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Abstract

In this work, we have proposed an Augmented Linear
Discriminant Analysis (ALDA) approach to identify identi-
cal twins. It learns a common subspace that not only can
identify from which family the individual comes, but also
can distinguish between individuals within the same fam-
ily. We evaluate the ALDA against the traditional LDA
approach for subspace learning on the Notre Dame twin
database. We have shown that the proposed ALDA method
with the aid of facial asymmetry features significantly out-
performs other well-established facial descriptors (LBP,
LTP, LTrP), and the ALDA subspace method does a much
better job in distinguishing identical twins than LDA. We
are able to achieve 48.50% VR at 0.1% FAR for identify-
ing family membership of identical twin individuals in the
crowd and an averaged 82.58% VR at 0.1% FAR for verify-
ing identical twin individuals within the same family, a sig-
nificant improvement over traditional descriptors and tra-
ditional LDA method.

1. Introduction

Identical twins are genetically determined to have highly

similar appearance. The state-of-the-art facial recognition

algorithms and feature descriptors aim to maximize the sim-

ilarities among all the facial images from one subject, and at

the same time maximize the dissimilarities among different

subject classes. But they will run into troubles in the case of

identical twins since images from different subject classes

have highly similar images. Even though identical twins

have highly similar faces, we believe that the micro asym-

metry features can still be very different between identical

twins. As shown in Figure 2, photographers have heuristi-

cally shown that the human face is asymmetric [2]. If one

side of the face is mirrored to synthesize a new face, the mir-

rored look using left side appears to be very different from

the one using the right side of the face. From this novel
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Figure 1. Idea of the proposed ALDA method, where we maximize

the distance between family mean μi and the global mean μ (black

dash lines), as well as the distance between individuals mean face

μ+
i and μ−i within each family (colored dash lines).

viewpoint, we will investigate the facial asymmetry biomet-

ric and its performance in distinguishing identical twins.

The two major contributions are: (1) We have developed

a novel subspace learning method called Augmented Lin-

ear Discriminant Analysis. It learns a common subspace

which succeeds in both determining the family membership

of test individual and the actual identify within the family.

(2) We have constructed facial asymmetry features that cap-

ture the minute difference between identical twins and such

features yield much better identification performance than

many well-established facial descriptors like local binary

patterns, local tertiary patterns, and local tetra patterns.

Rest of this paper is organized as follows: Section 2 lists

several prior work on twin recognition. We detail the pro-

posed method in Section 3. In Section 4, various facial

asymmetry features are described. Facial alignment method

is introduced in Section 5. Section 6 gives a brief descrip-

tion of the database. Section 7 details the identification and

verification experiments respectively. Finally, we present

some conclusions of our work in Section 8.
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Figure 2. Face synthesis by mirroring one side of the face [2]. Faces do look very different when mirroring from different side.

2. Related Work

The first study on identical twin biometrics can be dated

back to Sun et al. [19] in 2010. They collected multiple

biometric traits (fingerprint, face, and iris) of 66 pairs of

twins (51 pairs of identical/monozygotic twins and 15 pairs

of non-identical/dizygotic twins) at the fourth Annual Fes-

tival of Beijing Twins Day in China. Their multi-modal ex-

periments show that face recognition (using Cognitec Face-

VACS system) performs the worst in distinguishing identi-

cal twins compared with fingerprints and iris. However, the

low performance of face recognition system may due to the

non-ideal image quality. The facial images are captured us-

ing a USB camera with VGA resolution under non-uniform

background and some illumination variations. The subjects

are mostly teenagers (average age being 16.8) which makes

identical twin recognition a harder problem since the older

they are, the more distinguishable facial patterns will show.

Phillips et al. [14] carried out by far the most extensive

investigation of face recognition performance on identical

twins. The experimental dataset consists of images taken

from 126 pairs of identical twins (252 people) on the same

day at the Twins Days Festival [3] in Twinsburgh, Ohio in

August 2009 as well as 120 pairs (240 people) at the same

event one year apart in August 2010. Among all the sub-

jects collected, 24 pairs (48 people) came both year. They

evaluated the face recognition performance using three of

the top submissions to the Multiple Biometric Evaluation

(MBE) 2010 Still Face Track [1] in order to measure the

performance of the state-of-the-art commercial face recog-

nition systems on distinguishing twins. The commercial

face recognition technology providers are [7]: (1) Cog-

nitec, (2) Dalian University of Technology, (3) L1 Identity

Solutions, (4) NEC, (5) Neurotechnology, (6) PittPatt, (7)

Sagem, (8) Surrey University, (9) Toshiba, (10) Tsinghua

University. The results showed that the best performance

on distinguishing identical twins would require ideal con-

ditions (minimum time lapse/same day collection, studio

lighting conditions and neutral expression), and when the

conditions are less ideal (with a time lapse/one year apart

collection, illumination variations, and expression varia-

tions), the performance significantly drops. They also found

out that gender does not affect the performance while age

does. Their results demonstrated that it is easier to distin-

guish identical twins over 40 years old than under.

Srinivas et al. [18] investigated the usefulness of facial

marks as biometric signatures in distinguishing identical

twins. They defined and characterized a set of facial marks

(e.g. mole, freckle, birthmark, scar, pimple and so forth)

that are manually annotated by three observers. Then they

characterized twin face images using geometric distribution

of annotated facial marks along with their respective cate-

gories using weighted bipartite graph matching technique.

Their experiments on twin dataset of 295 images from 157

unique subjects (Twins Days Festival [3] in Twinsburgh,

Ohio) showed that the position of certain facial marks ap-

pears to be similar for twins.

Biswas et al. [6] explored human capacity to distin-

guish between identical twins. They conducted experiments

with different viewing times and imaging conditions, on

186 twin subjects collected from Twins Days Festival [3].

Their study showed that humans can perform the task sig-

nificantly better if they are given sufficient time and are

prone to make more mistakes when images differ in imag-

ing conditions. The response from observers in their ex-

periment suggested that humans look for facial marks such

as moles, freckles, scars, etc.. to make their decision and

perform worse when the images lack such marks.

More recently, Pruitt et al. [15] adopted three commer-

cial face matchers (Cognitec, VeriLook, and PittPatt) and

a baseline matcher employing Local Region PCA, to dis-

tinguish between identical twins. The images of subjects

were acquired at the Twins Days Festival [3] in 2009 and

2010 with different expressions (neutral and smiling). They

carried out extensive experiments (5,800 images from 2009

and 1,635 images from 2010) using aforementioned face

matchers and examined three covariates (expression, light-

ing and eyewear). They concluded that the most significant

variables that can affect recognition systems seems to be

expression and lighting variations. They also claimed that

the glasses would not affect much since the eye region is

masked in their experiments.

Klare et al. [9] studied the distinctiveness of different

facial features (multi-scale local binary patterns, scale in-

variant feature transform and facial marks) to distinguish

between identical twins. The experimental results indicated

features that perform well in distinguishing identical twins

are sometimes inconsistent with the features that best dis-
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tinguish two non-twin faces. They analyzed different facial

components, i.e. eyes, eyebrows, nose and mouth, with the

aid of Active Shape Model and PittPatt Face Recognition to

detect and align facial landmarks. They adopted the random

sampling linear discriminant analysis (RS-LDA) method for

discriminative subspace learning and later modified to be

Twin RS-LDA that maximizes the difference energy be-

tween twin pairs as opposed to the difference energy be-

tween all pairs of subjects. Their evaluation was carried

out on 87 pairs of identical twins (174 subjects) from Twins

Days Festival [3]. Their research showed that the saliency

of facial features alters from standard face recognition tasks

to distinguishing between identical twins and by fusing face

matching scores, more twins can be distinguished.

In this work, however, we tackle the problem from a dif-

ferent and novel point of view: the facial asymmetry analy-

sis between identical twins. With the aid of proposed sub-

space modeling method called augmented linear discrim-

inant analysis, we focus on comparing and analyzing the

facial asymmetry features against traditional descriptors un-

der the scenario of identifying and verifying identical twins.

3. Augmented Linear Discriminant Analysis
We have proposed the Augmented Linear Discriminant

Analysis (ALDA), a new approach for discriminant sub-

space learning, especially for identifying identical twins.

We start by reviewing the basics in Fisher Linear Dis-

criminant Analysis (LDA). LDA [5] aims to find the pro-

jection such that the ratio of the between-class scatter and

the within-class scatter is maximized. The between-class

scatter SB and the within-class scatter SW are defined as:

SB =
C∑
i=1

Ni(μi − μ)(μi − μ)� (1)

SW =
C∑
i=1

∑
xk∈Ci

(xk − μi)(xk − μi)
� (2)

where μi is the mean image of class Ci, μ is the mean im-

age of all the images, C is the total class number, and Ni is

the number of images in class Ci.

The optimal projection w is chosen such that the Fisher

criterion is satisfied, i.e., the ratio of between-class scatter

and within-class scatter is maximized:

w∗ = argmax
w

w�SBw

w�SWw
(3)

where {wi|i = 1, 2, ...,m} is a set of generalized eigenvec-

tors of SB and SW, corresponding to the m largest general-

ized eigenvalues {λi|i = 1, 2, ...,m}. The upper bound of

m is C − 1, where again C is the total number of classes.

This generalized eigenvalue problem can be shown as:

SBwi = λiSWwi =⇒ S−1
W SBwi = λiwi (4)

This only holds when SW is invertible. However, in the face

recognition problem, SW is very often singular due to the

fact that the rank of SW is at most (N −C), where N is the

total number of training images, which is much smaller than

the image dimension. To overcome this problem and make

LDA work, a separate PCA step is applied to reduce the

dimensionality of the images to (N −C) and then standard

LDA is executed to reduce the dimension to (C − 1).
LDA maximizes the between-class scatter SB, which es-

sentially tries to push each class mean μi to be as far from

the global mean μ as possible. The within-class scatter is

supposed to be minimized, which means that all the data

points from the same class should be as close to the class

mean as possible, which explains the compactness of each

class. However, in the case of identifying identical twins,

the discriminant subspace learned should be capable of: (1)

identifying from which family this subject xi comes, and

(2) identifying the individual within that particular family.

To simultaneously accomplish the two tasks, we aug-

ment the LDA objective function as follows:

J(w) = max
w

w�(SB + S′B)w
w�SWw

(5)

where S′B is defined as:

S′B =

C∑
i=1

Ni(μ
+
i − μ−i )(μ

+
i − μ−i )

� (6)

The μ+
i and μ−i denote the mean of two individuals from

the same family respectively. The idea of ALDA is depicted

in Figure 1, where we not only want to push each family

away from the global mean, but also, push each individual

in the same family to be far from each other. In other words,

we want to maximize the totally length of the black dash

lines as well as all the colored dash lines. The solution to

the new optimization is again obtained by the generalized

eigen-value problem with augmented scatter matrix.

4. Facial Asymmetry Features
In this section, we describe several facial asymmetry fea-

tures that are later proven to be capable of distinguishing

between identical twins and yield better classification re-

sults than traditional facial descriptors: local binary patterns

(LBP) [13], local tertiary patterns (LTP) [20] and local tetra

patterns (LtrP) [12]. The final asymmetry features are built

by concatenating the following individual asymmetry fea-

tures to describe the asymmetry level of a human face.

Kurtosis We can view each row of the face image as

one random variable xi which takes many different values

according to that particular row, then the entire image can

be represented by joint distribution of all xi. Essentially,

the joint distribution is fx(x1, x2, ..., xn) = fx(x). If the
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face is symmetric, we can say that each xi should follow

a Gaussian distribution, and xi should follow some skewed

distribution if the face is asymmetric. Based on this, a sym-

metric face can be described as a multivariate Gaussian dis-

tribution as follows:

fx(x) =
1

(2π)k/2|Σ|1/2 exp

(
(x− μ)�Σ−1(x− μ)

−2
)

(7)

Next, we employ kurtosis as a measure of nongaussianity

in the joint distribution:

kurt(xi) = E{x4
i } − 3(E{x2

i })2 (8)

where the random variable here have zero mean. The kur-

tosis ensemble is a good indicator for face asymmetry.

Negentropy Similar to the kurtosis method, negen-

tropy is also widely used as a measure for nongaussianity.

Negentropy J(x) is a normalized differential entropy de-

fined as follows:

J(x) = H(xGauss)−H(x) (9)

where H(x) = − ∫
px(η) log px(η)dη is the entropy of a

random vector x and xGauss is a Gaussian random vector

of the same correlation and covariance matrix as x. The

reason we benchmark the entropy against the entropy of

a Gaussian distribution is because that a Gaussian variable

has the least entropy among all random variables of equal

variance according to one of the fundamental results in in-

formation theory. Therefore, we can also utilize negentropy

as a measure of face asymmetry.

Harris-Laplace Detector We analyze the mid-level

facial asymmetry using the Harris detector. The face image

is divided into multiple 8×8 subregions, and after the Harris

detector scans the entire image, the number of keypoints

located in each of the subregions is served as an indicator of

facial asymmetry. Intuitively, if the face is near-symmetric,

the number of keypoints in any subregion should be close

to the number of keypoints in the mirrored counterpart.

When the traditional 2D Harris detector is combined

with Gaussian scale space representation, the Harris-

Laplace detector is formed, which is scale-invariant. The

key points localized by Harris detector are rotation and illu-

mination invariant using the second moment matrix below:

M(x) =
∑
x,y

w(x, y)

[
I2x(x) IxIy(x)
IxIy(x) I2y (x)

]
(10)

where w(x, y) is the isotropic Guassian weighting function,

and Ix, Iy are the pixel intensity derivatives in the x and y
direction at point x.

When incorporating with Gaussian scale space represen-

tation, the scale-adapted second moment matrix becomes:

M(x, σI , σD) = σ2
Dg(σI)⊗

[
L2
x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]

where Lx(x, σD) and Ly(x, σD) are the respective deriva-

tives applied to the Gaussian-smoothed image using a ker-

nel with scale σD, and σI denotes the current scale at which

the Harris corner points are detected.

Symmetry Distance After we divide the face image

into multiple subregions like in the Harris-Laplace detector

method, we can compute the distance between pixels in one

subregion with that in the mirrored subregion. We utilize

the Lp norm as distance measure, where p = 1, 2, ..., k. So

the symmetric distance (SD) is computed as:

SD(r)
p (x(r),x′(r), p) =

⎛
⎝ n2∑

i=1

|x(r)
i − x

′(r)
i |p

⎞
⎠

1/p

(11)

where x(r) and x′(r) are pixels inside mutually mirrored

subregions denoted as r, and there are totally n2 pixels in-

side each subregion.

Additionally, we add the Frobenius norm as the similar-

ity measure between the two matrix from the paired subre-

gions using:

SD
(r)
F (x(r),x′(r)) =

√√√√ n∑
i=1

n∑
j=1

|x(r)
ij − x

′(r)
ij |2 (12)

So the final symmetry distance descriptor for subregion r

is nothing but the concatenation of all the SD(r)
p and SD

(r)
F .

We can scan through all the subregions to obtain final SD

descriptor for the entire face as a measure asymmetry.

Fourier Analysis The frequency domain facial asym-

metry representation [11] analyzes the Fourier domain

phase spectra. Under a frequency domain representation,

the frequency spectrum of the signal contains two compo-

nents at each frequency: magnitude and phase. In the case

of 2D image, the phase component captures more of the im-

age information or intelligibility than the magnitude com-

ponent, so that it is very important when constructing the

image [8]. The significance of phase component has also

been applied to biometrics [16].

The Fourier transform has symmetry properties that con-

stitute the frequency domain facial asymmetry representa-

tion. Any 1D sequence x(n) can be expressed as the sum

of an even part xe(n) (symmetry part), and an odd part

xo(n) (asymmetry part): x(n) = xe(n) + xo(n), where

xe(n) = x(n)+x(−n)
2 and xo(n) = x(n)−x(−n)

2 . When a

Fourier transform is applied on on a real sequence x(n), the

even part xe(n) transforms to the real part of the Fourier

transform and the odd part xo(n) transforms to the imagi-

nary part. In [11], three asymmetry features were defined

based on the imaginary components:

• I-Face: frequency-wise imaginary components of

Fourier transform of each row slice, and the resulting
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size of the I-Face feature should be m × n
2 where the

original facial image is of size m × n. The halving of

the second dimension is due to the symmetry property

of the Fourier transform.

• Ave I-Face: frequency-wise imaginary components of

Fourier transform of averages of two-row slices. The

resulting feature size is m
2 × n

2 .

• E-Face: energy of the imaginary components of the

Fourier transform of row slices of the face, and the re-

sulting feature is a vector of length m.

For these three features, the higher their values, the

greater level of asymmetry is shown in the image, and vice

versa. The averaging over two rows will smooth our the

noise to some extent, but averaging over too many rows

will lose information and thus jeopardize the intelligibility

of the feature. The authors in [11] claimed that the two-row

smoothing is optimally selected after experiments. Here we

will follow the convention of two-row averaging.

In addition to the aforementioned three features from the

imaginary components, we will add the counterparts from

the real components. What’s more, we want to see how

averaging works on E-Faces, so we will add two-row aver-

aging energy face to both imaginary and real components

feature. Finally, we would like to see how the ratio between

imaginary energy and real energy can play a role in distin-

guishing identical twins. With this modification, we now

have 10 feature types as shown in Table 1:

5. Facial Image Alignment
In this section, we introduce a two-step coarse-to-fine

alignment procedure for preprocessing the facial image.

5.1. Coarse Alignment of Facial Image

We first use active shape model (ASM) [17] to perform

a loose crop of the face region. The ASM automatically

detects 79 facial landmarks as in Figure 3 (a), and by us-

ing these landmarks locations, we can rotate and generate a

loose crop of face of size 700× 700 as in Figure 3 (b).

5.2. Fine Alignment of Facial Image

Once the loose crop is obtained, we will then generate

the tight crop which will be used for the experiments.

The reason why we adopt a two-step coarse-to-fine align-

ment procedure is that we are going to investigate the facial

asymmetry biometrics in distinguishing between identical

twins, and these features need to be extracted from a per-

fectly aligned faces. As illustrated in Figure 3 (b), the ASM

has already coarsely aligned the face crop by making the

line connecting centers of two eyes horizontal and by mak-

ing the nose tip intersect central vertical line. Next, we will

initialize a tight crop window as shown in Figure 3 (c) which

(a) (b) (c)
Figure 4. Using D-Face as measurement to find the optimal align-

ment. (a) optimally aligned face, (b) less optimally aligned face,

and (c) worst aligned among the three.

is centered and of size 640× 640, so the margin on all sides

is 30 pixels. Then, by rotating this tight crop window and

horizontally shift it, we are trying to find the optimal posi-

tion of the window so that the tightly cropped face can be

optimally aligned.

We will adopt a spatial domain asymmetry indicator D-

Face [10] as a measurement of fine alignment. D-Face is

the absolute difference between the original face image with

its flipped version (flipped about the central vertical line).

Examples of D-Face of three alignments of the same face is

shown in Figure 4. Although the 3 alignments show only

slight difference, the D-Face can tell us that image (a) is the

best aligned and (c) is the worst aligned since it has the most

white color in the D-Face (highest energy).

Figure 3 shows the rotation and horizontal shift of the

tight crop window. Figure 3 (c) and (d) demonstrate 2 dif-

ferent rotations on the same horizontal shift offset and Fig-

ure 3 (d)(e)(f) show the same rotation on 3 different hori-

zontal shift offsets.

Since the objective function (D-Face) to be minimized is

not a convex function of rotation angle θ and horizontal shift

offset δ, we cannot use gradient descent method to find the

optimal solution for θ and δ. Instead, a simple greedy search

method will be applied to find the best combination of the

two parameters. In our evaluation, θ and δ are confined to

be a small range because slight rotation and shift will lead

to optimal solution.

6. Database

The dataset we evaluate our algorithm on is ND-TWINS-

2009-2010 database [4]. Face images were acquired in 2009

and 2010 at the Twins Days Festival in Twinsburg, Ohio

[3]. The number of images collected are as follows [14]:

“the 2009 collection yielded 17,486 face stills from 252

twin subjects (126 pairs), of whom 34 (17 pairs) appeared

in each of the two days of the Festival. In 2010, data col-

lection yielded 6863 face stills from 240 twin subjects (120
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I-Face Average-I-Face Energy-I-Face Average-Energy-I-Face Energy-I-Face / Energy-R-Face

R-Face Average-R-Face Energy-R-Face Average-Energy-R-Face Energy-R-Face / Energy-I-Face
Table 1. The 10 facial asymmetry and symmetry features used in our experiments to distinguish between identical twins.

(a) (b) (c) (d) (e) (f ) (g)
Figure 3. Rotate and horizontally shift the tight crop window in order to find the optimal alignment. (a) Localizing 79 landmark points

using ASM, (b) loose crop image from ASM, (c) tight crop window initialization, (d)(e) 2 different rotations on the same horizontal shift

offset, (e)(f)(g) same rotations on 3 different horizontal shift offsets.

(a) (b) (c) (d)

Figure 5. Example twin images from Notre Dame twin database.

(a) and (b) are identical twins, (c) and (d) are identical twins. Two

expressions: blank stare (neutral) and happy (smiling) are shown

for each person. These four images are frontal, no glass and taken

inside.

pairs), of whom 10 (5 pairs) came both days. There were 48

twins (24 pairs) who participated in both 2009 and 2010 ac-

quisitions, and two twin subjects (one pair) participated in

both days of both years. Finally, one set of identical triplets

participated in 2010”. Images are taken in three lighting

environment: (1) inside the tent under studio lighting, (2)

outside sunny, and (3) outside rainy. Two facial expressions

are blank stare (neutral face) and happy (smiling face). Sub-

jects are asked to wear no glass, and to wear two different

eyepieces: glass and prism (thick glass). Different poses

with yaw ranging from 0-180 degrees are also taken. The

majority of the subjects are Caucasians. Examples of two

twin pairs are shown in Figure 5.

7. Experiments for Identifying Identical Twins
7.1. Experiment I: Identify Identical Twins in the

Crowd

In the first experiment, we aim at identifying identi-

cal twin individual in the crowd. By using the proposed

Augmented Linear Discriminant Analysis method for sub-

space learning, we evaluate the performance of asymmetry

features against traditional facial descriptors on traditional

LDA method.

Experimental Setup We carry out the 1-to-1 verifica-

tion matching between 1 image and all the remaining im-

ages in the database. We train the proposed ALDA and

LDA subspace using the same training images, with class

label information. The entire database is partitioned with

30% training and 70% testing. We evaluate the asymmetry

features against raw pixel and LBP/LTP/LTrP. The exper-

imental results will be a set of receiver operating charac-

teristic (ROC) curves along with the verification rate (VR)

at 0.1% (0.001) false accept rate (FAR) and the equal error

rate (EER) reported.

In this experiment, we utilize all the images from the

ND-TWINS-2009-2010 database that are frontal. As men-

tioned in Section 6, the whole database includes images of

various poses, different lighting conditions (inside, sunny

and rainy), different eyepieces (no glass, glass and prism),

and two expressions (blank stare and happy). Since in this

paper we are investigating the facial asymmetry features

in distinguishing between identical twins, we confine our-

selves to use only the frontal face images.

The images are aligned and resized to 128 × 128. Af-

ter feature extraction, and projection onto the leaned dis-

criminant subspace, a normalized cosine distance (NCD) is

adopted to compute the distance between the projected fea-

ture vectors x and y from different images using: NCD =
d(x,y) = −x·y

‖x‖‖y‖ , and a similarity matrix Simij is ac-

quired, where each entry in the similarity matrix is the NCD

between ith and jth feature vector.

Experimental Results Table 2 shows the VR at 0.1%

FAR as well as the EER for Experiment I and Figure 6

shows the ROC curves. We find out that for identifying

identical twin individual in the crowd, the proposed ALDA

subspace method significantly outperforms the traditional

LDA on all types of features considered in this experi-

ment. Also, traditionally well-established descriptors such

as LBP/LTP/LTrP perform not much better than the raw

pixel, sometimes even worse. On the contrary, the facial

asymmetry features do increase the verification rate. To be

more specific, the best VR we obtain is 48.5% at 0.1% FAR

using asymmetry features with ALDA, while the best we

can get from the traditional LDA is 27.9% VR at 0.1% FAR.
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VR EER
Pixel (LDA) 0.223 0.407

LBP (LDA) 0.171 0.346

LTP (LDA) 0.239 0.214

LTrP (LDA) 0.271 0.190

Asym. Feat. (LDA) 0.279 0.188

Pixel (ALDA) 0.302 0.201

LBP (ALDA) 0.323 0.198

LTP (ALDA) 0.422 0.243

LTrP (ALDA) 0.343 0.175

Asym. Feat. (ALDA) 0.485 0.142

Table 2. VR at 0.1% FAR and EER for Experiment I.
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Figure 6. The ROC curves for Experiment I.

In this case, we see a 20.6% leap in the verification rate by

adopting the proposed ALDA method.

7.2. Experiment II: Verify Identical Twins within
the Family

In order to examine whether the proposed ALDA method

can find projection vectors that also well distinguish twin

individuals in the same family, we evaluate the facial asym-

metry features on all the families in the database, against

the state-of-the-art and very successful descriptors in face

recognition field.

Experimental Setup We focus on verifying twinA
against twinB in the same family. Per this idea, we con-

duct an 1-to-1 verification matching experiment within each

identical twins families and acquire the VR at 0.1% (0.001)

FAR, and in the end report the averaged VR throughout all

the families using all the aforementioned features, with pro-

jections onto traditional LDA and proposed ALDA basis.

For the image selection, we will consider both of the two

expressions because we want to see how asymmetry bio-

metrics can capture subjects’ behaviorial changes on faces.

Both full face images and periocular images will be evalu-

ated on three resolutions. The subspace training procedure

is the same as in the Experiment I.

Experimental Results Table 3 shows the verification

rate at 0.1% false accept rate averaging over all families.

First 5 rows employ the traditional LDA methods for sub-

space learning on raw pixel, LBP, LTP, LTrP, and asymme-

try features, and next 5 rows utilize the proposed ALDA

methods to learn the subspace on the same features. Both

of the two expressions in the database are considered: blank

stare and happy. Experiments on both full face and perioc-

ular crop are carried out on three different resolution: small

(S), medium (M), and large (L) size. For full face images,

small sized image is 128 × 128, medium 320 × 320, and

large 640 × 640, while for periocular images, small sized

image 50× 128, medium 125× 320, and large 250× 640.

From our experimental results in Table 3, we can draw

the following conclusions:

(1) Using ALDA for subspace modeling yields much

better performance than traditional LDA method, because

ALDA enforces individuals from the same family to be far

from each other in the projection space.

(2) Compared with blank stare faces, faces with happy

expressions generally yield higher VR for both traditional

features like LBP, LTP, LtrP, and the proposed facial asym-

metry features. This is because of the subject-dependent

uniqueness of facial behavior.

(3) In traditional face recognition setup, LBP/LTP/LTrP

should perform much better than raw pixel, because they

capture the discriminative features of each subject. These

discriminative features aims at maximizing similarities

among images from the same or similar-looking subject.

But, this criterion breaks in the case of identical twins

since images from the other member of the same family

are highly similar. That is why, in our experimental setup,

LBP/LTP/LTrP does not display much advantage over raw

pixel. Generally speaking, in the verification experiments,

LBP/LTP/LTrP actually performs worth than the raw pixel.

(4) On the contrary, when using the facial asymmetry

features, we are able to improve the VR by a great margin.

To be more specific, using asymmetry features, the best VR

achieved is 82.58% at 0.1% FAR using ALDA on large-

sized periocular image with smiling expression. While the

best VR achieved using LDA is 75.17% at 0.1% FAR on

small-sized full face images also with smiling expression.

(5) We also find out that, for the facial asymmetry fea-

tures, image resolution does not affect the performance too

much. This shows that facial asymmetry biometrics is res-

olution independent and can work well on both low resolu-

tion and high resolution images.

(6) What’s more, considering only the periocular region

(only less than 40% of the full face) is equivalent to full
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Blank Stare (neutral face) Happy (smiling face)
Full Face Periocular Full Face Periocular

Avg VR at 0.1% FAR S M L S M L S M L S M L

Pixel (LDA) 0.5830 0.5821 0.5816 0.5818 0.5817 0.5788 0.6020 0.5995 0.5993 0.5983 0.5955 0.5969

LBP (LDA) 0.5477 0.5466 0.5455 0.5351 0.5303 0.5285 0.5257 0.5233 0.5226 0.5306 0.5289 0.5291

LTP (LDA) 0.5830 0.5818 0.5852 0.5826 0.5835 0.5817 0.5911 0.5918 0.5930 0.5929 0.5973 0.5944

LTrP (LDA) 0.5488 0.5501 0.5508 0.5516 0.5503 0.5581 0.5630 0.5690 0.5687 0.5649 0.5673 0.5680

Asym. Feat. (LDA) 0.7288 0.7237 0.7230 0.7393 0.7293 0.7296 0.7517 0.7503 0.7466 0.7381 0.7320 0.7305

Pixel (ALDA) 0.7404 0.7326 0.7301 0.7524 0.7441 0.7406 0.7379 0.7361 0.7321 0.7484 0.7420 0.7365

LBP (ALDA) 0.7383 0.7495 0.7532 0.7366 0.7455 0.7454 0.7541 0.7598 0.7633 0.7576 0.7695 0.7752

LTP (ALDA) 0.7845 0.7962 0.7961 0.7895 0.7948 0.7951 0.8060 0.8190 0.8193 0.7956 0.8070 0.8093

LTrP (ALDA) 0.7317 0.7327 0.7225 0.7253 0.7152 0.7106 0.7511 0.7586 0.7562 0.7412 0.7432 0.7495

Asym. Feat. (ALDA) 0.8017 0.8027 0.8025 0.7953 0.7952 0.7952 0.8211 0.8216 0.8216 0.8254 0.8253 0.8258
Table 3. Averaged VR at 0.1% FAR over all the identical twins families for Experiment II.

face in terms of the performance, and sometimes it is even

preferable to use periocular region instead of full face for

our best verification rates come from periocular images.

(7) Facial images in this database are taken at the same

time or at most one year apart. This is actually the worst-

performance scenario for our facial asymmetry features be-

cause the larger gap between the query image and gallery

image, the more distinct asymmetry features can be found

and characterized. In real life scenarios, these facial asym-

metry features will perform even better.

8. Conclusion

In this work, we have proposed an Augmented Linear

Discriminant Analysis approach to identify identical twins.

It learns a common subspace that not only can identify from

which family the individual comes, but also can distinguish

between individuals within the same family. We evaluate

the ALDA against the traditional LDA approach for sub-

space learning on the Notre Dame twin database. We have

shown that the proposed ALDA method with the aid of

facial asymmetry features significantly outperforms other

well-established facial descriptors (LBP/LTP/LTrP), and the

ALDA subspace method does a much better job in distin-

guishing identical twins than LDA. We are able to achieve

48.50% VR at 0.1% FAR for identifying family member-

ship of identical twin individuals in the crowd and an aver-

aged 82.58% VR at 0.1% FAR for verifying identical twin

individuals within the same family, a significant improve-

ment over traditional descriptors. It is safe to draw the con-

clusions that our proposed ALDA method with the aid of

facial asymmetry features can very well tell identical twins

apart in the real-world application.
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