolute size reduction (MB) of each video. Each

point represents the input video size vs. size reduction rela-

tive to CENTER achieved by our model.

clip sizes. Similarly, we compute the minimum video size.

Given the predicted orientation, we compute the video size

by rotating the cubemap using the predicted Ω. The result

indicates the fraction of reduction the method achieves com-

pared to the optimal result. We report results with 4-fold

validation, where each fold contains 20 videos.

Results Table 2 shows the size reduction achieved by our

method. Our method performs better than the baselines in

all video compression formats by 7%− 16%. The improve-

ment over the baseline is largest in HEVC, which indicates

that the advantage of our approach will become more signif-

icant as HEVC gradually replaces H264. Interestingly, the

CENTER baseline performs particularly worse in HEVC.

The reason is that HEVC allows the encoder to achieve

good compression rates in more diverse situations, so the

distribution of Ωmin becomes more dispersed. The result

further shows the value in considering cubemap orienta-

tion during compression as more advanced video codecs are

used. While there remains a 20% room for improvement

compared to the optimal result (as ascertained by enumer-

ating Ω), our approach is significantly faster and takes less

than 0.3% the computation. We also show the absolute file

size reduction versus the original video size for each video

in Fig. 4. The size reduction by our method, though depend-

ing on the video content, is roughly linear to the original

video size. Note that the original videos are encoded with

orientation Ω0,0.

Fig. 5 shows example prediction results. Our approach

performs well despite the diversity in the video content and

recording situation. The complexity in the content would

make it hard to design a simple rule-based method to predict

Ωmin (such as analyzing the continuity); a learning based

method is necessary. The last row shows a failure case of

our method, where the distribution of video size is multi-

modal, and the model selects the suboptimal mode.

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

Figure 5: Qualitative examples. The heatmap shows the

normalized reduction, and the overlaid circle shows our pre-

dicted result. The two images are the first and last frame

of the clip rendered in the predicted orientation. Last row

shows a failure example. Best viewed in color.

5. Conclusion

This work studies how to improve 360◦ video compres-

sion by selecting a proper orientation for cubemap projec-

tion. Our analysis across 3 popular codecs shows scope for

reducing video sizes by up to 77% through rotation, with

an average of more than 8% over all videos. We propose

an approach that predicts the optimal orientation given the

video in a single orientation. It achieves 82% the compres-

sion rate of the optimal orientation while requiring less than

0.3% of the computation of a non-learned solution (fraction

of a second vs. 1.5 hours per GOP).

Acknowledgement. This research is supported in part by

NSF IIS-1514118, an AWS gift, a Google PhD Fellowship,

and a Google Faculty Research Award.

References

[1] C. Brown. Bringing pixels front and center in

VR video. https://www.blog.google/products/google-vr/

bringing-pixels-front-and-center-vr-video/, March 2017. 1

[2] B. Choi et al. Wd on iso/iec 23000-20 omnidirectional media

application format. ISO/IEC JTC1/SC29/WG11, 2017. 1, 2

[3] E. Kuzyakov and D. Pio. Next generation

video encoding techniques for 360 video and

vr. https://code.facebook.com/posts/1126354007399553/

next-generation-video-encoding-techniques-for-360-video-and-vr/,

January 2016. 1

[4] Y.-C. Su and K. Grauman. Learning compressible 360◦ video

isomers. In CVPR, 2018. 1

2609

https://www.blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://www.blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/

