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Abstract

We present a technique for monocular reconstruction,
i.e. depth map and pose prediction from input monocular
video sequences, using adversarial learning. We extend
current geometry-aware neural network architectures that
learn from photoconsistency-based reconstruction loss func-
tions defined over spatially and temporally adjacent images
by leveraging recent advances in adversarial learning. We
propose a generative adversarial network (GAN) that can
learn improved reconstruction models, with flexible loss func-
tions that are less susceptible to adversarial examples, using
generic semi-supervised or unsupervised datasets. The gen-
erator function in the proposed GAN learns to synthesize
neighbouring images to predict a depth map and relative
object pose, while the discriminator function learns the distri-
bution of monocular images to correctly classify the authen-
ticity of the synthesized images. A typical photoconsistency-
based reconstruction loss function is used to assist the gen-
erator function to train well and compete against the dis-
criminator function. We demonstrate the performance of
our method on the KITTI dataset in both, depth-supervised
and unsupervised settings. The depth prediction results of
the proposed GAN are shown to compare favorably with
state-of-the-art techniques for monocular reconstruction.

1. Introduction

As computer vision matures, it is increasingly clear that
in addition to recognition and classification, reconstruction
and pose estimation are imperative to do well, ideally per-
formed jointly. This goal when achieved, would have wide
ranging implications especially in areas e.g. robotic naviga-
tion and simultaneous localization and mapping (SLAM).
However, the problem continues to be a difficult one to solve,
the ability to relate information across multiple views, while
handling noise, uncertainty and estimating pose and shape
(encapsulated by Structure from Motion (SfM) and SLAM)
continues to be actively researched and improved, despite
much progress. While the geometry of image formation,
image features, and hand crafted energies and priors have
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been well studied, there is significant curiosity and hope for
what deep learning progress can bring to the table, especially
in terms of discovering features, formulations, exploiting
priors and large amounts of data. Naturally, in recent times,
various sub-tasks of reconstruction e.g. single view recon-
struction, optical flow (and scene flow!), pose estimation
and joint pose and depth estimation for temporal and stereo
setups have seen a flurry of activity using supervised and
semi-supervised learning.

In this paper, we advance this state of the art, by har-
nessing the power of adversarial learning over the existing
state of the art in geometry aware neural network based
monocular reconstruction. Generative Adversarial Networks
(GANSs) have shown themselves to be a promising tool; rather
than purely loss based learning regulated by some prior, a
GAN pits a generative neural network (generating samples
of a variable of interest) against a discriminative one (that
tests its authenticity). This allows the discriminator to learn
more flexible distributions from available data than typical
manually defined loss functions, and are shown to tackle
underfitting-based issues, work well even without super-
vised training pairs and tackle confusing, adversarial cases
better. We address the following question in monocular re-
construction: given at least 2 contiguous images in time from
a monocular camera, can we predict depth and pose (using
the generator) such that the predicted images in neighbour-
ing time steps are realistic enough to pass the discriminator’s
test? The answer, it turns out, is yes. Further, traditional
photo-consistency losses help train our system better. Our
method, shown in Figure 1, compares favourably against
state of the art on the latest benchmarks for reconstruction
based evaluations and our results are not only geometrically
and photometrically consistent but also better trained against
adversarial examples. We now introduce this in the context
of related work.

2. Related Work

Reconstruction traditionally adopted approaches moti-
vated by the physics of image formation from 3D either
based on finding consistent 2D matches that yield good
reconstruction (triangulation) [25, 12, 20] or proposing
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Figure 1: Proposed Framework: The generator consists of two subnetworks - the depth subnetwork that predicts depth map
from the target (center) image, and the pose subnetwork, that learns to predict pose parameters from image triplets. The image
triplets are fed to the pose subnetwork, that transforms the source (left & right) images to the target (center) image, while
the center image is fed to the depth subnetwork that outputs a depth map. Using the estimated depth and pose parameters,

the generator transforms the source images, which is then interpolated using Spatial Transformer Networks [

], to output a

generated pair of images. The discriminator subnetwork then learns to differentiate the real and the generated images. Please
refer to section 4 for more information on network architectures.

3D structure and texture that is consistent with image ev-
idence (photo-consistency based methods, or direct meth-
ods) [24, 21, 10]. Whether machine learning can learn to
reconstruct without depending on hand-crafted features and
energies, has been discussion for a long time. Though re-
gression based approaches towards subsets of the problem
[27, 22] showed promise, substantial headway was made
more recently by deep learning based approaches. The deep
learning progress, seen initially in image classification [ 18],
was followed closely by reconstruction based learning. In
addition to being an intricate problem, deep learned recon-
struction depends on exploiting large amounts of data (often
with supervision), which was lacking in reconstruction based
benchmarks for a while. A popular workaround was the use
of artificial datasets e.g. with objects superimposed on arti-
ficial backgrounds [7, 19]. But then projects like Kitti [14],
CityScapes [3] etc. paved the way for larger, more compre-
hensive benchmarks.

Initial attempts were made on, arguably, sub-parts of the
problem like correspondence estimation [26, 30], optical
flow or disparity [7]. These approaches slowly consolidated
such learning into estimation of scene flow (3D point and
velocity estimation implicitly giving flow or disparity) [19]
for a small set of frames. Another class of approaches aimed
at learning to predict depth maps [9, 8, 16] but learnt this
mapping from typical supervised pairs of inputs and out-

puts while Byravan and Fox [2] learned similar prediction of
pose from depth maps. However, supervised data for recon-
struction is usually limited, LiDaR scanners are expensive,
capture limited depth and have a limited view of the viewing
sphere. But the community has been quick to extend such
learning where a reconstruction based image-consistency
error is used to self-supervise the learning from multiple
frames, independent of an explicit depth source, either using
stereo or a monocular source over time. The basic principle
is that if the correct depth and pose for an image pair are
predicted, they should be photo-consistent with the source
images. So methods [15, 28, 31] moved towards more effec-
tively predicting both depth and pose with less supervision.
While some methods [28] utilize available supervision, oth-
ers [31] aim to be completely self-supervised. Naturally the
problem is still underconstrained and the use of priors helps
estimate a sensible solution. Godard et al. [15] enforce a
prior to encourage the estimated disparity to be smooth. In
[28] additional priors on depth maps, motion maps and even
the depth gradients are explored.

3. Proposed Approach

The proposed method aims to learn depth and pose pa-
rameters via adversarial learning. Given a triplet of images
that are adjacent frames of a monocular video sequence, we
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feed the center or target image to the depth subnetwork that
learns to generate a depth map, and the image triplet is fed
to the pose subnetwork, that regresses pose parameters that
transforms the source (left & right) images to the target (cen-
ter) image. The estimated depth and pose parameters are
then used to render a pair of predicted images for the left
and right (using the well known interpolation of [17]). The
discriminator, a network that learns to discriminate between
original and generated images, scores a likelihood of how
similar the original and the generated images are.

Model

Like a traditional GAN, our network consists of two ad-
versarial components; the generator that predicts images
neighbouring a given image and the discriminator which
classifies the authenticity of such generated neighbourhood
images. Our generator is comprised of two subnetworks, the
depth subnetwork and the pose subnetwork. Similar to [31],
the input of the depth subnetwork is the image I, for which
network predicts a depth map D;. Images I;_; and I;,; are
the left and right (adjacent) images, in time, of ;. Given the
image triplet {I;_1, It, I;+1} containing, the pose subnet-
work predicts two pairs rotation and translation parameters
{Ret+1,t 41} {Ri—1,, ti—1,4} € SE3, representing the
relative transform between the camera at successive instants
of time, which is then used with the predicted depth map to
generate I} and I?.

In [31], the generator would be trained on the typical
photo-consistency loss (augmented with left-right consis-
tency constraints as in [15]), given by:

1
photo — 3§ t — 1t t — 1t
L S {1 = L+ 11— 12} (1)

where It1 and If are the predictions of I, and I;_1, are
generated by transforming images I; 11 and I;_ using pre-
dicted depth maps and pose parameters.

Then the objective of the discriminator subnetwork is to
learn to classify real images from generated ones {I}', I?}.
It has to be noted that the objective of the discriminator is
not to learn explicitly the difference between the instances
of each generated and real image pair, instead, to learn to
provide a likelihood of how real or fake (or generated) a
given image is. With the discriminator as D and the the
generator as G, following [5] where a generator is modelled
by a context encoder, the adversarial loss can be formulated
as,

Lodw = max Esex[log(D(x))+log(1—D(F(x)))] (2)

where X represents the data distribution. We adapt the
formulation of [5], and use a generative modeling of images,
where we model our autoencoder as our generator, G £

F. Training context encoders as generators by propagating
adversarial loss via discriminator have been shown to be
successful [5] on problems such as image inpainting.

We train and evaluate our network in both depth-
supervised and unsupervised mode. Our training objective
for the unsupervised setting that minimizes the photocon-
sistency error between true and transformed image pairs
(Equation 1), along with the adversarial loss (Equation 2), is
given by:

Livar = MLphoto + A2 Ladw 3)

For depth-supervised learning, for a pixel ¢ in target image
1, the depth loss Lgep¢r, can be formulated as

1
Lacptn(Dri, Gri) = > 1D = Gl “)

where D; and G; are the predicted and ground truth depth
map respectively, and n is the total number of pixels. In case
of learning with depth supervision, the loss function then
becomes:

Kiotal = Alﬁphoto + )\2‘Cad'u + )\SEdepth (5)

We tried both L; and Ly norms for computing depth loss
while training, but we found the results to be pretty similar.

At initial stages of training, the discriminator learns con-
sistently as images generated are quite distorted, overly
smoothed and considerably different from real images, as
the pose and depth estimates are highly inaccurate. As train-
ing progresses, despite the differences between generated
and source images (photoconsistency error) are high, the
pose and depth estimates are reasonable enough to render
images that appear realistic. This is because, the optimiza-
tion requires the pose and depth parameters to be accurate
enough to minimize photoconsistency loss, while the dis-
criminator can be fooled by any reasonable estimates of pose
and depth as long as they project to the image plane and the
interpolation of the image appear realistic. As the generated
images start to appear a bit more realistic, the discriminator,
then eventually stops learning half way through training, and
reaches equilibrium prematurely. As a means to tackle this
problem, we first compute difference images 6; = |I; — I}
and 67 = |I; — I?|. We then add the difference images &;_1
and &;,1 to the I;, to obtain Ift’l and If”l respectively;
this step allows us to externally induce discrepancy to make
the image appear fake, generating photoconsistency-aware
adversarial examples to confuse the discriminator, and let
it learn effectively and continually. The discriminator is
fed with these error induced instances of generated images
Ift‘l and If”“ instead of raw generated images I} and I7.
In reference to the discriminator training, this step reduces
generated images from appearing realistic despite inaccurate
pose/depth maps, by inducing additional error, which will
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allow the discriminator to continue learning than stop half
way through training.

The algorithmic implication of this step is that, the dis-
criminator is in fact trying to minimize the photoconsistency
loss as well, as the adversarial loss would remain high as
long as the photoconsistency is not minimized. Thus the
discriminator is forced to work against the generator at the
same time minimize the same objective of that of the gen-
erator. Eventually, when the photoconsistency loss is sub-
stantially minimized, generated adversarial examples would
start to appear more realistic as the noise added would ap-
proach to zero. Given the generated and difference images,
an adversarial example is computed using the formulation:
advrl = I+ (1—w) 116} and *W 12 = w2+ (1—w)I262.

When estimating pose parameters, independent objects,
such as a car passing by, or a pedestrian crossing the road,
tends to have its own motion, that, in general, does not
agree with the actual camera motion. In order to tackle the
problem, we use the explainability masks proposed by [31],
to ignore or mask the regions with independent motion out,
while estimating the pose of the scene.

4. Implementation Details

The depth subnetwork follows a traditional encoder-
decoder architecture, where the encoding or the contract-
ing phase comprises a series of convolutional layers that
transforms an image into a latent representation, which is
followed by the decoding or expanding phase that consists
of deconvolutional or transpose convolutional layers along
with convolutional layers, learns to regress depth maps from
the latent representation of encoder. We removed pooling
layers and used convolutional layers with alternating strides
instead, for downsampling the tensor. The pooling layer
provides spatial invariance which aids classification, but for
autoencoders, removing pooling layers have been shown to
improve performance [5]. The encoder consists of 6 pairs of
convolutional layers of alternating strides of 2’s and 1’s, with
{32, 64, 128, 256, 512} filters respectively. The decoder con-
sists of a series of alternating upconvolutional or transpose
convolutional layers and convolutional layers, that maps the
latent features of encoding layer into the depth maps. We use
skip connections across convolutional and deconvolutional
layers as they have been shown improve performance [0],
especially for coming across vanishing gradient problems,
thus effectively allowing us to explore deeper network archi-
tectures. All the convolutional and deconvolutional layers
use relu as the activation function. The decoder of the depth
subnetwork, is affixed with a convolutional layer with 1 filter
and a sigmoid activation, that outputs the final depth map.

The pose subnetwork, identical to the encoder of depth
subnetwork, consists of a series of 8 convolutional layers
with alternating strides of 2’s and 1’s, which is then followed
by an average pooling layer, with 12 filters (6 x (n — 1))

—3 rotation and 3 translation for two transformations, as we
use image triplet (n = 3). The input of the pose subnetwork
is the image triplet that is concatenated across the number
of channels. We also use explainability mask to reason mo-
tion that do not correspond to the estimated comprehensive
camera motion of the scene. We employ the explainability
mask algorithm proposed by [3 1], to mask/ignore the regions
with independent motion or occlusion out and use the rest
of the regions for inferring pose parameters. We also use
resize layers towards the end of the generator, to resize the
predicted depth maps to correspond to the actual or required
sizes as there are often negligible offsets due to padding.
While computing the pose matrix, our method uses intrinsic
camera parameters when available, else would default to use
{0.5,0.5,1} for {cs, ¢y, f} respectively.

The architecture of the discriminator subnetwork is sim-
ilar to that of a traditional - convolutional layers followed
by a set of dense layers (with {512, 256, 128} filters re-
spectively), and a sigmoid layer with a filter size of 1, that
simply outputs a probability; all layers use leaky relu [1]
activation. Like traditional discriminators, the sigmoid layer
outputs a single value, the likelihood of the image being real
or fake. For all the above subnetworks, except for the first
(convolutional) layer where we use a filter of size 5 x 5, the
filter sizes of all other layers are set to 3 x 3.

For Training the network, we use Adam optimizer [4]
with an initial learning rate of 0.002 which is periodically ad-
justed as the training progresses using an exponential decay
function, with a rate of decay as 0.95 for every 1500 steps.
We gather batches of adjacent images (sequences) in the
dataset, as triplets. The pose network is fed with the triplets
{Ii—1, 11,111} of size B x H x W x (n * ch), where B
is the batch size and ch is the number of channels (ch = 3,
as we use rgb images through out the paper). For all our
experiments H and W, the height and width of images are
set to 128 and 384 respectively, and the batch size is set to
32. Also while training, we treat the left and right stereo
pairs of images in KITTI dataset as independent image/video
sequences.

The adversarial examples are generated as a weighted
sum of the generated images and pixel-wise photoconsis-
tency error. We tried various values for weights w, but we
found that w between 0.90 and 0.95 works better overall.
A lesser value for w implies that the generated adversarial
example will be highly noisy, that subsequently leads the
adversarial loss to fail to improve as the discriminator ac-
curacy reaches 100 percent hastily, at most times within
3000 iterations. On the other hand, a very high value for w
will introduce too little noise to make a difference in train-
ing. Moreover, following [5], we set the hyperparameter
(weights) for the adversarial loss A to be quite low (in com-
parison to A\; or A3). For depth supervised learning we set
A1+ A3 = 0.995 and A2 = 0.005, where A; = A3, and for
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(a) (o)

(d) (e)

Figure 2: Qualitative results (good). (a) Ground truth Image (b) Corresponding ground truth depth map (c) Depth predic-

tions of Eigen et al [9] (Depth supervised) (d) Depth predictions of [

photoconsistency + adv. loss).

unsupervised learning we set A\; = 0.995 and A = 0.005.

When training discriminator with adversarial examples,
at times, due to the camera motion, regions in the preced-
ing scene, especially corner regions of images, tend to be
missing in the current scene causing occlusion. As discussed
above, we learn and use the explainability mask to tackle
this problem by masking out regions that are occluded. But
while training the discriminator, the generated images does
not appear realistic because of the mask on the boundaries of
the image as shown in Figure 5 column (c). Penalizing such
images by letting the discriminator classify these as fake, af-
fects the overall pose learning as it restricts the generator by
allowing only a negligible motion for camera, which slows
down the overall learning rate indeed, or, at times, halts the
learning at all. In order to tackle this problem, we apply
occlusion masks computed for projected images, to the real
images as well, within the minibatch, so that the discrimina-

] (e) Our depth predictions (depth supervision +

tor learns to classify images as real or fake, irrespective of the
presence of the occlusion/explainability masks. Examples
of occlusion masks estimated using the explainability mask
prediction is shown in Figure 5 (¢)). In addition, to retain
the stability of the network throughout the learning, we train
the generator and the discriminator with different learning
rates, while the learning rate of discriminator is set to be 20
times lower than the generator, to induce more stability in
learning. Also, while training discriminator, we randomly
shuffle the source/ground truth and generated images (of the
mini-batch) before feeding them to the discriminator, so that
the discriminator does not learn to associate the generated
and ground truth images as pairs and learns to just differenti-
ate between them, instead learns a more generic objective of
classifying real vs. fake images.
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Figure 3: (a) Source images (left (I;_1) or right (I;11)) (b) Target image (c) Generated (transformed source) image, using the
estimated pose and depth parameters (d) photoconsistency error between generated (c) and (b), (e) Adversarial example with
induced photoconsistency loss. The discriminator is trained with images in (a) and (b) as real vs. images (e) as fake. Image (e)
has been enhanced with higher values of w (=0.6) to amplify the difference for visual demonstration, but during training, the

induced photoconsistency loss is kept lower.

Figure 4: Qualitative results of depth prediction on KITTI dataset, where the network is trained in an unsupervised manner.
Top row consists of target images and the bottom row consists of the corresponding predicted depth maps.

5. Experimental Evaluation

For the purpose of evaluation, we train and test our
method on the KITTI dataset [14] along with testing on
Cityscapes dataset [3], the model that is trained on KITTI
dataset. Both KITTI [14] and Cityscapes [3] are similar
datasets, comprised of sequences of stereo images, primarily

of streets and highways, along with the groundtruth depth
maps captured using velodyne laser sensors. With KITTI
dataset, we use the train/test split provided by Eigen et al. [9],
to train the network on 34 image sequences test it on 697
images, whereas for cityscapes we use the default test set pro-
vided by the [3]. Also, while training on KITTI, we use the
left and right images of the stereo sequences as independent
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Figure 5: (a) Target image and its estimated depth map, (b) left and right photoconsistency error, (c) Projected left and right

images (d) groundtruth left and right images.

0 Supervision Error Metric Accuracy Metric
Depth  Pose  Unsupervised | AbsRel SqRel RMSE RMSElog | 6 < 1.25 § < 1.25%2 6§ < 1.253

Eigen et al. [9] (Coarse) v 0214  1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [9] (Fine) v 0.203  1.548 6.307 0.282 0.702 0.890 0.958
Livetal [1]] v 0202 1.614 6.523 0.275 0.678 0.895 0.965
(Ours - depth+photo.) v 0.1431 09741 5.3693  0.2131 0.8001 0.9373 0.9790
(Ouwrs - depth+photo.+adv.) v 0.1355 0.8653 5.1736  0.2084 0.8183 0.9450 0.9802
(Ours - depth+photo.+adv.*) v 0.1204 0.7466 4.7560  0.1869 0.8486 0.9553 0.9848
(Ours - photo.*) v 0.2190 1.9758 6.3398  0.2730 0.7081 0.8668 0.9339
(Ours - photo. + adv.*) v 0.2114 19797 6.1540  0.2636 0.7319 0.8977 0.9593
Godard et al. [15] v 0.148  1.344 5.927 0.247 0.803 0.922 0.964

Garg et al. [13] (50m cap) v 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Zhou et al. [31](w/o exp. mask) v 0221 2226 7.527 0.294 0.676 0.885 0.954
Zhou et al. [31] v 0.208  1.768  6.856 0.283 0.678 0.885 0.957

Zhou et al. [31](50m cap) v 0.208  1.551 5452 0.273 0.695 0.900 0.964
Kuznietsov et al. [29] v Vv (stereo) 0.113  0.741 4.621 0.189 0.875 0.964 0.988
Kuznietsov et al. [29] v (stereo) 0.308 9.367 8.700 0.367 0.752 0.904 0.952

Table 1: Comparison of Monocular depth prediction results on KITTI dataset [14]. (*-since our depth prediction is not up to
scale, we normalized ground truth and estimated depth maps [31]).

image sequences.

The quantitative evaluation of our algorithm is shown
in Table 1. We report the performance of our system us-
ing the standard metrics used in [9], for both supervised
and unsupervised setting. With supervised learning, we ob-
tain state-of-the-art results in comparison with other depth-
supervised learning techniques. For the task of depth predic-
tion, we obtain a Root Mean Squared Error (RMSE) of 4.75,
outperforming all other depth-supervised techniques, while
comparing equally with Kuznietsov et al. [29], who uses the
stereo information in addition to using ground truth depth
maps for supervision. Moreover, Kuznietsov et al. [29] uses

a more sophisticated and much deeper ResNet [6] with pre-
trained weights learned on ImageNet object classification
challenge [23], whereas we are able to achieve compara-
ble results by using a much less sophisticated autoencoders
with architecture similar to that of [31], without transfer-
ring weights learned from other larger datasets. Figure 3
shows qualitatively, results of depth maps computed using
our approach. It has to be noted that our unsupervised learn-
ing models (Table 1, rows 7-8) were trained only for 75K
iterations, which is why the numbers are slightly inferior
to Zhou et al., [31]. Our network trained using just photo-
consistency loss (Table 1, row 7) is coarsely our adaptation
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0 Supervision

Error Metric Accuracy Metric

Depth Unsupervised

AbsRel SqRel RMSE RMSE log

§<1.25 §<1.25%2 §<1.258

Zhou et al.et al. [57] (50m cap) N 0.267
0.3934 4.6831 10.5380

(Ours-depth+photo.+adv. (50m cap)*) v

2.686  7.580 0.334 0.577 0.840 0.937
0.4123 0.3518 0.6889 0.9047

Table 2: Comparison of Monocular depth prediction results on Cityscapes dataset [3] (* - model trained on KITTI dataset and

evaluated on cityscapes dataset, whereas results of [

of [31]; the goal of this paper is to demonstrate that the use
of the proposed adversarial scheme improves the overall
depth prediction performance of the system in comparison
with the baseline (Table 1, row 8).

Also, for both unsupervised and supervised methods, the
estimated depth map is defined up to a scale, so, for the pur-
pose of evaluation, like [3 1], we normalize them by scaling
the predicted depth maps such that their medians match (Ta-
ble 1). In order to demonstrate the generalizable nature of our
architecture, we also test our method on the cityscapes [3]
dataset, while the training done solely on the KITTI dataset.
Despite being trained in a different dataset, our method per-
forms reasonably well in contrast to other methods that are
trained on cityscapes (or cityscapes + KITTI datasets). The
results are shown in table 2. Figure 4 shows qualitative
results of our method trained unsupervised; we use only
the photoconsistency and adversarial losses. We show con-
siderable improvement by training using adversarial loss
in contrast to its baseline which is trained using photocon-
sistency loss alone. We reported results for unsupervised
learning at the end of 40K iterations. It has to be noted that
the accuracy improves for unsupervised learning with more
iterations [31]. Also we observed that when using adversar-
ial loss, it takes slightly longer for convergence than usual,
as the adversarial loss penalizes the pose and depth networks,
ceaselessly, throughout the training process.

6. Conclusion

We extended a state-of-the-art deep learned depth and
pose prediction model and couple it with the adversarial
learning to harness the generative power of the GANSs, sub-
sequently improving the depth and pose estimation accu-
racy. We further introduce a technique to generate context-
aware adversarial examples, that allows our method to
trick the discriminator to work against the generator and
at the same time indirectly minimizing the same objec-
tive as that of the generator. This proposed method is
shown to learn and perform well in both depth-supervised
and unsupervised setting, obtaining new state-of-the-art
results among depth supervised approaches, and compar-
ing favorably against other pose-supervised and unsuper-
vised techniques. Furthermore, the use of adversarial
loss for learning have been successfully demonstrated,
both qualitatively and quantitatively, to improve depth and

] are from a model trained explicitly on [3].)

pose prediction accuracy, on two of the important bench-
marks.
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