
Supplementary Material: Deep Visual Teach and Repeat on Path Networks

Tristan Swedish
MIT Media Lab
tswedish@mit.edu

Ramesh Raskar
MIT Media Lab
raskar@mit.edu

Figure 1: Project view of the Unity evaluation environment.

1. Virtual Evaluation Environment
We make use of a virtual evaluation environment in or-

der to produce most of the results in the paper. The evalua-
tion environment was created in Unity, and consists of three
main components independent of the S3-3D-2D dataset [1].
We imported the textured mesh elements of the S3-3D-2D
dataset into Unity, developed an agent centric view and
added gravity and collision physics to the environments,
and then recorded ground truth pose information so that ob-
servations could later be labeled.

S3-3D-2D Rendering The use of the Unity Game En-
gine simplifies rendering of the textured mesh provided by
the S3-3D-2D. We utilized the standard global illumination
provided by the engine as well as a parallel ray light source
direction above the environment. This source casts shad-
ows by the scene geometry, and was configured directly
above the scene to simulate overhead lights in the scene.
Additional illumination could be added to the scene using
Unity’s tools, but we elected to use this one additional illu-
mination source for our experiments.

We also added a “Mesh Collider” to the imported mesh
so that any objects running in the physics engine would
properly collide with the surface. This ensured that the
game agent would not move through walls and that posi-
tioning was properly simulated even if movement controls

Figure 2: Captured frame from the evaluation environment.
The four panes are different cameras in the scene, enabling
multiple simultaneous viewpoints from the same agent. The
bar at the bottom of the screen prints ground truth values
that can easily be parsed by an OCR system.

indicated motion that may be impossible. This aspect of the
environment is critical for future closed loop simulation, but
also for ensuring collected data is as true to real data capture
as possible.

Agent View and Control Each observation was gener-
ated by a camera in the Unity engine with an idealized pin-
hole camera with intrinsic camera parameters matched to
the Galaxy Edge S6+ smartphone (with 46 degree vertical
field of view). Since the neural network in these experi-
ments only required an input resolution of 224× 224, mul-
tiple camera views were rendered in Unity at a resolution of
1920×1080, enabling four simultaneous cameras to be ren-
dered each frame. Each of these camera frames represents
deviations from the intended agent motion so that robust-
ness to geometrical offsets can be easily examined.

In the virtual environment, the agent has two axis of con-
trol: forward/backward and rotate left/right. Each control
input accelerates the agent to a maximum velocity along
each control axis, so movement is not instantaneous. The
maximum velocity was 0.5 m/s. For the purposes of data
collection in the paper, frame data was captured at 30 fps us-

1



ing a screen capture utility available in Ubuntu 16.04 called
“Kazam.”

Labeling and ground-truth Extraction After capturing
frame data with Kazam, each region of interest in each
frame was extracted for later processing. First, the obser-
vation pane corresponding to the desired monocular view
was extracted from the frame by cropping. Second, the bot-
tom ground truth pane was extracted and passed through
the Tesseract OCR engine [2]. The reason ground truth was
printed directly on each frame was to account for any la-
tency that may occur in any frame buffer extraction method
used by Kazam or other virtual screen capture methods.
Practically, it was difficult to ensure synchronization be-
tween captured frame timestamps and actual game state that
could be extracted from the Unity engine through alterna-
tive means (i.e. printed in a log).

2. Simulated Path Detail
Validation Routes The S3-3D-2D dataset consists of six
different indoor environments. Following one of the sug-
gested data splits, our validation set contains data from Ar-
eas 1,3, and 6. Since our method does not use any explicit
training data outside of its testing environment, all data ex-
amined in this paper use data collected from these areas.
Future work may utilize training data from the other areas,
facilitating standardized comparisons in the future.

Path following data was generated for each test area by
manually directing an agent through 6 paths. The agent was
driven along each path twice, the first path corresponds to
the “training” path used to generate the Path Following data,
and the second path was used to query the prediction. In all
cases the accuracy for predictions from the query path was
determined using ground truth. In total, this corresponded
to 18 unique paths for 36 total paths between three areas in
the S3-3D-2D dataset.

We show the paths used in Figure.

Lighting Perturbations In the experiments describing
lighting perturbations, the directional light in each scene
was modified to use a different RGB code and total scaling
factor (available as parameters in the Unity engine). These
changes are supposed to simulate overhead lights both on
and off, leaving only ambient global illumination. Below
we enumerate the lighting changes corresponding to these
states:

• Day (normal experiments): R:255 G:250 B:229
Scale: 0.8

• Dusk: R: 255 G: 220 B: 193 Scale: 0.5

• Night: R: 128 G: 150: B: 178 Scale: 0.0

Figure 3: Three different lighting condition used to show
invariance to lighting conditions. Top: Day, Middle: Dusk,
Bottom: Night.

The lighting difference is apparent in Figure 3, showing
how the perceived image changes dramatically for objects
in the scene that would normally be illuminated by overhead
lights. Objects primarily lit by global illumination (such as
the back wall), do not change as dramatically. This kind
of lighting perturbation is more consistent with real-world
scenes, and does not correspond to a simple channel-wise
gain change over the entire image.

3. Path-Following Evaluation Ground Truth

We show all the ground truth paths for each of the tested
paths in the virtual evaluation environment in Figure 4.

2



Figure 4: The evaluation paths used for the three areas. Top Left: Area 1, Right: Area 3, Bottom Left: Area 6. Color to index
order is: blue, orange, green, red, purple, yellow.

References
[1] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-

3D-Semantic Data for Indoor Scene Understanding. ArXiv
e-prints, Feb. 2017.

[2] R. Smith, D. Antonova, and D.-S. Lee. Adapting the tesseract
open source ocr engine for multilingual ocr. In Proceedings
of the International Workshop on Multilingual OCR, MOCR
’09, pages 1:1–1:8, New York, NY, USA, 2009. ACM.

3


