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Abstract

In spite of increasing interest from the research commu-

nity, person re-identification remains an unsolved problem.

Correctly deciding on a true match by comparing images

of a person, captured by several cameras, requires extrac-

tion of discriminative features to counter challenges such as

changes in lighting, viewpoint and occlusion. Besides de-

vising novel feature descriptors, the setup can be changed

to capture persons from an overhead viewpoint rather than

a horizontal. Furthermore, additional modalities can be

considered that are not affected by similar environmental

changes as RGB images. In this work, we present a Multi-

modal ATtention network (MAT) based on RGB and depth

modalities. We combine a Convolution Neural Network with

an attention module to extract local and discriminative fea-

tures that are fused with globally extracted features. At-

tention is based on correlation between the two modalities

and we finally also fuse RGB and depth features to generate

a joint multilevel RGB-D feature. Experiments conducted

on three datasets captured from an overhead view show the

importance of attention, increasing accuracies by 3.43%,

2.01% and 2.13% on OPR, DPI-T and TVPR, respectively.

1. Introduction

Person re-identification (re-id) is the task of matching

person descriptors extracted from images captured across,

typically, non-overlapping cameras and persists as a hot

topic within the research community [38]. This is not

only due to major challenges, including changes in lighting,

viewpoint and occlusion between cameras but also the po-

tential usage within applications such as forensics or long-

term tracking of pedestrians [5, 23].

A person re-id system, typically, consists of tracking,

features extraction and feature matching using simple dis-

tance metrics, for example, Euclidean distance or more

sophisticated ones such as Keep It Simple and Straight-

forward MEtric (KISSME) based on Bayesian theory and

Mahalanobis distance [11]. Variations such as Cross-view

Quadratic Discriminant Analysis (XQDA) [17] additionally

considers subspace learning while Support Vector Machines

(SVM) [31] aims at maximizing distance between features

of non-similar pairs. For a comprehensive overview of met-

rics applied in person re-id, please see [9]. Most often,

researchers focus on either feature extraction or matching

using supervised learning, although, following recent de-

velopments of deep learning, Convolution Neural Networks

(CNN) have been proposed also in the case of person re-

id [1, 3, 26, 28, 30, 32]. These networks are able to learn

both discriminative features and a classifier simultaneously

by training in an end-to-end fashion.

Due to more focus on CNN in re-id, more data has be-

come a necessity to properly train the networks. As a result,

larger datasets in recent years have emerged [16, 36, 37],

not only allowing proper use of CNN but also increasing

the realism of re-id evaluation. Common for these datasets

is the viewpoint which is mostly horizontal, allowing oc-

clusions between persons or persons and objects. Another

option is to place the camera overhead, resulting in a verti-

cal viewpoint, an option only considered by few [7, 13, 18].

This both has the potential of decreasing the probability of

occlusions and improve privacy preservation. Examples of

the two different viewpoints are shown in Figure 1.

By changing the viewpoint, less color and texture infor-

mation might be available and it is therefore crucial to ex-

tract features that represent the most important parts of a

persons appearance. One way is to learn part-specific CNN

models by splitting the image into local regions and feed

those to separate CNN streams [26, 30]. Even though, these

models learn local feature responses, they still consider re-

gions that are not relevant to the feature descriptor, decreas-

ing invariance to lighting, background clutter, etc.

Another way is to apply an attention mechanism, origi-

nally introduced and applied in Neural Machine Translation

problems (NMT) [2], which can be used to consider only

certain local parts of an image. Within computer vision, this
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(a) (b)

Figure 1. Examples of images captured from (a): an overhead

viewpoint [7] and (b): a horizontal viewpoint [6].

method has been applied with great success to both image

captioning [29], action recognition [24] and, more recently,

person re-id [7, 19, 33].

Attention works by calculating a set of positive weights

defined as a 2D attention map. Attention maps are then used

to summarize features extracted from a CNN. Two types of

attention are often considered, soft attention where attention

weights are calculated based on a differentiable determinis-

tic mechanism which can easily be trained along with the

rest a neural network, and hard attention where weights are

calculated by a stochastic process.

Besides capturing local information, additional modali-

ties can be considered to extract different heuristics. Based

on extracting features from images captured in an overhead

view, it makes sense to include depth information as an

additional modality. To that end, previous work on multi-

modal person re-id has shown RGB and depth based fea-

tures to complement each other well [10, 13, 18].

In this paper we apply soft attention to person re-id, con-

sidering images captured from an overhead view. Instead

of only applying attention using color or depth information,

we consider a multimodal approach by calculating atten-

tion weights based on fusing RGB and depth features, both

extracted using pre-trained CNN. As a result, attended re-

gions in the RGB image are based on the representation in

depth domain which better captures information around re-

gions with significant change in depth. Vice versa, attended

regions in the depth domain are based on the RGB repre-

sentation to better capture depth information in areas with

discriminative color information. To extract features from

different discriminative regions, we learn attention maps

at multiple layers of the CNN and fuse locally summa-

rized features. Additionally, local features are fused with

global feature descriptors to capture information at differ-

ent abstraction levels as previously proposed with success

[14, 28].

Finally, we also learn a joint feature representation by

fusing RGB and depth features in the late layers of the net-

work to produce a multilevel RGB-D based feature descrip-

tor and train the entire network end-to-end. To summarize,

our contributions include:

• We implement soft attention in a multimodal CNN by

fusing RGB and depth features.

• We analyze the importance of attention in a multi-

modal context by visualizing calculated attention maps

in different scenarios.

The rest of the paper is structured as follows. Related

work is presented in Section 2 followed by a description

of the proposed methodology in Section 3. Experimental

results are presented in Section 4, including an impact anal-

ysis of applying attention. Finally, the paper is concluded

in Section 5.

2. Related Work

Ever since the first significant results in object recogni-

tion [12], CNN have been proposed in person re-id [1, 16].

While these focus on globally extracted features, more re-

cent proposals are based on part-based learning to capture

more local information [3, 26, 32]. Ustinova et al. [26] pro-

pose a Bilinear-CNN by splitting the body into three parts

and train part specific CNN that are summarized by bilin-

ear combination of features. Finally, features from the three

parts are fused in a fully connected layer. Part specific CNN

are also proposed by Cheng et al. [3] who split the body

into four parts and learn both part specific and global fea-

tures that are fused in the late layers of the CNN. A different

approach is followed by Zhao et al. [32] who apply a Re-

gional Proposal Network (RPN) to locate 14 human body

joints and extract seven body sub-regions. A CNN is ap-

plied to each sub-region to learn part specific features that

are afterwards fused in a four layered feature fusion net-

work (FFN). Part localization is also proposed by Li et al.

[15], but instead of localizing the joints, they apply a Spa-

tial Transformer Network (STN) to localize head-shoulder,

upper-body and lower-body regions. Once again, part spe-

cific features are learned and later fused with globally ex-

tracted features. Common for aforementioned methods is

the requirements of a horizontal viewpoint in order to either

have a properly division of body parts or localize the joints.

In case of an overhead view, this is not possible.

Soft attention in CNN can be related to saliency learning

using hand-crafted features which also aims at locating dis-

criminative regions. Little work has been done within this

area, most notable are the works of Zhao et al. [34, 35].

In [35] they propose salience learning by matching patches

within a constrained window between images of persons

captured by two different cameras. For each patch, a salient

score is calculated using either K-Nearest Neighbors or

One-class SVM. Meanwhile, in [34] they propose learning
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Figure 2. Overview of the Multimodal ATtention network (MAT). An RGB and depth image is encoded by an RGB based encoder, shown

by the green stream, and depth based encoder, shown by the blue stream, respectively. Outputs from the last convolution layer are embedded

and applied to the attention module which calculates attention maps for each modality. Feature maps from the encoders are summarized

using the attention maps and fused with global feature representations at each modality. Finally, features from the two modalities are fused

to a multilevel RGB-D based feature descriptor and used for prediction.

discriminative mid-level filters by clustering image patches

with coherent appearance and apply SVM. These filters are

then used to calculate filter responses of input images prior

to feature matching.

Attention has been previously proposed only a few times

within person re-id [7, 19, 33]. Liu et al. [19] propose

a Comparative Attention Network (CAN) which is trained

end-to-end by producing and comparing attended regions

of positive and negative image pairs, i.e., images of similar

and non-similar persons. By combining a CNN with a Long

Short-Term Memory (LSTM) network, attention maps are

produced at different time steps to capture different local

regions by using the same encoded image as input at each

time step. The work of Zhao et al. [33] is also motivated

by attention which is used to model a part-aligned human

representation by learning attention weights through end-

to-end training using a triplet loss function. Finally Haque

et al. [7] propose a depth-based recurrent visual attention

network by combining a CNN with an LSTM to learn spa-

tiotemporal features. By adding a localization network, dis-

criminative features are extracted from glimses, i.e., a mi-

nor region in the input. The localization network is trained

using reinforcement learning to focus on discriminative re-

gions. While [19, 33] apply attention in the RGB domain,

[7] apply attention in depth domain. This work, to our

knowledge, is the first to apply attention in a multimodal

context.

Multimodal fusion of RGB and depth information is

rarely considered in person re-id [18, 21, 27]. Liciotti et

al. [18] propose a combination of hand-crafted RGB and

depth features to capture both color, texture and anthropo-

metric information. RGB-D based hand-crafted features are

also proposed by Wu et al. [27] who extract a rotation in-

variant Eigen-depth feature and fuse it with low-level color

and texture features [17]. Only two previous proposals fuse

RGB and depth features using a CNN [10, 13]. Karianakis

et al. [10] learn spatiotemporal features from a combined

CNN and LSTM. Considering the small sample size issue,

they add hard attention to incorporate regularization. Fi-

nally, Lejbølle et al. [13] propose a multimodal CNN which

jointly learns a multimodal feature descriptor based on in-

dividually trained RGB and depth CNN. Common in afore-

mentioned work is fusion of features which is simply done

by concatenation which does not capture the correlation be-

tween features from different modalities. In this work, we

use correlation between depth and RGB features to extract

local information from the input images and, additionally,

exploit the advantage of multimodal feature fusion by learn-

ing a joint descriptor based on RGB and depth.

3. Methodology

An overview of the proposed network is shown in Figure

2. RGB and depth images IRGB and ID are encoded using

an RGB based encoder fRGB and depth encoder fD, re-

spectively, represented by CNN. The outputs from the last

convolution layer are embedded in fully connected layers

and used as input to the attention model fatt. The atten-

tion model multiplies features to capture correspondence

between modalities, following the idea of multiplicative in-

teraction [20]. Attention weights, αl, are afterwards cal-

culated separately for the l’th layer of the RGB and depth

encoders, and used to summarize feature maps X l
RGB and

X l
D. The summarized features are fused with globally ex-
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tracted feature descriptors and the two modality based fea-

tures are fused to learn a joint feature representation. Fi-

nally, a classification module fc is added for prediction

when training the network. In the rest of the paper, we refer

to our proposed network as Multimodal ATtention network

(MAT).

3.1. Visual Encoder

The input to the MAT is an RGB image IRGB and a cor-

responding depth image ID that are separately processed by

modality based encoders fRGB and fD given by,

X5

RGB = fRGB(IRGB , θRGB)

X5

D = fD(ID, θD),
(1)

where X5

RGB ∈ RN×N×K and X5

D ∈ RN×N×K are

the outputs from the fifth and last convolution layer denoted

by the superscript 5, θRGB and θD are the encoder weights

while K represents the number of feature maps of size N ×

N .

The encoders follow the Caffe variation (CaffeNet) [8]

of the AlexNet CNN [12] for better comparison with the

related method of [13] which does not consider attention.

The CaffeNet consists of five convolution layers, the first

and second followed by local response normalization and

max pooling. Max pooling is also added after the fifth con-

volution layer and followed by three fully connected layers,

the last one used to calcuate an output score for each class

normalized by a softmax function. Rectified Linear Units

(ReLU) are used as nonlinear activation while dropout with

a probability of 0.5 is added between fully connected layers

to increase network generalization [25].

Followeing the baseline architecture of [13], the en-

coders take as input images of size 227×227 and out-

put feature descriptors X5

RGB ∈ R13×13×256 and X5

D ∈

R13×13×256. Two fully connected layer afterwards embed

features to sparse feature descriptors X7

RGB ∈ R4096 and

X7

D ∈ R4096, representing global information. Different

from [13], we do not fuse X7

RGB and X7

D to a joint RGB-

D feature, but first fuse each modality based feature with

locally extracted features from the attention model.

3.2. Attention Model

The attention model fatt is based on using depth infor-

mation to calculate attention weights for the RGB features

and vice versa. In this subsection, we outline the calculation

of RGB attention weights, similar calculations are defined

in case of depth by simply exchanging subscripts RGB and

D.

As input to the attention model, we use features X6

RGB ∈

R4096 and X6

D ∈ R4096 extracted from the first fully con-

nected layer. The attention weights to extract local features

from the output of any given layer of fRGB are then calcu-

lated as,

el = fatt(X
6

RGB , X
6

D, θα), el ∈ RN2

αl
i =

exp(eli)∑
i e

l
i

, αl
∈ RN2

,
(2)

where el is a vector of unnormalized attention weights

of size N2 and θα represents the attention model parame-

ters. To calculate a weighted average of features, attention

weights are normalized using a softmax function, resulting

in αl, as originally proposed [2]. Thus, given a feature map

of, e.g., size 13×13, we calculate 169 normalized attention

weights.

The attention model implements multiplicative interac-

tion to learn relations between RGB and depth features, and

calculation of attention weights can therefore also be writ-

ten as,

el = W l
att(X

6

RGB ⊙X6

D) + blatt, (3)

where ⊙ represents an element-wise multiplication

while W l
att ∈ RM×N and blatt ∈ RN are the weights and

bias of the attention model, respectively, and M is the num-

ber of hidden units in X6

RGB .

The normalized attention weights calculated in Equation

2 are then used to calculate the weighted average of features

from the l’th layer of fRGB as,

X l
RGB,A = (X̂ l

RGB)
Tαl, X l

RGB,A ∈ RK , (4)

where X̂ l
RGB ∈ RN2×K is the flattened output from

layer l and X l
RGB,A is a feature descriptor containing lo-

cal information from the input RGB image dependent on

features from the depth image. Since the attention maps are

used to summarize features across all feature maps, only lo-

cal regions of interest are considered. In our experiments

presented Section 4, we calculate attention maps for the

fourth and fifth convolution layers of fRGB and fD to cap-

ture different local information, resulting in calculations of,

in total, four attention maps. We observe that considera-

tion of additional low-level information from earlier con-

volution layers does not improve accuracy. Given the out-

puts X4

RGB ∈ R13×13×384 and X5

RGB ∈ R13×13×256, we

thereby summarize features using attention maps α4

RGB ∈

R169 and α5

RGB ∈ R169 resulting in attention based fea-

tures X4

RGB,A ∈ R384 and X5

RGB,A ∈ R256.

The attention based features are afterwards fused with

X7

RGB by adding a new fully connected layer, to form a

modality based multilevel feature X8

RGB ∈ R4096. Finally,

multilevel RGB and depth features are fused by a second

new fully connected layer resulting in a multimodal feature

descriptor X9

RGBD used for prediction.

Prediction is implemented by calculating a probability

score of each class given X9

RGBD. A softmax layer is added
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to normalize scores and the entire network is trained end-to-

end by minimizing the logistic loss function defined as,

min
θRGB ,θD,θα,θc

−
1

J

J∑

i=1

log(p̂i)

p̂i = fMAT (IRGB , ID; θRGB , θD, θα, θc),

(5)

where the loss is calculated over a mini-batch of size J

and p̂i represents the normalized score for the i’th image

predicted by fMAT .

4. Experiments

This section outlines the experimental results and analy-

sis of the MAT. First, evaluated dataset and corresponding

test protocols are described followed by details of training

fRGB , fD and fMAT . Finally, the results are presented with

a comparison to state-of-the-art methods and the attention

module is analyzed by a visualization of calculated atten-

tion maps.

4.1. Datasets and Protocols

When evaluating the MAT, we only consider datasets

collected from an overhead viewpoint. Three RGB-D

based datasets, to our knowledge, have been proposed

for overhead person re-id, including the Depth-based Per-

son Identification from Top (DPI-T) [7], Top View Person

Re-identification (TVPR) [18] and Overhead Person Re-

identification (OPR) [13].

DPI-T: Recorded in a hallway, this dataset consists of

12 persons, appearing in an average of 25 sequences in five

different appearances, both in the training and test set. A

total of 213 sequences are included in the training set, while

249 are used for testing. During test, all sequences from the

test set are matched with those in the training set.

TVPR 23 videos are recorded in a hallway, including a

total of 100 persons, each appearing twice. The training set

consists of persons walking from left to right, while walking

from right to left in the test set. At test time, sequences from

the test set are compared with those of the training set. Due

to missing frames in one of the recorded videos at time of

testing, 94 persons are considered in our evaluation. Differ-

ent from [13] who consider full-frame images, we apply a

You Only Look Once (YOLO) detector [22] optimized for

person detection, to automatically extract the ROI around

persons.

OPR This dataset, recorded in a university canteen, con-

sists of 64 persons captured twice, when entering and leav-

ing the canteen. Similar to protocols in widely used re-

id datasets captured from a horizontal view, 10 random

train/test splits are performed, each consisting of 32 persons

in both training and test set. The final result is then calcu-

lated as an average of accuracies across all experiments.

4.2. Implementation details

Before training the MAT, fRGB and fD are fine-tuned

by initializing a Caffe model, pre-trained on the ImageNet

dataset. In case of fD, we encode depth images by ap-

plying a JET colormap which has shown to outperform

other encoding methods such as surface normals or Hori-

zontal disparity, Height and Angle (HHA) [4]. In addition

to also being faster, applying a color map allows us to ini-

tialize weights using a pre-trained ImageNet model since

each depth value is mapped to a value in the RGB color

space ranging from blue (close to the camera) to red (far

from camera). Fine-tuning is performed using Stochastic

Gradient Descent (SGD) with momentum of µ = 0.9 and a

batch-size of 128. The base learning rate is set to η0 = 0.01
and reduced by ηi = ηi−10.99 after each epoch. Similar to

[13], data augmentation such as cropping and flipping are

applied to extend the dataset. To that end, we resize images

to 256×256 and draw cropping values from a discrete dis-

tribution in range [0, 29]. After fine-tuning RGB and depth

encoders, we add and initialize the attention module and fu-

sion layers, and similarly train fMAT by SGD. We reduce

the base learning rate to η0 = 0.001 and train the network

using a batch-size of 32. In case of both fine-tuning en-

coders and training the MAT, training runs for up to 100

epochs which takes 4-5 hours using an Nvidia GTX 1080

GPU.

At test time, we extract features X9

RGBD from the last

fully connected layer and use Euclidean distance to match

features extracted in different camera views. Results are

ranked according to the distance, intuitively, having the

match with the shortest as the most similar. Since all

datasets contain several images of each person, we apply

a multi-shot approach and pool features extracted from all

images of each person. Pooling is implemented by calculat-

ing average features which has previously shown superior

to, e.g., maximizing when combining CNN features and a

Euclidean distance metric [26, 36]. Although, in case of

TVPR, we observe feature maximization to perform better

and therefore provide results on that dataset using maxi-

mized features.

4.3. Experimental Results

We present results as Cumulative Matching Characteris-

tic (CMC) curves that are produced by calculating a cumu-

lative score for each rank-i indicating the number of per-

sons having their true match within the i most similar in the

ranked list.

The CMC curves produced from results on DPI-T, TVPR

and OPR are shown in Figure 3, along with results without

the use of attention, similar to the proposed method of [13]1.

1In the original study, the authors identified a minor error in the input

of OPR after publication, hence, results differ from those reported in [13].
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(a) (b) (c)

Figure 3. Experimental results on (a): DPI-T (p=249), (b): TVPR (p=94) and (c): OPR (p=32) for our multilevel attention-based RGB and

depth features (Datt and RGBatt) along with MAT, and D-CNN, RGB-CNN and RGB-D-CNN proposed in [13].

RGBatt and Datt represent the attention-based multilevel

color and depth features X8

RGB and X8

D, while D-CNN,

RGB-CNN and RGB-D-CNN represent the baseline depth,

color and joint models, respectively.

From Figure 3 it is clear that addition of attention-based

features increases the rank-1 accuracy, even though, the ac-

curacy is already high. Additionally, fusion of RGB and

depth features outperform the use of RGB or depth individ-

ually. This is the case for DPI-T where the MAT increases

the rank-1 accuracy by 2.01% and 0.4% compared to RGB-

D-CNN and RGBatt, respectively. It is also worth noticing

the increase of 5.22% when comparing RGBatt and RGB-

CNN which shows the effect of using attention maps to ex-

tract local features and fuse those with global features. Sim-

ilarly on TVPR, the rank-1 accuracy is increased by 2.13%

and 10.64% compared to RGB-D-CNN and RGBatt, re-

spectively. Comparing RGBatt and Datt to RGB-CNN and

D-CNN, respectively, the use of attention does not seem to

have a positive impact which could be due to misalignment

issues from the detection, leading to missing information.

This will be further analyzed in Subsection 4.4. Nonethe-

less, fusing the attention-based features results in a higher

accuracy when comparing MAT and RGB-D-CNN. Finally

on OPR, the MAT increases rank-1 accuracy by 3.43% and

12.81% compared to RGB-D-CNN and RGBatt, respec-

tively. Similar to DPI-T, fusing local and global informa-

tion increases rank-1 accuracy by 5.00% when comparing

RGBatt and RGB-CNN.

4.4. Analysis of Attention

To identify the contribution from the attention model, we

visualize examples of attention maps α4

RGB , α5

RGB , α4

D

and α5

D for all evaluated datasets. The visualizations are

shown in Figure 4. We show examples of persons having

their true match as most similar ((a), (c) and (e)) and per-

sons having their true match outside top-10 ((b), (d) and

(f)). In case of TVPR and OPR, we randomly sample an

image from each view and calculate attention maps. Since

DPI-T consists of multiple sequences of each person, we

randomly sample images from the most similar sequences

between views.

Generally, attention maps differs between the datasets.

In case of DPI-T, attention is mostly focusing on parts of

the floor, although, attended regions also include parts of

the person. This is most notable in case of α4

RGB in Figure

4 (a) where attention is mostly centered around the person

and edges of the images. The pattern of α5

RGB is more ran-

dom, almost only capturing features from the floor. This

behavior could be due to the encoding of depth images re-

sulting in larger gradient changes in the floor compared to

the persons, causing the floor to have a higher impact on

the RGB based attention maps. Meanwhile, attention maps

α4

D and α5

D focus on minor local regions centered around

the floor. Considering full-frame images, combined with

uniform colors of the scene, depth based attention maps are

more affected by the colors of the floor, causing local fea-

tures to almost not contain any information from the per-

sons. This results in addition of noisy information, decreas-

ing accuracy which is also clear when comparing Datt and

D-CNN in Figure 3 (a). This indicates the importance of

extracting the ROI around the persons to remove as much

background information as possible. In order to identify

contributing regions, calculated attention maps before and

after training the MAT should be compared. This will be

considered in future work.

The attention maps for TVPR are less random but more

similar across persons. In case of both Figure 4 (c) and (d),

α4

RGB and α5

D capture local information from the bottom

right part of the images while α5

RGB and α4

D capture infor-

mation in the center right part of the images. This cause

images with misaligned detections to capture local features

from the floor, in some cases, negatively affecting accuracy,

as also shown in Figure 3 (b) when comparing Datt and

RGBatt to D-CNN and RGB-CNN. A reason for attention

maps to be concentrated at the edges of the images could

be the low resolution of depth information which results in
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DPI-T

(a): rank-1
TVPR

(c): rank-1 (d): rank-17
OPR

(e): rank-1 (f): rank-15

(b): rank-10

Figure 4. Examples of calculated attention maps in case of DPI-T, TVPR and OPR. Each sub-figure consists of four attention maps from

the same person in two different views. The four attention maps are organized as follows; top-left corner: α4

RGB , bottom-left corner: α4

D ,

top-right corner: α5

RGB , bottom-right corner: α5

D . Brighter areas means higher attention weights.

useful gradient information only at the edge of the person.

Although, in most cases, discriminative local information

is extracted leading to a higher accuracy when fused with

complementary global features.

Attention maps calculated in case of OPR are more cen-

tered around useful information. Comparing RGB based

attention maps α4

RGB and α5

RGB , both mostly focus on the

clothing which, typically, provide more discriminative in-

formation compared to, for example, the hair. Nevertheless,

they still focus on different parts of the image, while α4

RGB

focus on multiple local regions with corresponding gradient

changes in the depth image, α5

RGB , focus on a single region.

Additionally, the impact of fusing RGB and depth is shown

by the attended regions, mostly centered near regions with

larger gradient changes, for example, at the shoulder. This

has a positive impact since these areas can be assumed to

contain more useful information, considering the overhead

view. α4

D and α5

D are more view dependent, focusing on

several regions in the first view, while only focusing on a

couple regions in the second. Like DPI-T, this could be due

to a more diverse background in the first view. They both

capture information around regions with larger gradients,

indicating that the attention model learns to calculate depth

based attention maps that capture regions with useful color

information while still preserving gradient information. A

few failure cases exist as seen in the second (right) view of

Figure 4 (f). Here, a large gradient change in the left part of

the depth image greatly affects the calculation of attention
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maps, causing attended regions to be centered around this

edge. This is most likely a product of the depth calculations

in [13] and should simply be removed in future evaluations.

4.5. Comparison to Stateoftheart

We compare our results with state-of-the-art for the three

evaluated datasets. Due to the novelty of these datasets,

only few results previously have been presented, including

the 4D Recurrent Attention Mechanism (4D RAM) [7] and

recurrent network with temporal attention (Depth ReID)

[10] in case of DPI-T, and TVDH [18] in case of TVPR.

Finally, the results of RGB-D-CNNavg (RGB-D-CNN) pre-

sented in [13] are compared. The comparisons are summa-

rized in Table 1-3, in all tables, “–” indicate non present

results.

Method/Rank r = 1 r = 5 r = 10 r = 20

4D RAM [7] 55.60 – – –

Depth ReID [10] 77.50 96.00 – –

RGB-D-CNN [13] 90.36 99.60 100 100

MAT (ours) 92.37 99.60 100 100
Table 1. Comparison between MAT and state-of-the-art systems

on the DPI-T dataset (p=249). Best results are in bold.

Method/Rank r = 1 r = 5 r = 10 r = 20

TVDH* [18] 75.50 87.50 89.20 91.90

RGB-D-CNN [13] 63.83 89.36 93.62 97.87

RGB-D-CNN† 80.85 92.55 92.55 95.74

MAT (ours) 82.98 93.62 94.68 96.81
Table 2. Comparison between MAT and state-of-the-art systems

on the TVPR dataset (p=94). Best results are in bold. (*Results

are estimated from the CMC curve, †Reproduced by training and

testing on images from detection).

Method/Rank r = 1 r = 5 r = 10 r = 20

RGB-D-CNN [13] 45.63 82.81 94.69 99.69

MAT (ours) 49.06 89.06 95.62 99.38
Table 3. Comparison between MAT and state-of-the-art systems

on the OPR dataset (p=32). Best results are in bold.

Comparisons in Table 1 show the MAT to outperform

previously proposed methods. While 4D RAM and Depth

ReID only consider depth information, RGB-D-CNN also

considers color, showing the importance of fusing color and

depth information. As also mentioned in Subsection 4.3 the

MAT still increases accuracy, indicating the importance of

including local discriminative features.

In case of TVPR shown in Table 2, the MAT outper-

forms both RGB-D-CNN [13] and TVDH [18], increas-

ing the rank-1 accuracy by 2.13% and 7.48%, respectively.

Additionally, we note the importance of eliminating back-

ground noise which is shown by an increased rank-1 accu-

racy of 17.02% when comparing the original RGB-D-CNN

results of [13] which considers full-frame images, and our

evaluation using a similar system.

Finally, we compare the rank-1 through rank-20 accura-

cies, also depicted in Figure 3, for the OPR dataset. Besides

the rank-1 increase of 3.43%, the rank-5 accuracy is also

greatly increased by 6.25% which is important to note, con-

sidering an image retrieval context where often the top-k

most similar images are inspected by a person.

5. Conclusion

In this paper, we have proposed a Multimodal ATtention

network (MAT) which implements an attention model with

a multimodal CNN to calculate attention maps that capture

local discriminative features from RGB and depth images.

Attention maps are calculated by fusing RGB and depth in-

formation, resulting in attention maps that are calculated in

a multimodal fashion. In total, four attention maps are cal-

culated to extract local features from the fourth and fifth

convolution layers of an RGB and depth CNN, respectively.

Local RGB and depth based features are separately fused

with global feature descriptors resulting in modality depen-

dent multilevel features. Finally, multilevel RGB and depth

features are fused to a multilevel RGB-D feature descrip-

tor which better captures the correlation between RGB and

depth information while including information at different

abstraction levels. Evaluations on three overhead based

datasets DPI-T, TVPR and OPR show the importance of

fusing local and global information by increasing the rank-

1 accuracy by 2.01%, 2.13% and 3.43%, respectively, com-

pared to a similar network not considering attention.

To further increase accuracy, a more novel CNN should

be considered while also the addition of an LSTM layer can

be used to extend the network by additionally capture tem-

poral information. By adding an LSTM, different attention

modules can be considered, either spatial, temporal, or spa-

tiotemporal.
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