
Compression artifact removal using multi-scale reshuffling convolutional

network

Zhimin Tang

Department of Automation, Xiamen University

Xiamen 361005, China

tangzhimin@stu.xmu.edu.cn

Linkai Luo∗

Department of Automation, Xiamen University

Xiamen 361005, China
∗Corresponding author: luolk@xmu.edu.cn

Abstract

In this work, we aim to build a high efficient deep net-

work to remove artifact of compressed image. The degen-

eracy and small receptive field problem might be caused by

reducing the computational cost of convolutional network

via general approaches, such as pooling features to low

resolution space, reducing the width of network and using

small size convolutional kernel. For the reasons, we pro-

pose a multi-scale reshuffling network to efficiently reduce

the compression artifact of compressed images without de-

generacy. We firstly present a reshuffling network which in-

cludes a downscaling and a upscaling reshuffling operation.

The downscaling reshuffling periodically rearranges high

resolution to low resolution space without any information

loss. The upscaling reshuffling is the reverse transformation

of downscaling reshuffling, which allows us reconstructing

high resolution image from the low resolution features. A

densely connected structure is applied to efficiently extract

features without degeneracy. The low resolution representa-

tions is gradually recovered to the higher resolution spaces

which leads to a multi-scale structure. Results show the ef-

fectiveness of the proposed method.

1. Degeneracy problem and computational cost

of convolutional network

In image restoration scenario, including compression ar-

tifact removal, we need to predict the latent high quality

image from a degraded input image. We find that general

methods for computational cost reduction of convolutional

neural network (CNN) might lead network to suffer from

the degeneracy. Degeneracy of network might force it learn-

ing a lot of redundancy, which results in an inefficient net-

work, to obtain an accurate prediction.

1.1. Degeneracy problem

Orhan [8] explained that the difficulty of training deep

network is mainly due to the degeneracy problem. We

ascribe degeneracy to the singularity of linear transforma-

tion, rectified linear unit (ReLU) and pooling layer, as these

might cause too much input information to be lost and there-

fore decrease the performance of deep network. Zhang et

al. [11] shown that most convolutional or pooling layers

would cause information loss through an information the-

oretic view. Singularity would lead consistent deactivation

of nodes and decrease the effective representation dimen-

sion of deep features. ReLU ignores the negative activa-

tions. Downscaling pooling layers directly reduce the spa-

tial size of feature maps. The shallow layers should be

wide enough to keep sufficient effective information, which

leads to a redundant structure. He et al. [5] successfully

trained very deep network using skip connections. Orhan et

al. [9] explained that skip connections can eliminate singu-

larities. However, skip connection can not prevent pooling

layer from information loss and is not efficient enough in

image restoration tasks.

1.2. Computational cost of convolutional layer

We assume that convolutional layer operates with stride

1 and pads the input to produce output feature maps with the

same spatial size of input. The convolutional layer is param-

eterized by a convolution kernel F of shape K×L×M×N ,

where K and L is the width and height of convolution ker-

nel, M is the number of input channels and N is the number

of output channels. A Convolutional layer takes as input X

with shape of I × J × M and outputs A with shape of

I×J ×N , where I and J is the width and height of feature

maps. The output feature maps of convolutional layer are

computed as:

Ai,j,n =
∑

k,l,m

Xi+k,j+l,m · F k,l,m,n (1)

Since the computational cost of a CNN is focused on

12567

the convolution operation, the complexity of convolutional

layer can be described in term of the number of multiply-

add operations (mult-adds). The number of mult-adds in a

convolutional layer is:

(I · J) · (K · L) ·M ·N (2)

2. Multi-scale reshuffling network

In this section, we will analyze the reason why the de-

generacy and small receptive field problem would be caused

when reducing the computational cost of convolutional net-

work via general approaches. We then propose a multi-scale

reshuffling network to efficiently reduce the compression

artifact of compressed images without degeneracy.

2.1. General approaches for computational cost re
duction and their drawbacks

In accordance with Eq. (2), the computational cost of a

convolutional layer can be reduced in three aspects:

1. Reduce the spatial size, I × J , of feature maps using

spatial pooling.

2. Reduce the width, M and N , of network.

3. Reduce the spatial size, K×L, of convolutional kernel

size.

However, these approaches might cause some problems:

1. We can downscale the feature maps using pooling

layer. However, the pooling layer is mainly for the in-

variance of features in object recognition tasks. In im-

age restoration tasks, the layers before pooling should

learn a lot of unnecessary redundancy to avoid degen-

eracy, since pooling layer directly reduce the resolu-

tion of features and some spatial information will lost.

2. Insufficient number of features will limit the represen-

tative performance of network.

3. If the convolutional kernel size reduced to 1 × 1, the

complexity can be decreased by K × L times, but re-

ceptive field will reduced to be 1 and the convolutional

layer will learn no context information. The small re-

ceptive field problem is caused.

2.2. Reduce spatial size of feature maps using
reshuffling network

In order to efficiently extract low resolution (LR) fea-

tures without degeneracy, we propose a reshuffling network

1 which includes a downscaling operation and a reshuffling

upscaling operation.

As illustrated in Fig. 1(a), T features with shape of I×J
is periodically rearranged to T · s2 features with shape of

I/s×J/s by the downscaling reshuffling operation. In Fig.

1, T is equal to 1. The spatial height and width of input

feature maps must be divisible by the reshuffling scale s in

the downscaling operation. Mathematically, the downscal-

ing reshuffling operation can be described as:

R↓(X)i,j,t = Xi·s+⌊mod(t,s2)/s⌋,j·s+mod(mod(t,s2),s),⌊t/s2⌋

(3)

where i, j is the coordinates in high resolution (HR) space,

t is the index of feature map. Therefore, the HR features is

downsized to LR space with no information loss and allows

us extracting features with low computational complexity.

The upscaling reshuffling operation, illustrated in Fig.

1(b), is the reverse transformation of downscaling reshuf-

fling, which have been used into image super-resolution

[10]. It is mathematically formulated as:

R↑(X)i,j,t = X⌊i/s⌋,⌊j/s⌋,t·s2+s·mod(i,s)+mod(j,s) (4)

The number of input features must be divisible by s2. The

upscaling reshuffling operation can reconstructing HR im-

age from the LR representations.

Since the downscaling operation keeps all the activations

of the input layer, it would not encounter the trouble of

degeneracy like downscaling pooling and the latent redun-

dancy in shallower layers might be reduced. On the other

hand, the receptive field of neurons will increased from

K × L to K · s × L · s in the following layer benefit from

extracting features in LR space.

2.3. Reduce the width of network and the convolu
tional kernel size

In order to compress the number of feature maps and

shrink the size of convolution kernel. In the lth block of net-

work, we firstly convolve A(l−1), the output of the (l−1)th

block, of shape I(l)×J (l)×M (l) with kernel F (l) of shape

1× 1×M (l) × k ·N (l) and produce a I(l) × J (l) × k ·N (l)

tensor B(l). For the convenience of reconstructing HR im-

age, N (l) should be a multiple of s2. For a compressed

representation, k · N (l) ≪ M (l). Then, B(l) is activated

by exponential linear unit (ELU) [4] for non-linearity. Un-

like ReLU, ELU have no dead gradient section and it is re-

versible. The negative activations is also activated by ELU.

Although a downscaling and a 1× 1 convolution have a re-

ceptive field of s2, it is equal to a block-wise operation. For

instance, a downscaling of scale 8 followed a 1 × 1 convo-

lution have an equal structure of discrete cosine transform

in JPEG. In order to learn the connection between spatial

blocks, a 3 × 3 convolutional layer is followed and pro-

duces a I(l) × J (l) × N (l) tensor C(l). Because of the ex-

treme compactness of C(l), the representative performance

will be restricted and the degeneracy will be caused. In-

spired by the densely connected networks [6], we therefore

22568

! " ! " ! " ! "

$ # $ # $ # $

! " ! " ! " ! "

$ # $ # $ # $

! " ! " ! " ! "

$ # $ # $ # $

! " ! " ! " ! "

$ # $ # $ # $

! ! ! !

!

!

!

" " " "

"

"

"

#

#

#

#

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

(a) Downscaling reshuffling with scale 2

! " ! " ! " ! "

$ # $ # $ # $

! " ! " ! " ! "

$ # $ # $ # $

! " ! " ! " ! "

$ # $ # $ # $

! " ! " ! " ! "

$ # $ # $ # $

! ! ! !

!

!

!

" " " "

"

"

"

#

#

#

#

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

(b) Upscaling reshuffling with scale 2

Figure 1. Downscaling reshuffling and upscaling reshuffling with scale 2. The width and height of the high resolution features must be

divisible by the reshuffling scale s and the number of low resolution features must be divisible by s
2

!"#$%&'()$* +,%&'()$*!-$%- &"$$-&.)"$% /"$0"(1.)"$

Figure 2. Reshuffling network.

Input ÷2 ÷2 ÷2 dense block ×2 dense block ×2 dense block ×2 3× 3 convolution

Numble of features 12 48 192 1280 320 640 160 320 80 3
Table 1. Architecture of our multi-scale network. Symbol ‘÷2’ indicates a downscaling reshuffling with scale 2, symbol ‘×2’ indicates a

upscaling reshuffling with scale 2.

PSNR (dB) / ours PSNR (dB) / BPG Decoder size (Bytes) Decoding time (ms) Bit rate (bpp)

30.2363 29.7928 4,984,420 30,311,917 0.14978
Table 2. Evaluations on the test data of CLIC 2018

concatenate the input A(l−1) to output of this block

A
(l) = [A(l−1),C(l)] (5)

Fig. 2 shows an example of the reshuffling network.

Because of the extremely compressed representation and

small size convolutional kernel, this architecture has a much

higher computational efficiency. Besides, it is worth noting

that there is no downscaling and upscaling operation if the

reshuffling scale equal to 1.

2.4. Multiscale feature extraction

In order to learn different scales of features, we propose a

multi-scale reshuffling architecture. We decompose a scale

of 2t reshuffling network into t reshuffling block of scale 2.

The LR features is gradually recoverd to HR features. We

concatenate lager scale features to the smaller scale features

to make full use of all features. Table 1 shows the layer out

of the multi-scale reshuffling network.

2.5. Learning

Given a training dataset {XC
i ,XG

i }
N
i=1, where N is the

amount of training patch pairs and {XC
i ,XG

i } are the ith

compressed and ground truth patch pair. The objective

function of our method can be expressed as:

L(Θ) =
1

N

N∑

i=1

‖ XC
i − XG

i ‖1 (6)

Both the entire network and objective function are differen-

tiable, so we can simply use the back-propagation algorithm

to train our models. Adam [7] is chosen as the optimizer to

update parameters.

3. Experiments

In addition to the training data provided by the organizers

of CLIC 2018, the training set of NTIRE 2017 [3] is used.

32569

Up-down flipping and left-right flipping are used for data

augmentation. To generate compressed and ground truth

image pair, we use the Better Portable Graphics [1] algo-

rithm to compress the ground truth image to a compressed

file and then decompress it to the corresponding compressed

image. We sample images in YCbCr color space by 4:2:0

to reduce the number of values to be compressed. The jctvc

encoder with depth of 10 bits is chosen to encode files. For

a variable bit rate model, we compress images using dif-

ferent quantization parameters of 37, 38, 39 and 40. All

the models are trained on a GTX 1080Ti GPU with ma-

chine learning framework Tensorflow [2]. Table 2 shows

the evaluations on the test data, we compute a single mean

squared error value by averaging across all RGB channels

of all pixels of the whole dataset, and from that calculate a

peak signal-to-noise ratio (PSNR) value. Besides the per-

formance of our method, the PSNR of BPG is also evalu-

ated. The decoding time of our method is evaluated on the

challenge server in which a single CPU and 8 G RAM is

provided.

References

[1] Bpg image format. https://bellard.org/bpg/.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org.

[3] E. Agustsson and R. Timofte. Ntire 2017 challenge on sin-

gle image super-resolution: Dataset and study. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, July 2017.

[4] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and

accurate deep network learning by exponential linear units

(elus). arXiv preprint arXiv:1511.07289, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[6] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, volume 1, page 3, 2017.

[7] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015.

[8] A. E. Orhan. Why is it hard to train deep neural net-

works? degeneracy, not vanishing gradients, is the key.

https://severelytheoretical.wordpress.co

m/2018/01/01/why-is-it-hard-to-train-d

eep-neural-networks-degeneracy-not-van

ishing-gradients-is-the-key/, 2018.

[9] A. E. Orhan and X. Pitkow. Skip connections eliminate sin-

gularities. In ICLR, 2018.

[10] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In CVPR, 2016.

[11] J. Zhang, T. Liu, and D. Tao. An information-theoretic view

for deep learning. arXiv preprint arXiv:1804.09060, 2018.

42570

https://bellard.org/bpg/
https://severelytheoretical.wordpress.com/2018/01/01/why-is-it-hard-to-train-deep-neural-networks-degeneracy-not-vanishing-gradients-is-the-key/
https://severelytheoretical.wordpress.com/2018/01/01/why-is-it-hard-to-train-deep-neural-networks-degeneracy-not-vanishing-gradients-is-the-key/
https://severelytheoretical.wordpress.com/2018/01/01/why-is-it-hard-to-train-deep-neural-networks-degeneracy-not-vanishing-gradients-is-the-key/
https://severelytheoretical.wordpress.com/2018/01/01/why-is-it-hard-to-train-deep-neural-networks-degeneracy-not-vanishing-gradients-is-the-key/
https://severelytheoretical.wordpress.com/2018/01/01/why-is-it-hard-to-train-deep-neural-networks-degeneracy-not-vanishing-gradients-is-the-key/

