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Abstract

We present a technique for monocular reconstruction,

i.e. depth map and pose prediction from input monocular

video sequences, using adversarial learning. We extend

current geometry-aware neural network architectures that

learn from photoconsistency-based reconstruction loss func-

tions defined over spatially and temporally adjacent images

by leveraging recent advances in adversarial learning. We

propose a generative adversarial network (GAN) that can

learn improved reconstruction models, with flexible loss func-

tions that are less susceptible to adversarial examples, using

generic semi-supervised or unsupervised datasets. The gen-

erator function in the proposed GAN learns to synthesize

neighbouring images to predict a depth map and relative

object pose, while the discriminator function learns the distri-

bution of monocular images to correctly classify the authen-

ticity of the synthesized images. A typical photoconsistency-

based reconstruction loss function is used to assist the gen-

erator function to train well and compete against the dis-

criminator function. We demonstrate the performance of

our method on the KITTI dataset in both, depth-supervised

and unsupervised settings. The depth prediction results of

the proposed GAN are shown to compare favorably with

state-of-the-art techniques for monocular reconstruction.

1. Introduction

As computer vision matures, it is increasingly clear that

in addition to recognition and classification, reconstruction

and pose estimation are imperative to do well, ideally per-

formed jointly. This goal when achieved, would have wide

ranging implications especially in areas e.g. robotic naviga-

tion and simultaneous localization and mapping (SLAM).

However, the problem continues to be a difficult one to solve,

the ability to relate information across multiple views, while

handling noise, uncertainty and estimating pose and shape

(encapsulated by Structure from Motion (SfM) and SLAM)

continues to be actively researched and improved, despite

much progress. While the geometry of image formation,

image features, and hand crafted energies and priors have

been well studied, there is significant curiosity and hope for

what deep learning progress can bring to the table, especially

in terms of discovering features, formulations, exploiting

priors and large amounts of data. Naturally, in recent times,

various sub-tasks of reconstruction e.g. single view recon-

struction, optical flow (and scene flow!), pose estimation

and joint pose and depth estimation for temporal and stereo

setups have seen a flurry of activity using supervised and

semi-supervised learning.

In this paper, we advance this state of the art, by har-

nessing the power of adversarial learning over the existing

state of the art in geometry aware neural network based

monocular reconstruction. Generative Adversarial Networks

(GANs) have shown themselves to be a promising tool; rather

than purely loss based learning regulated by some prior, a

GAN pits a generative neural network (generating samples

of a variable of interest) against a discriminative one (that

tests its authenticity). This allows the discriminator to learn

more flexible distributions from available data than typical

manually defined loss functions, and are shown to tackle

underfitting-based issues, work well even without super-

vised training pairs and tackle confusing, adversarial cases

better. We address the following question in monocular re-

construction: given at least 2 contiguous images in time from

a monocular camera, can we predict depth and pose (using

the generator) such that the predicted images in neighbour-

ing time steps are realistic enough to pass the discriminator’s

test? The answer, it turns out, is yes. Further, traditional

photo-consistency losses help train our system better. Our

method, shown in Figure 1, compares favourably against

state of the art on the latest benchmarks for reconstruction

based evaluations and our results are not only geometrically

and photometrically consistent but also better trained against

adversarial examples. We now introduce this in the context

of related work.

2. Related Work

Reconstruction traditionally adopted approaches moti-

vated by the physics of image formation from 3D either

based on finding consistent 2D matches that yield good

reconstruction (triangulation) [25, 12, 20] or proposing
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Figure 1: Proposed Framework: The generator consists of two subnetworks - the depth subnetwork that predicts depth map

from the target (center) image, and the pose subnetwork, that learns to predict pose parameters from image triplets. The image

triplets are fed to the pose subnetwork, that transforms the source (left & right) images to the target (center) image, while

the center image is fed to the depth subnetwork that outputs a depth map. Using the estimated depth and pose parameters,

the generator transforms the source images, which is then interpolated using Spatial Transformer Networks [17], to output a

generated pair of images. The discriminator subnetwork then learns to differentiate the real and the generated images. Please

refer to section 4 for more information on network architectures.

3D structure and texture that is consistent with image ev-

idence (photo-consistency based methods, or direct meth-

ods) [24, 21, 10]. Whether machine learning can learn to

reconstruct without depending on hand-crafted features and

energies, has been discussion for a long time. Though re-

gression based approaches towards subsets of the problem

[27, 22] showed promise, substantial headway was made

more recently by deep learning based approaches. The deep

learning progress, seen initially in image classification [18],

was followed closely by reconstruction based learning. In

addition to being an intricate problem, deep learned recon-

struction depends on exploiting large amounts of data (often

with supervision), which was lacking in reconstruction based

benchmarks for a while. A popular workaround was the use

of artificial datasets e.g. with objects superimposed on arti-

ficial backgrounds [7, 19]. But then projects like Kitti [14],

CityScapes [3] etc. paved the way for larger, more compre-

hensive benchmarks.

Initial attempts were made on, arguably, sub-parts of the

problem like correspondence estimation [26, 30], optical

flow or disparity [7]. These approaches slowly consolidated

such learning into estimation of scene flow (3D point and

velocity estimation implicitly giving flow or disparity) [19]

for a small set of frames. Another class of approaches aimed

at learning to predict depth maps [9, 8, 16] but learnt this

mapping from typical supervised pairs of inputs and out-

puts while Byravan and Fox [2] learned similar prediction of

pose from depth maps. However, supervised data for recon-

struction is usually limited, LiDaR scanners are expensive,

capture limited depth and have a limited view of the viewing

sphere. But the community has been quick to extend such

learning where a reconstruction based image-consistency

error is used to self-supervise the learning from multiple

frames, independent of an explicit depth source, either using

stereo or a monocular source over time. The basic principle

is that if the correct depth and pose for an image pair are

predicted, they should be photo-consistent with the source

images. So methods [15, 28, 31] moved towards more effec-

tively predicting both depth and pose with less supervision.

While some methods [28] utilize available supervision, oth-

ers [31] aim to be completely self-supervised. Naturally the

problem is still underconstrained and the use of priors helps

estimate a sensible solution. Godard et al. [15] enforce a

prior to encourage the estimated disparity to be smooth. In

[28] additional priors on depth maps, motion maps and even

the depth gradients are explored.

3. Proposed Approach

The proposed method aims to learn depth and pose pa-

rameters via adversarial learning. Given a triplet of images

that are adjacent frames of a monocular video sequence, we
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feed the center or target image to the depth subnetwork that

learns to generate a depth map, and the image triplet is fed

to the pose subnetwork, that regresses pose parameters that

transforms the source (left & right) images to the target (cen-

ter) image. The estimated depth and pose parameters are

then used to render a pair of predicted images for the left

and right (using the well known interpolation of [17]). The

discriminator, a network that learns to discriminate between

original and generated images, scores a likelihood of how

similar the original and the generated images are.

Model

Like a traditional GAN, our network consists of two ad-

versarial components; the generator that predicts images

neighbouring a given image and the discriminator which

classifies the authenticity of such generated neighbourhood

images. Our generator is comprised of two subnetworks, the

depth subnetwork and the pose subnetwork. Similar to [31],

the input of the depth subnetwork is the image It, for which

network predicts a depth map Dt. Images It−1 and It+1 are

the left and right (adjacent) images, in time, of It. Given the

image triplet {It−1, It, It+1} containing, the pose subnet-

work predicts two pairs rotation and translation parameters

{Rt,t+1, tt,t+1}, {Rt−1,t, tt−1,t} ∈ SE3, representing the

relative transform between the camera at successive instants

of time, which is then used with the predicted depth map to

generate I1t and I2t .

In [31], the generator would be trained on the typical

photo-consistency loss (augmented with left-right consis-

tency constraints as in [15]), given by:

Lphoto =
1

2

{

|It − I1t |+ |It − I2t |
}

(1)

where I1t and I2t are the predictions of It+1 and It−1, are

generated by transforming images It+1 and It−1 using pre-

dicted depth maps and pose parameters.

Then the objective of the discriminator subnetwork is to

learn to classify real images from generated ones {I1t , I
2
t }.

It has to be noted that the objective of the discriminator is

not to learn explicitly the difference between the instances

of each generated and real image pair, instead, to learn to

provide a likelihood of how real or fake (or generated) a

given image is. With the discriminator as D and the the

generator as G, following [5] where a generator is modelled

by a context encoder, the adversarial loss can be formulated

as,

Ladv = max
D

Ex∈X [log(D(x))+log(1−D(F (x)))] (2)

where X represents the data distribution. We adapt the

formulation of [5], and use a generative modeling of images,

where we model our autoencoder as our generator, G ,

F . Training context encoders as generators by propagating

adversarial loss via discriminator have been shown to be

successful [5] on problems such as image inpainting.

We train and evaluate our network in both depth-

supervised and unsupervised mode. Our training objective

for the unsupervised setting that minimizes the photocon-

sistency error between true and transformed image pairs

(Equation 1), along with the adversarial loss (Equation 2), is

given by:

Lu
total = λ1Lphoto + λ2Ladv (3)

For depth-supervised learning, for a pixel i in target image

It, the depth loss Ldepth can be formulated as

Ldepth(Dti,Gti) =
1

n

∑

i

|Dti − Gti|
2

(4)

where Dt and Gt are the predicted and ground truth depth

map respectively, and n is the total number of pixels. In case

of learning with depth supervision, the loss function then

becomes:

Ls
total = λ1Lphoto + λ2Ladv + λ3Ldepth (5)

We tried both L1 and L2 norms for computing depth loss

while training, but we found the results to be pretty similar.

At initial stages of training, the discriminator learns con-

sistently as images generated are quite distorted, overly

smoothed and considerably different from real images, as

the pose and depth estimates are highly inaccurate. As train-

ing progresses, despite the differences between generated

and source images (photoconsistency error) are high, the

pose and depth estimates are reasonable enough to render

images that appear realistic. This is because, the optimiza-

tion requires the pose and depth parameters to be accurate

enough to minimize photoconsistency loss, while the dis-

criminator can be fooled by any reasonable estimates of pose

and depth as long as they project to the image plane and the

interpolation of the image appear realistic. As the generated

images start to appear a bit more realistic, the discriminator,

then eventually stops learning half way through training, and

reaches equilibrium prematurely. As a means to tackle this

problem, we first compute difference images δ1t = |It − I1t |
and δ2t = |It − I2t |. We then add the difference images δt−1

and δt+1 to the It, to obtain I
δt−1

t and I
δt+1

t respectively;

this step allows us to externally induce discrepancy to make

the image appear fake, generating photoconsistency-aware

adversarial examples to confuse the discriminator, and let

it learn effectively and continually. The discriminator is

fed with these error induced instances of generated images

I
δt−1

t and I
δt+1

t instead of raw generated images I1t and I2t .

In reference to the discriminator training, this step reduces

generated images from appearing realistic despite inaccurate

pose/depth maps, by inducing additional error, which will
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allow the discriminator to continue learning than stop half

way through training.

The algorithmic implication of this step is that, the dis-

criminator is in fact trying to minimize the photoconsistency

loss as well, as the adversarial loss would remain high as

long as the photoconsistency is not minimized. Thus the

discriminator is forced to work against the generator at the

same time minimize the same objective of that of the gen-

erator. Eventually, when the photoconsistency loss is sub-

stantially minimized, generated adversarial examples would

start to appear more realistic as the noise added would ap-

proach to zero. Given the generated and difference images,

an adversarial example is computed using the formulation:
advI1t = ωI1t +(1−ω)I1t δ

1
t and advI2t = ωI2t +(1−ω)I2t δ

2
t .

When estimating pose parameters, independent objects,

such as a car passing by, or a pedestrian crossing the road,

tends to have its own motion, that, in general, does not

agree with the actual camera motion. In order to tackle the

problem, we use the explainability masks proposed by [31],

to ignore or mask the regions with independent motion out,

while estimating the pose of the scene.

4. Implementation Details

The depth subnetwork follows a traditional encoder-

decoder architecture, where the encoding or the contract-

ing phase comprises a series of convolutional layers that

transforms an image into a latent representation, which is

followed by the decoding or expanding phase that consists

of deconvolutional or transpose convolutional layers along

with convolutional layers, learns to regress depth maps from

the latent representation of encoder. We removed pooling

layers and used convolutional layers with alternating strides

instead, for downsampling the tensor. The pooling layer

provides spatial invariance which aids classification, but for

autoencoders, removing pooling layers have been shown to

improve performance [5]. The encoder consists of 6 pairs of

convolutional layers of alternating strides of 2’s and 1’s, with

{32, 64, 128, 256, 512} filters respectively. The decoder con-

sists of a series of alternating upconvolutional or transpose

convolutional layers and convolutional layers, that maps the

latent features of encoding layer into the depth maps. We use

skip connections across convolutional and deconvolutional

layers as they have been shown improve performance [6],

especially for coming across vanishing gradient problems,

thus effectively allowing us to explore deeper network archi-

tectures. All the convolutional and deconvolutional layers

use relu as the activation function. The decoder of the depth

subnetwork, is affixed with a convolutional layer with 1 filter

and a sigmoid activation, that outputs the final depth map.

The pose subnetwork, identical to the encoder of depth

subnetwork, consists of a series of 8 convolutional layers

with alternating strides of 2’s and 1’s, which is then followed

by an average pooling layer, with 12 filters (6 × (η − 1))

—3 rotation and 3 translation for two transformations, as we

use image triplet (η = 3). The input of the pose subnetwork

is the image triplet that is concatenated across the number

of channels. We also use explainability mask to reason mo-

tion that do not correspond to the estimated comprehensive

camera motion of the scene. We employ the explainability

mask algorithm proposed by [31], to mask/ignore the regions

with independent motion or occlusion out and use the rest

of the regions for inferring pose parameters. We also use

resize layers towards the end of the generator, to resize the

predicted depth maps to correspond to the actual or required

sizes as there are often negligible offsets due to padding.

While computing the pose matrix, our method uses intrinsic

camera parameters when available, else would default to use

{0.5, 0.5, 1} for {cx, cy, f} respectively.

The architecture of the discriminator subnetwork is sim-

ilar to that of a traditional - convolutional layers followed

by a set of dense layers (with {512, 256, 128} filters re-

spectively), and a sigmoid layer with a filter size of 1, that

simply outputs a probability; all layers use leaky relu [1]

activation. Like traditional discriminators, the sigmoid layer

outputs a single value, the likelihood of the image being real

or fake. For all the above subnetworks, except for the first

(convolutional) layer where we use a filter of size 5× 5, the

filter sizes of all other layers are set to 3× 3.

For Training the network, we use Adam optimizer [4]

with an initial learning rate of 0.002 which is periodically ad-

justed as the training progresses using an exponential decay

function, with a rate of decay as 0.95 for every 1500 steps.

We gather batches of adjacent images (sequences) in the

dataset, as triplets. The pose network is fed with the triplets

{It−1, It, It+1} of size B × H × W × (η ∗ ch), where B

is the batch size and ch is the number of channels (ch = 3,

as we use rgb images through out the paper). For all our

experiments H and W , the height and width of images are

set to 128 and 384 respectively, and the batch size is set to

32. Also while training, we treat the left and right stereo

pairs of images in KITTI dataset as independent image/video

sequences.

The adversarial examples are generated as a weighted

sum of the generated images and pixel-wise photoconsis-

tency error. We tried various values for weights ω, but we

found that ω between 0.90 and 0.95 works better overall.

A lesser value for ω implies that the generated adversarial

example will be highly noisy, that subsequently leads the

adversarial loss to fail to improve as the discriminator ac-

curacy reaches 100 percent hastily, at most times within

3000 iterations. On the other hand, a very high value for ω

will introduce too little noise to make a difference in train-

ing. Moreover, following [5], we set the hyperparameter

(weights) for the adversarial loss λ2 to be quite low (in com-

parison to λ1 or λ3). For depth supervised learning we set

λ1 + λ3 = 0.995 and λ2 = 0.005, where λ1 = λ3, and for
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Figure 2: Qualitative results (good). (a) Ground truth Image (b) Corresponding ground truth depth map (c) Depth predic-

tions of Eigen et al [9] (Depth supervised) (d) Depth predictions of [31] (e) Our depth predictions (depth supervision +

photoconsistency + adv. loss).

unsupervised learning we set λ1 = 0.995 and λ2 = 0.005.

When training discriminator with adversarial examples,

at times, due to the camera motion, regions in the preced-

ing scene, especially corner regions of images, tend to be

missing in the current scene causing occlusion. As discussed

above, we learn and use the explainability mask to tackle

this problem by masking out regions that are occluded. But

while training the discriminator, the generated images does

not appear realistic because of the mask on the boundaries of

the image as shown in Figure 5 column (c). Penalizing such

images by letting the discriminator classify these as fake, af-

fects the overall pose learning as it restricts the generator by

allowing only a negligible motion for camera, which slows

down the overall learning rate indeed, or, at times, halts the

learning at all. In order to tackle this problem, we apply

occlusion masks computed for projected images, to the real

images as well, within the minibatch, so that the discrimina-

tor learns to classify images as real or fake, irrespective of the

presence of the occlusion/explainability masks. Examples

of occlusion masks estimated using the explainability mask

prediction is shown in Figure 5 (c)). In addition, to retain

the stability of the network throughout the learning, we train

the generator and the discriminator with different learning

rates, while the learning rate of discriminator is set to be 20
times lower than the generator, to induce more stability in

learning. Also, while training discriminator, we randomly

shuffle the source/ground truth and generated images (of the

mini-batch) before feeding them to the discriminator, so that

the discriminator does not learn to associate the generated

and ground truth images as pairs and learns to just differenti-

ate between them, instead learns a more generic objective of

classifying real vs. fake images.
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Figure 3: (a) Source images (left (It−1) or right (It+1)) (b) Target image (c) Generated (transformed source) image, using the

estimated pose and depth parameters (d) photoconsistency error between generated (c) and (b), (e) Adversarial example with

induced photoconsistency loss. The discriminator is trained with images in (a) and (b) as real vs. images (e) as fake. Image (e)

has been enhanced with higher values of ω (=0.6) to amplify the difference for visual demonstration, but during training, the

induced photoconsistency loss is kept lower.

Figure 4: Qualitative results of depth prediction on KITTI dataset, where the network is trained in an unsupervised manner.

Top row consists of target images and the bottom row consists of the corresponding predicted depth maps.

5. Experimental Evaluation

For the purpose of evaluation, we train and test our

method on the KITTI dataset [14] along with testing on

Cityscapes dataset [3], the model that is trained on KITTI

dataset. Both KITTI [14] and Cityscapes [3] are similar

datasets, comprised of sequences of stereo images, primarily

of streets and highways, along with the groundtruth depth

maps captured using velodyne laser sensors. With KITTI

dataset, we use the train/test split provided by Eigen et al. [9],

to train the network on 34 image sequences test it on 697

images, whereas for cityscapes we use the default test set pro-

vided by the [3]. Also, while training on KITTI, we use the

left and right images of the stereo sequences as independent
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Figure 5: (a) Target image and its estimated depth map, (b) left and right photoconsistency error, (c) Projected left and right

images (d) groundtruth left and right images.

θ Supervision Error Metric Accuracy Metric

Depth Pose Unsupervised Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [9] (Coarse) X 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [9] (Fine) X 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [11] X 0.202 1.614 6.523 0.275 0.678 0.895 0.965

(Ours - depth+photo.) X 0.1431 0.9741 5.3693 0.2131 0.8001 0.9373 0.9790

(Ours - depth+photo.+adv.) X 0.1355 0.8653 5.1736 0.2084 0.8183 0.9450 0.9802

(Ours - depth+photo.+adv.*) X 0.1204 0.7466 4.7560 0.1869 0.8486 0.9553 0.9848

(Ours - photo.*) X 0.2190 1.9758 6.3398 0.2730 0.7081 0.8668 0.9339

(Ours - photo. + adv.* ) X 0.2114 1.9797 6.1540 0.2636 0.7319 0.8977 0.9593

Godard et al. [15] X 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Garg et al. [13] (50m cap) X 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Zhou et al. [31](w/o exp. mask) X 0.221 2.226 7.527 0.294 0.676 0.885 0.954

Zhou et al. [31] X 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [31](50m cap) X 0.208 1.551 5.452 0.273 0.695 0.900 0.964

Kuznietsov et al. [29] X X(stereo) 0.113 0.741 4.621 0.189 0.875 0.964 0.988

Kuznietsov et al. [29] X(stereo) 0.308 9.367 8.700 0.367 0.752 0.904 0.952

Table 1: Comparison of Monocular depth prediction results on KITTI dataset [14]. (*-since our depth prediction is not up to

scale, we normalized ground truth and estimated depth maps [31]).

image sequences.

The quantitative evaluation of our algorithm is shown

in Table 1. We report the performance of our system us-

ing the standard metrics used in [9], for both supervised

and unsupervised setting. With supervised learning, we ob-

tain state-of-the-art results in comparison with other depth-

supervised learning techniques. For the task of depth predic-

tion, we obtain a Root Mean Squared Error (RMSE) of 4.75,

outperforming all other depth-supervised techniques, while

comparing equally with Kuznietsov et al. [29], who uses the

stereo information in addition to using ground truth depth

maps for supervision. Moreover, Kuznietsov et al. [29] uses

a more sophisticated and much deeper ResNet [6] with pre-

trained weights learned on ImageNet object classification

challenge [23], whereas we are able to achieve compara-

ble results by using a much less sophisticated autoencoders

with architecture similar to that of [31], without transfer-

ring weights learned from other larger datasets. Figure 3

shows qualitatively, results of depth maps computed using

our approach. It has to be noted that our unsupervised learn-

ing models (Table 1, rows 7-8) were trained only for 75K

iterations, which is why the numbers are slightly inferior

to Zhou et al., [31]. Our network trained using just photo-

consistency loss (Table 1, row 7) is coarsely our adaptation
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θ Supervision Error Metric Accuracy Metric

Depth Unsupervised Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al.et al. [31] (50m cap) X 0.267 2.686 7.580 0.334 0.577 0.840 0.937

(Ours-depth+photo.+adv. (50m cap)*) X 0.3934 4.6831 10.5380 0.4123 0.3518 0.6889 0.9047

Table 2: Comparison of Monocular depth prediction results on Cityscapes dataset [3] (* - model trained on KITTI dataset and

evaluated on cityscapes dataset, whereas results of [31] are from a model trained explicitly on [3].)

of [31]; the goal of this paper is to demonstrate that the use

of the proposed adversarial scheme improves the overall

depth prediction performance of the system in comparison

with the baseline (Table 1, row 8).

Also, for both unsupervised and supervised methods, the

estimated depth map is defined up to a scale, so, for the pur-

pose of evaluation, like [31], we normalize them by scaling

the predicted depth maps such that their medians match (Ta-

ble 1). In order to demonstrate the generalizable nature of our

architecture, we also test our method on the cityscapes [3]

dataset, while the training done solely on the KITTI dataset.

Despite being trained in a different dataset, our method per-

forms reasonably well in contrast to other methods that are

trained on cityscapes (or cityscapes + KITTI datasets). The

results are shown in table 2. Figure 4 shows qualitative

results of our method trained unsupervised; we use only

the photoconsistency and adversarial losses. We show con-

siderable improvement by training using adversarial loss

in contrast to its baseline which is trained using photocon-

sistency loss alone. We reported results for unsupervised

learning at the end of 40K iterations. It has to be noted that

the accuracy improves for unsupervised learning with more

iterations [31]. Also we observed that when using adversar-

ial loss, it takes slightly longer for convergence than usual,

as the adversarial loss penalizes the pose and depth networks,

ceaselessly, throughout the training process.

6. Conclusion

We extended a state-of-the-art deep learned depth and

pose prediction model and couple it with the adversarial

learning to harness the generative power of the GANs, sub-

sequently improving the depth and pose estimation accu-

racy. We further introduce a technique to generate context-

aware adversarial examples, that allows our method to

trick the discriminator to work against the generator and

at the same time indirectly minimizing the same objec-

tive as that of the generator. This proposed method is

shown to learn and perform well in both depth-supervised

and unsupervised setting, obtaining new state-of-the-art

results among depth supervised approaches, and compar-

ing favorably against other pose-supervised and unsuper-

vised techniques. Furthermore, the use of adversarial

loss for learning have been successfully demonstrated,

both qualitatively and quantitatively, to improve depth and

pose prediction accuracy, on two of the important bench-

marks.
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