
 

 Abstract 
We propose a new image-based metric and explore its 
utility as a quality diagnostic for fingerprint image 
preprocessing. Due to the low quality of the latent 
fingerprint images, preprocessing is a common step in the 
forensic analysis workflow, and furthermore is critical to 
the success of fingerprint identification. Whereas 
fingerprint analysis is a well-studied field with a deep 
history, forensic image preprocessing is a relatively new 
domain in need of research and development of analysis 
and best practice guidance.  

Our new metric is based on an extension of the Spectral 
Image Validation and Verification (SIVV) [1]. SIVV was 
originally developed to differentiate ten-print or rolled 
fingerprint images from other non-fingerprint images such 
as face or iris images. Several modifications are required 
to extend SIVV analysis to the latent space. We propose, 
implement, and test this new SIVV-based metric to 
measure latent fingerprint image quality and the 
effectiveness of the forensic latent fingerprint 
preprocessing step. Preliminary results show that this new 
metric can provide positive indications of both latent 
fingerprint image quality, and the effectiveness of 
fingerprint preprocessing.1  

1. Introduction 
The performance of a fingerprint recognition system is 

heavily dependent on the quality of the collected 
fingerprint images. This poses a problem for latent 
fingerprints as their image quality is generally low due to 
the combination of difficulties in lifting the print from 
substrate, and image contamination by complex 
background noise. As a result, fingerprint structures such 
as minutiae and ridges may not be clearly visible to the 
human eye of a fingerprint examiner, nor to the 
computational eye of automatic matching systems. 

Due to the poor quality of latent fingerprint images, 
digital image preprocessing is generally a necessary step 
in the forensic analysis workflow [2] 2. Image 
preprocessing is performed to increase latent fingerprint 
image quality. Some of the common transformations 
                                                           

1 This work is an official contribution of the National Institute of 
Standards and Technology and not subject to copyright in the United 
States. 

2 This was formerly referred to as “image enhancement,” however the 
new term of art is “image preprocessing”, which is language used herein. 

employed in service of this goal include: color 
management, contrast adjustment, edge enhancement, 
background suppression, and noise filtration. 

The necessity and prevalence of latent fingerprint image 
preprocessing belies the fact that it is not a single activity 
but rather a complex process containing several sub-
varieties. For one, different image software systems use 
different implementations of even the most basic image 
functions. See, for example, the multiple implementations 
of RGB-to-grey-scale conversation. Even more, the same 
fingerprint may be enhanced in different ways as 
fingerprint examiners may have their own analysis style. 
Finally, the desired endpoints of an enhancement may be 
different and matching systems can have distinct criteria 
for their input. The overarching principle for image 
preprocessing is that the image transformations should 
neither add to, nor subtract from, fingerprint information 
contained within image. This guiding principle presently 
lacks analytical underpinnings.  

Although latent fingerprints are well and widely studied 
by forensic scientists [3], there has been little systematic 
analysis of the latent fingerprint image preprocessing. 
Latent fingerprint preprocessing is a relatively new area 
requiring research in order to be put on firmer foundations. 
It is especially critical to perform research of the 
fingerprint preprocessing image transformations, and to 
propose effective approaches or give general suggestions 
to guide the preprocessing workflow. Our objective is to 
research and develop metrics that characterizes the image 
processing performed in the course of forensic analysis of 
latent fingerprint images to serve as a bridge between 
theory and practice. 

The research community has developed several 
approaches and algorithms for fingerprint image quality 
[4] [5] and latent fingerprint enhancement [6]. Yoon, et al. 
[6] proposed a latent fingerprint enhancement algorithm 
requiring a manually marked region of interest (ROI) and 
singular points. The paper proposed a novel orientation 
field estimation algorithm, which fits the coarse 
orientation map to an orientation field model. 
Experimental results on the NIST SD27 Latent Fingerprint 
Database [7] indicate that, with the use of the proposed 
enhancement algorithm, the matching accuracy of the 
commercial matcher was improved.  
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In this paper, we focus attention on the preprocessing 
step absent mark-up of orientation fields and minutiae. We 
seek to compare the image qualities of before images —
original RGB images, directly obtained from forensic 
crime scene photography—and after images—the grey-
scale image after preprocessing—to evaluate the 
performance of the preprocessing procedure.3  

We base our new metric on an extension of the Spectral 
Image Verification and Validation analysis (SIVV) [1] to 
the forensic latent fingerprint preprocessing domain. The 
original SIVV algorithm was designed for image 
validation and verification of ten-print fingerprint images 
from live-scan devices, and for maintaining the fidelity of 
fingerprint image databases. SIVV can effectively 
differentiate the non-fingerprint input from the flat or 
rolled fingerprint input4. As the periodic structure of the 
fingerprint ridges and furrows is a level one feature, SIVV 
is potentially applicable to the latent fingerprint 
preprocessing domain. However, latent fingerprints are 
largely corrupted by complex background noise and the 
ridge structures are not clearly visible. Furthermore, latent 
images are of poor quality and the fingerprints can be 
incomplete. In summary, the SIVV feature analysis as 
originally developed cannot be directly applied to the 
latent fingerprint images.  

We implemented several modifications to adapt SIVV 
to latent fingerprints to resolve the above-mentioned 
difficulties. In order to suppress confounding background 
noise, the following refinements are proposed: in the 
spatial domain, the algorithm focuses on the region of 
interest of a fingerprint; in the frequency domain, the 
algorithm constrains the SIVV peak to be within a limited 
range, which can be inferred by the fingerprint ridges’ 
pixel distances on the latent fingerprint images. The 
resulting metric is still based on the intrinsic Fourier 
spectral properties of latent fingerprint images. The new 
latent fingerprint quality metric provides the quantitative 
measurement to characterize the quality of the latent 
fingerprint images and measures the effectiveness of the 
latent fingerprint preprocessing process.  

2. Fingerprint quality measurement metric 
The objective of most digital preprocessing technology 

applied to latent fingerprint images is to show more 
contrast between ridges and furrows, allowing for clearer 

                                                           
3 Note, we are not aware of a database of fingerprint images suitable 

for the present analysis. The latent fingerprint images shown here were 
obtained in collaboration with Mathew Schwarz of Schwarz Forensics 
and David “Ski” Witzke of Foray Technologies. A more extensive, 
public available collection of images would be invaluable for future work 
in this area. 

4 The experiment shows 10% equal error rate (EER, which is where 
false accept rate and false reject rate are the same,) for differentiating the 
fingerprints mixed with a variety of non-fingerprint images in [1]’s 
application domain. 

identification of minutia points. The ridges and furrows 
appear as periodic structures in the fingerprint image. This 
periodicity manifests as spikes in the frequency spectrum 
of the image. Such a signal (spike) in the frequency 
domain is a good metric to measure the image quality of 
the ridges and furrows. Thus, we are going to measure the 
latent fingerprint quality based on it.  

2.1. SIVV on flat/ten-print or rolled fingerprint 
SIVV analysis derives from the periodicity of ridges and 
furrows [1]. For completeness, first we summarize the 
SIVV algorithm (for the detailed presentation, please refer 
to the original report [1]). The algorithm proceeds as 
follows: 
Step 1. Image Windowing 
One dimensional Blackman window is given in the 
following equation: ݓሺ݊ሻ ൌ 0.42 െ 0.5 cos ൬ ܰ݊ߨ2 െ 1൰ ൅ 0.08 cos ൬ ܰ݊ߨ4 െ 1൰ 0 ݁ݎ݄݁ݓ (1)  ൑ ݊ ൑ ܰ െ 1 
The length of the one dimensional window is N. Given the 
image with N rows and M columns, the two dimensional 
Blackman Window is the tensor product of windows of 
length N and M. When the 2D Blackman Window is 
applied to the fingerprint image, the window is applied on 
the center of the fingerprint texture and the size is adapted 
to the size of the fingerprint image.  
Step 2. Discrete Fourier Transform (DFT) ܪሺݑ, ሻݒ ൌ ෍ெିଵ

௫ୀ଴ ෍ exp ቂ2ݕ݅ߨ ݒܰ ቃ exp ቂ2ݔ݅ߨ ቃܯݑ ݄ሺݔ, ሻேିଵݕ
௬ୀ଴  (2) 

Here ݑ and ݒ denote frequency components in the ݔ and ݕ 
directions ranging from ିெଶ  to ெଶ  and ିேଶ  to ேଶ  respectively.  
Step 3. 2D (normalized) Log Power Spectrum 
The 2D power spectrum is computed as: ܲሺݑ, ሻݒ ൌ ,ݑሺܪ|  ሻ|ଶ (3)ݒ

Figure 1: SIVV algorithm. 
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Depending on the implementation, the output of this step 
can be normalized or not-normalized; that is 10 כ ,ݑሺܲ݃݋݈  ሻ (4)ݒ
Or  10 כ ݃݋݈ ܲሺݑ,  ሻܲሺ0,0ሻ  (5)ݒ

Step 4. 2D Polar Transform of Power Spectrum 
The 2D power spectrum is represented in polar 
coordinates using the transformation: ߩ ൌ ଶݑ√ ൅ ଶܯ√ଶݒ ൅ ܰଶ  (6) ߠ ൌ ଵି݊ܽݐ ቀݑݒቁ (7) 
We use ܲሺߩ,  ሻ to represent the 2D results of the polarߠ
transformation, where ߩ is divided by the maximum 
dimension of the input image N, normalized to 0 and 0.5 
cycles/pixels. 
Step 5. 1D Normalized Polar Transform 
Finally, the 1D polar transform is computed as the sum 
over angles of: ܲሺߩሻ ൌ ෍ ܲሺߩ, ሻଵ଼଴ߠ

ఏୀ଴ ߩ  ൌ 0, …  (8)    ݏ݈݁ݔ݅݌/ݏ݈݁ܿݕܿ       0.5,

The normalized 1D polar curve is: 
 

ேܲሺߩሻ ൌ ܲሺߩሻܲሺ0ሻ ߩ ൌ 0, …       ݏ݈݁ݔ݅݌/ݏ݈݁ܿݕܿ       0.5,
(9) 

The algorithm schematic is shown in Figure 1. 

2.2. Motivation of our approach 
The original SIVV feature performs well on flat/ten-

prints or rolled fingerprints, which are captured by inking 

methods or live scan devices in an attended mode. In such 
contexts, background noise is minimized during the 
capture, and the contrast between the ridges and furrows is 
relatively high. As image quality is generally controlled 
very well, the fingerprint image ridges and valleys are 
clear and computer readable. In such cases, the periodic 
structure of the ridges and valleys can be captured by 
Fourier spectrum analysis in the frequency domain. It 
follow that SIVV performs well when a fingerprint image 
is of good quality. 

Figure 2: An example of the SIVV feature on a latent
fingerprint image (courtesy of SIVV software package in NBIS
[8]), the original image is G001L2U.tif, ROI: [206 97 514 417]).

(a)  Original image (b)  Cropped image (c) After Blackman 
window 

(d) 2D power spectrum (e) 2D log polar 
spectrum 

(f) 1D log polar 
spectrum 

1-b  1D log polar spectrum

Figure 3: Examples of the SIVV feature on a latent
fingerprint image (courtesy of [8]: the implementation convert
RGB image to gray-level image before applying the core SIVV
algorithm. We show RGB images for better illustration purpose, and
we also want to differentiate before (RGB) from after (gray-level)
images. ). 

1-a. Original image (160)

2-a. Original image (158) 2-b  1D log polar spectrum

3-a. Original image (165) 3-b  1D log polar spectrum

4-a. Zoom in the background 
noise of (2-a) 

4-b. Zoom in the background 
noise of (3-a) 
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However, latent fingerprints are generally smudgy and 
blurred. They often capture only a small finger area, and 
may have large nonlinear distortion due to pressure 
variations. And there may be terrible unavoidable 
background noise which is extremely hard to model 
because of the large variety of background colors, textures 
etc. When background noise is strong, the fingerprint 
ridges and furrows’ peak spike is easily mixed up or 
embedded by the signals of other periodic structures of the 
images, such as with the textile fabric, or any other 
patterned noises.  

Figure 2 shows an example of original SIVV 
(implementation courtesy of [8]) on a latent fingerprint 
image in the NIST Database 27 [8]. It shows that the 
SIVV spike is largely weakened due to the fingerprint 
incompleteness and from being submerged in the 
background noise. 

Figure 3 shows the examples of original SIVV results 
(implementation provided by [8]) on the latent fingerprint 
images in our forensic latent fingerprint preprocessing 
dataset. It shows that the original SIVV implementation 
cannot be directly applied on latent fingerprint images. In 
the first case, 1-a, 1-b, and 2-a, 2-b, there is no obvious 
spike at all. In the third case, 3-a, 3-b, the detected peak 
(red arrow) actually does not represent the fingerprint 
ridges and furrows; it represents the texture of the 
background, which is shown in 4-a and 4-b (the detailed 
tiny grids on the images). The actual fingerprint ridge peak 
is shown by the green arrow in 3-b.  

Given a poor quality image with partial fingerprint or 
large background noise, the SIVV spike is weakened and 
submerged into the background noise. Generally, SIVV 
cannot be directly applied to the latent fingerprints in most 
cases.  In this paper, in order to identify, enhance, and 
recover the SIVV spike, we proposed two approaches: 
Region of Interest (ROI) to focus only on the local region 
which contains fingerprint signal in spatial domain; and 
the peak location constraint to focus on the small window 
which may contain the ridge and furrow spike in the 
frequency domain. 

2.3. Blackman window 
The objective of the Blackman window is to suppress the 
noise outside of the fingerprint region. Due to the latent 
fingerprint’s location, orientation, and shape (partial 
fingerprint prints) changes, we add more flexibility in 
application of the Blackman window filter to the image. 
First, we can control the shape of the Blackman Window 
using more general equations: ݓሺ݊ሻ ൌ 1 െ 2ߙ െ 12 cos ൬ ܰ݊ߨ2 െ 1൰ ൅ 2ߙ cos ൬ ܰ݊ߨ4 െ 1൰ ૙ ࢋ࢘ࢋࢎ࢝ (10)  ൑ ࢔ ൑ ࡺ െ ૚ 
α is a variable which decides the shape of the Blackman 
bell. The unqualified term Blackman window in the 

previous equation Eq. (1) refers to α = 0.16 (red curve in 
Figure 4).  Figure 4 shows the shape given different α 
values. When α increases, the bell shape becomes narrow, 
and the boundary signal in images is suppressed; when α 
is decreased, the bell is wider, and the boundary signal in 
the image widow is included; when α is negative, the bell 
becomes even wider. We suggest utilizing a monotonous 
curve (from the center of the curve to the boundary of the 
window). The green and dark purple curves in Figure 4 are 
not recommended (the values are not monotonous and 
decrease from the center to the tails of the curve).  

We also include additional parameters to control the 
location and orientation of the Blackman window. In 
practice, if the fingerprint boundary contains large noise, 
we may choose a narrow shape to reduce the noise effect: 
if the fingerprint boundary is clear, we may choose a wide 
shape to increase more ridge furrow patterns and to 
increase the SIVV feature strength. Figure 5 contrasts the 
following SIVV results: no Blackman window (Figure 5-
a), original Blackman window (Figure 5-b) and a 
customized Blackman window (Figure 5-c). It shows that 
the regular Blackman window does help to strengthen the 
fingerprint signal in some cases. The customized 
Blackman Window has more flexibility to select the best 
region, which is very useful to latent fingerprint image 
analysis because the location, orientation, and portion of 
the print vary greatly in latent fingerprints. 

2.4. Region of Interests (ROI) 
Fingerprint images often include the background noise 
where the image was collected. The noise can be classified 
into two types: the noise in the area inside the actual 
fingerprint region, and the noise in the area outside the 
actual fingerprint region. It is very difficult to remove the 
noise in the area inside the actual fingerprint region. 
However, it is relatively easy to remove the background 
noise in the area outside of the actual fingerprint region 
and is important to do so because this region does not 
provide usable information but may contribute a large 
amount of noise that will submerge the fingerprint SIVV 

Figure 4: General Blackman Window given different α value. 
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feature in the frequency domain. We first remove it from 
the spatial domain before we calculate the FFT features in 
the frequency domain. 

Because SIVV is not invariant to translation and is 
sensitive to noise, the spectral analysis must be focused on 
a region of interest (ROI) with significant fingerprint 
patterns; that is, the image region which contains the most 
fingerprint information. Figure 5-d shows the comparison 
of SIVV curves using the whole image and the ROI. The 
SIVV spike (indicated with arrow) of the ROI image is 
much stronger than the SIVV spike of the whole image. 
The example shows that focusing on the ROI helps to 
recover the SIVV feature from the noise background.  

The signal strength of the SIVV peak is mainly related 
to two factors. One is the frequency power of the finger 
print ridge and furrow, which is related to the area size of 
the fingerprint region; that is the larger area includes more 
ridges and furrows and thus the stronger frequency power. 
The second factor is the signal/background noise ratio; 
that is, the larger the signal/background noise ratio, the 
stronger the SIVV signal peak. Because of these factors, 
and in order to obtain the stronger SIVV signal, we should 
keep the background noise out of the ROI as much as 
possible. The more ‘pure’ the ridge and furrow signal, the 
stronger the signal. In summary, when determining the 
actual fingerprint ROI image, one must implement a trade-
off between the size of the fingerprint region and the 
signal/noise ratio inside this region. Choose too small a 
region and the SIVV signal will be weak; choose too large 
a region such that it includes background noise and the 
SIVV signal will be buried. 

2.5. Peak Location Constraint 
Empirical data has shown frequency filtering to be an 
effective way to suppress background interferences 
associated with fingerprint evidence [6]. In the SIVV 
computation process, to extract the frequency information 
associated with an image, a 2D-Fast Fourier transform 
(FFT) can be computed. This computation will decompose 
a complicated spatial signal into individual frequencies, 
revealing both power spectrum and phase information. 
Under favorable circumstances, the frequencies associated 
with the friction ridge detail in the print will be separable 
from those frequencies associated with the interfering 
background features. Selective filtering of frequencies 
associated with fingerprint information may filter out the 
background interference and correctly locate the SIVV 
peak.  

A fingerprint’s SIVV frequency peak does not appear 
randomly in the frequency spectrum. The SIVV peak 
reflects the fingerprint’s ridges and furrows’ frequency. As 
we know, the physical distance between everyone’s 
fingerprint ridges follows a certain statistical distribution 
in a certain range. If the image resolution of the image 

sensor or scanner is given, the fingerprint ridges’ pixel 
distances on the image in the spatial domain are fixed in a 
certain range. This range is directly related to the location 
of the SIVV fingerprint peak in the frequency domain. 
Figure 14 in [1] shows this concept. In the figure, the 
frequency locations of the SIVV peaks of the fingerprint 
image (1) mostly fall in a small range (between 0~0.15), 
which suggests that the fingerprint frequency of the SIVV 
peak can be constrained in a certain range in the frequency 
domain. Figure C-4, Figure C-5 and Figure C-6 in [1] also 
show the same concept, where most of the peak frequency 
locations of the SIVV feature in SD27 dataset also fall in a 
certain range, which shows a strong indication that we can 
constrain the SIVV peak location.  

We ran a small experiment and verified that fingerprint 
ridges and the furrows’ peak are directly related with the 
pixel distance between the strips (ridges) on the image, 
which means that in the latent fingerprint SIVV spectrum, 
under favorable circumstances, given the fingerprint 

a-2.SIVV on whole image

Figure 5: The comparison of SIVV curves using the whole 
image (051e), traditional Blackman window, customized 
Blackman window, and ROI. 

(a) a-1. Original image 

(d)  d-1. ROI image 
[698 62 1519 589] 

b-2. Blackman window 
on whole image 

d-2. Blackman window 
on ROI image 

(b) b-1.Blackman 
Window

b-3. SIVV on b-2

(c) c-1. Customized 
Blackman Window 

c-2. Image after 
customized 
Blackman Window 

c-3. SIVV on c-2

d-3. SIVV on d-2
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ridges’ distance range we can estimate the fingerprint 
frequency peak range. If there is a peak that is far away 
from this range, we can consider the peak generated by the 
background texture instead of the fingerprint (as shown by 
example 2 and 3 in Figure 3). In this way, the algorithm 
can selectively filter out the background interference to 
remove the fake peaks and correctly locate the SIVV peak.  

Figure 6 shows an example where the original image 
SIVV spectrum is shown in the first row. The strongest 
peak is around 0.15 cycles/pixel (the red arrow in Figure 
6-3). However, zooming in and looking closely at the 
details on the image in Figure 6-2, we can clearly see the 
grid texture in the background. The strong peak around 
0.15 is actually not the fingerprint peak, it is the peak 
representing the frequency of the background texture. 
According to the fingerprint ridge distance in the image, 
the possible range for the fingerprint SIVV peak is 
indicated by the blue bar. The actual SIVV peak is the 
weak peak in the blue bar (the green arrow in Figure 6-3). 
The second row in Figure 6 gives the verification in 
another way. After the preprocessing process the 

fingerprint signal is strengthened and the background 
noise is weakened. In this case, the SIVV peak located 
inside the predicted bar is the strongest peak while the 
background texture’s peak is weakened and becomes 
smaller.   

2.6. The comparison of before and after 
images on fingerprint preprocessing 

In order to quantitatively measure the effectiveness of 
the preprocessing procedure, we proposed an algorithm, 
Fingerprint Quality Measurement (FQM) to compare the 
fingerprint image quality of before and after images. The 
SIVV curves of both before and after images are shown in 
Figure 7. It is obvious that the after image’s SIVV peak 
(red curve) is stronger than the before image’s SIVV peak 
(blue curve). Our objective is to propose an algorithm that 
can quantitatively compare the difference of the two 
peaks, so we can give a quantitative measurement of the 
effectiveness of the preprocessing process. 

Figure 8 shows the proposed algorithm to compare the 
two images (before and after). Differing from the previous 
SIVV algorithm, we introduce several modifications to 
ensure the two SIVV curves are quantitatively 
comparable.  Firstly, because the values of the direct 
current components (DC in Fourier spectrum) of the 
before and after images are different, the normalization 
step is removed from the new algorithm and replaced by 
the alignment step before the last comparison step. In 

DFT 
Before Image 
ROI Polar 

Trans. 10*log(P) 

2D power 
spectrum 

2D polar  
spectrum

1D log polar 
spectrum

෍ ࣂࡼ

DFT After Image  
ROI 

Polar 
Trans. 10*log(P) 

2D power 
spectrum 

2D polar 
spectrum

1D polar 
spectrum

෍ ࣂࡼ

alignment 
comp. results
in log scale 

1D polar 
spectrum

compare 
1D log polar 
spectrum

Figure 8: The algorithm to compare the before and after images using fingerprint quality measurement metric. 

Figure 7: The comparison of SIVV curves of before and 
after images. 

1. Before Image 2. After Image 3. SIVV of before 
and after Images 

Figure 6: An example of SIVV peak location constraint. 
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addition, in order to make the height of the peaks 
comparable, the algorithm performs the polar 
transformation before the logarithm calculation5. The 
logarithm expression is mainly for visualization. We aim 
to directly compare the differences of the fingerprint’s 
ridge signal using power spectrum instead of logarithm 
power spectrum.  

Figure 9 shows an example of the comparison.  The 
proposed algorithm takes the before and after image pair 
as input (1 and 2 in Figure 9), then the user selects the 
fingerprint region ROI (3 and 4 in Figure 9). Figure 9-5 
shows the comparison of SIVV on the before and after 
ROI. Figure 9-6 shows the proposed algorithm without the 
alignment and Figure 9-7 shows the proposed algorithm 
after the alignment.  

Based on the proposed algorithm, we can further define 
the metrics which can quantitatively measure the 
success/effective of the preprocessing process. For 
example, Figure 10 shows the relative differences of the 
peak height (Δh = hafter-hbefore), peak width (Δw = wafter-
wbefore), and peak area (Δs = safter -sbefore).  

3. Experiment results 

3.1. Latent fingerprint preprocessing dataset 
We have a latent fingerprint preprocessing training 

dataset for our study. In the dataset, there are six types of 
latent fingerprint images: Bi-Chromatic mag powder 
developed prints, Bi-Chromatic powder developed prints, 
black ink pad on colored background, Ninhydrin 
developed prints, silver mag powder developed prints, and 
white powder developed prints. We use 39 forensic latent 
fingerprint image pairs in our experiment. Each pair has 
before image (RGB) and after image (grey).  Each image 
                                                           

5 The main difference can be expressed in the following mathematic 
way: logሺܲ1 ൅ ܲ2ሻ versus log ܲ1 ൅ log ܲ2 ൌ logሺܲ1 כ ܲ2ሻ. In the 
comparison, we prefer ܲ1 ൅ ܲ2 instead of  ܲ1 כ ܲ2.  

contains at least one latent fingerprint. The background for 
some images is very noisy. The fingerprint ridges and 
furrows are in low contrast and very blurry. Some images 
only contain a partial fingerprint image (less than ¼ 
fingerprint.). 

3.2. ROI and ridge distance specification 
Due to the poor quality of the latent fingerprints, 
automatic ROI extraction is a very challenging problem. 
In the experiment, we implemented an intuitive interactive 
graphical user interface to manually select ROI on the 
displayed input image. The user can click to adjust the top 
left corner of the ROI window and drag the cursor until 
the window is of the proper size. In the future, we may 
explore the use of a polygon to enhance the accuracy. In 
addition, we may also propose a semi-automatic ROI 
extraction method where, given the center of the 
fingerprint region and the radius of an ellipse which 
roughly covers the ROI, the algorithm automatically finds 
the maximum of the strongest SIVV signal peak and 
locates the accurate boundary of the ellipse.  

We also created a user interface that allows the user to 
draw line segments (a user can draw the segment in the 
dense ridge area and the sparse ridge area respectively). 
The algorithm will automatically find the corresponding 
peak range in the frequency domain.   

In the experiment, we used the following procedure: 
First, we manually select the region of interest. Then in the 
interested region, we choose the ridges with big gaps and 
draw several line segments from one ridge perpendicular 

Figure 11: SIVV curves for some images using the proposed 
algorithms (ROI with peak location constraint).

dB 

Cycles/pixel

dB 
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Figure 10: Proposed metrics to compare two latent 
fingerprint image qualities.

Figure 9: Evaluation of the enhancement procedure. 
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to itself to another adjacent ridge, so the algorithm can 
measure the approximate distance between those two 
ridges. In the same way, we can choose the ridges with 
small gaps to input the approximate smallest distances 
between ridges. In the experiment, our maximum distance 
can be as large as twice the fingerprint ridge distance or as 
small as half of the fingerprint ridge distance. As long as 
the background noise’s frequency is different than the 
fingerprint ridges’ frequency, the algorithm works fine.  

3.3. Comparisons using proposed procedures 
We performed five experiments on our latent fingerprint 

enhancement dataset. If the correct SIVV peak is detected, 
we count it as true positive. We calculate the true positive 
rate (TPR): TPR = True Positive (TP) / (True Positive + 
False Negative). The five experiments were:  
1. The SIVV package provided by NBIS [8], using the default 
option (all parameters are in default values). In this setting, the 
algorithm cuts the image first, then applies the Blackman filter, 
and calculates SIVV curve.  
2. The SIVV package provided by NBIS, using the whole image 
option (all other parameters are in default values). 
3. The SIVV package provided by NBIS, with a resized the input 
image (half of original width and height) (all other parameter are 
in default values). In this setting, the algorithm cuts the image 
first (different region from experiment 1), then applies the 
Blackman filter, and calculates SIVV curve. 
4. A modified SIVV package with manual selection of ROI using 
a GUI interaction interface (all other parameters are in default 
values). 
5. A modified SIVV package with manual selection of ROI, 
manually input the ridge distances by line segments using a GUI 
interaction interface (all other parameters are in default values). 

The experiment results are shown in Table 1. It is 
clearly shown that the successful detection rates of the 
after images (the values in the second row) are much 
higher than the before images (the values in the first row), 
which indicates that the preprocessing process is 
extremely useful for some latent fingerprint images.  

Table 1: The comparison of different implementations 
TPR = 
TP/(TP+FN) 

Original 
image 
Default 
option 

Original 
image 
Whole 
option 

Resize 
image 
Default 
option 

Original 
image 
GUI 
ROI 

GUI ROI 
Peak loc. 
Constraint 

Before 36% 33% 62% 79% 85%  
After 64% 72% 82% 87% 92%  

Figure 11 shows SIVV curves for some images using 
the proposed algorithms (ROI with peak location 
constraint). It shows that the fingerprint signal (SIVV 
peak) is much stronger after the preprocessing process. In 
addition, it is also shown that the proposed approach 
performs well in the measurement of the latent fingerprint 
image’s quality. 

4. Discussions and Future Work 
The research and study of the forensic latent fingerprint 

preprocessing using computational methods is still in an 
early stage. There is considerable further research and 
study required to provide a detailed scientific, systematic 
methodology to study latent fingerprint image 
preprocessing.  
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