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Abstract

We present a continuous 3D face authentication system
that uses a RGB-D camera to monitor the accessing user
and ensure that only the allowed user uses a protected sys-
tem. At the best of our knowledge, this is the first system that
uses 3D face images to accomplish such objective. By using
depth images, we reduce the amount of user cooperation
that is required by the previous continuous authentication
works in the literature. We evaluated our system on four 40
minutes long videos with variations in facial expressions,
occlusions and pose, and an equal error rate of 0.8% was
achieved.

1. Introduction
For many years biometrics have been proposed as a sub-

stitute for common authentication methods, such as pass-

words and tokens [4]. However, in most authentication sys-

tems, once someone gets access to the desired resource no

further verification is performed. Although these systems

stop an unauthorized individual from getting access, they

cannot ensure that the accessing user is the allowed one,

which is not acceptable in high security environments. The

continuous authentication addresses this issue by constantly

monitoring accessing users to make sure no unauthorized

access occurs after the initial verification. Its major ad-

vantage is to provide a more secure session, which may be

used in computer access control [15] and online examina-

tions [10], and only requires biometric samples to be cap-

tured continuously.

In this context, keystrokes appeared as the most straight-

forward feature for continuous authentication and were the

first biometric trait to be used for this purpose [11, 14, 15].

Although the use of keystrokes for continuous authentica-

∗This work was performed while the author was at the Computer Sci-

ence and Engineering, University of South Florida, USA.

tion does not require additional hardware in a traditional

computer configuration, according to Monaco et al. [15]

it requires more than 200 keystrokes to identify an impos-

tor (i.e. at least one minute considering an average com-

puter user). However, as pointed out by Sim et al. [19],

impostors can damage a protected system with much less

effort (e.g. the command line “rm -rf *” in a Linux con-

sole can be typed in a few seconds). To overcome this

problem, different biometric features with a higher discrim-

inant power were employed, such as electrocardiograms

(ECG) [1], faces [13, 16] and fingerprints [19], as well as

multimodal systems [2, 9, 19]. Despite the advantages in

accuracy, fingerprint-based systems cannot obtain samples

continuously without user cooperation making the continu-

ous authentication too inconvenient for the user, and ECG

biometrics require users to wear body sensors and can re-

veal other information than the identity (e.g. health condi-

tions such as arrhythmia [1] and stress).

Facial images can be captured without any user coop-

eration by low-cost cameras, which are built-in in most of

today’s computers. However, face recognition based on 2D

images is substantially affected by pose, illumination and

facial expression variations [21]. To avoid these variations

Niinuma et al. [16] introduced the concept of soft biomet-

rics, which are color distributions of faces and clothes. This

type of description is, however, less discriminant and easier

to mimic.

In this work we propose using a RGB-D camera to per-

form 3D face authentication continuously, since 3D outper-

forms 2D face recognition in many aspects [5]. First, pose

robustness is better achieved when 3D data is available.

Second, the Kinect is able to capture 3D images in a wide

range of lighting conditions. Finally, the 3D data allows a

better classification of foreground and background objects,

which facilitates tasks like object detection and tracking.

The major drawback of 3D face authentication is the com-

putational cost. However, if the cost of an unauthorized ac-

cess is too high, then continuous 3D face authentication will
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Figure 1. Illustration of the operation of a continuous face authentication system using the Kinect for data acquisition.

be worth being used.

A Microsoft Kinect sensor1 was used for acquisition, but

other RGB-D cameras could be used. The proposed sys-

tem uses a 3D face detector [17] based on boosted cascade

classifiers to locate faces under pose variation. Then, faces

are then normalized to a standard pose through the Iterative

Closest Points algorithm [3], and Histogram of Oriented

Gradients (HOG) features [8] are extracted from three dif-

ferent facial regions. For each frame, only the region least

affected by noise is used for matching, which is automati-

cally defined based on facial pose information. Finally, the

obtained scores are fused over time to take a decision on the

safety of the system.

This paper is organized as follows: Section 2 describes

our proposed approach for continuous 3D face authentica-

tion. Section 3 shows our experimental results using four

40 minutes long videos acquired by a Microsoft Kinect sen-

sor. Finally, Section 4 presents our conclusions followed by

acknowledgment and references.

2. Continuous 3D face authentication

The proposed system uses a RGB-D camera to continu-

ously capture RGB-D images, which contain both color and

depth information. However, we ignore the color informa-

tion in order to avoid its limitations concerning pose and

illumination variations. Figure 1 illustrates the operation of

the proposed system. The system is assumed to be safe at

login, so we take N frames at this point to be used as the

user template, with N = 3. Then, each following frame

is processed and matched against the template, and the re-

sulting score is used to update the probability of the system

being safe. If this probability is below a threshold value,

the system is considered unsafe and the user loses access

immediately.

Each frame is processed through five stages after acqui-

sition, as shown in Figure 2: (1) face detection and pose es-

timation; (2) face normalization; (3) region of interest (ROI)

extraction; (4) HOG feature computation; and (5) matching

1www.xbox.com/kinect

and score fusion. More details about each stage are given in

the following subsections.

Figure 2. Diagram of the stages used in this work to process an

input depth image.

2.1. 3D data acquisition

The Microsoft Kinect RGB-D sensor is based on struc-

tured light and captures up to 30 frames per second (fps) of

color and depth information. Depth values range from 500

to 4,000 millimeters (mm). Although the Kinect presents

a good relation between accuracy, speed and cost, the ac-

curacy depends on the distance between object and sen-

sor [12]. As may be seen in Figure 3, there are more dispar-

ity values to represent small distances than large distances.

This causes the error of depth measurements to grow with

increasing distance, as also shown in Figure 3. Due to this

problem, in this work we only use faces up to 1500mm
away from the acquisition device for recognition purposes.

2.2. 3D face detection and pose estimation

The detection stage is performed by applying a boosted

cascade classifier of Haar features to classify image regions

as face or non-face [20]. However, instead of using color

images for this task, depth images are used because they

are invariant to pose and illumination variations. To this
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Figure 3. Kinect disparity versus distance/error in millimeters.

end, we use the approach proposed by Pamplona Segundo

et al. [17] in which a scale-invariant projection image of

the depth information is used to represent faces with size

proportional to their real size. Thus, the search is limited

to a predefined face size and the detection process is sig-

nificantly speeded up. Also, since there are less non-face

candidates (i.e. only regions with size equal to the face size

are tested) the probability of having a false alarm is reduced.

This idea can also be used to detect faces under pose

variation using only a frontal face classifier. To this end,

multiple projection images are created from different view-

points in order to represent rotated faces as frontal faces. In

this work, we only considered viewpoint changes around x-

and y-axes because pitch (see Figure 4(a)) and yaw (see Fig-

ure 4(b)) rotations are the most common pose variations of

a regular computer user, as illustrated in Figure 4. The pa-

rameters α and β are the maximum values for pitch and yaw

rotations, respectively. In this work, α = 40 and β = 20.

Projection images were created for all viewpoints within the

range specified by α and β at 10 degrees steps, and the de-

tection result is also used to obtain a rough estimation of the

head pose. This estimation is given by the rotation values

of the viewpoint in which the face was detected.

(a) Side view (b) Top view

Figure 4. Common pose variations of a regular computer user: (a)

pitch and (b) yaw.

2.3. 3D face normalization and ROI extraction

In the normalization stage, the detected face is aligned to

an average face image using the ICP algorithm [3] to stan-

dardize pose and resolution. A noise-free average face Ψ is

computed using the images of the Face Recognition Grand

Challenge (FRGC) v1.0 database [18], which contains 943
images from 275 different subjects. To this end, first all

FRGC v1.0 images Γ1, Γ2, . . . , ΓM are aligned to an ini-

tial estimation Ψ′ using ICP. After the alignment, we have

the images Γ′
1, Γ′

2, . . . , Γ′
M in the same coordinate system

of Ψ′. With these images we compute the residual vectors

Φ′
i = Γ′

i − Ψ′, where each value in Φ′
i is the distance in

the Z-axis between one point in Ψ′ and its closest point in

Γ′
i. Then, we recomputeΨ′ using the Equation 1 and repeat

the entire process until convergence. Finally, the last Ψ′ is

assigned to Ψ.

Ψ′ = Ψ′ +
1

M

M∑
i=1

Φ′
i (1)

The initial value of Ψ′ is given by the first training im-

age resampled on a uniform grid with resolution of 1mm.

The grid is centered in the nose and eyes area and has size

of 96×72mm, totaling 97×73 points. The result of the nor-

malization stage for a Kinect image is shown in Figure 5(a).

(a) (b) (c) (d)

Figure 5. (a) Example of resulting face image after normalization,

and its different ROIs: (b) left region, (c) nose region and (d) right

region.

It is not always possible to use the entire face image ob-

tained through the normalization stage because pose vari-

ations can substantially affect one side of the face. When

this happens, the affected side may present holes and exces-

sive noise due to self-occlusions in the face. To solve this

problem, we divide each image in three different ROIs: the

left half of the face, the nose region and the right half of

the face, respectively shown in Figures 5(b), 5(c) and 5(d).

We only use one of these regions for each frame accord-

ing to its pose, which is obtained in the detection stage. The

nose ROI is used for frontal faces, while we use the left ROI

when the user is looking to the right and the right ROI when

the user is looking to the left. This way we avoid using too

noisy image parts and also use the most invariant facial re-

gion, according to Chang et al. [6], when frontal faces are

available.

2.4. HOG feature computation and matching

We use HOG features to describe ROIs because they

showed themselves more invariant than the ROI image itself
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in our experiments. Each ROI images is scaled to 64×64

pixels, and then the HOG feature is extracted considering a

16×16 block size, 8×8 cell size, 9 orientation bins and a

step size of 8 pixels, resulting in a feature vector with 1764

elements. The matching score between a probe image and

the user template is equal to the L1 between their correspon-

dent feature vectors. If the user template has more than one

image, the probe image is matched against all of them and

the median score is returned instead.

2.5. Score fusion

The objective of this stage is to determine the probabil-

ity of the system being safe at time t from the history of

observations Zt, called Psafe. Each observation zi ∈ Zt

corresponds to the matching score between a probe image

and the user template at time i. The fusion of continuous

scores is based on the Temporal-First integration proposed

by Sim et al. [19], which keeps track of Psafe over time

with a weighted sum of Zt. In this fusion scheme, older ob-

servations are “forgotten” to ensure the current user is still

the allowed one and the probability of the system being safe

can be computed at any time, even when there is no obser-

vation. Equation 2 is used to compute Psafe:

Psafe =
e
−Δt×ln 2

k × P (safe | Zt)∑
x∈X P (x | Zt)

(2)

where k is the decay rate that defines how fast the system

“forgets” older observations (i.e. Psafe drop to half every

k seconds without observations, k = 15), Δt is the elapsed

time since the last observation zt, and X = {safe,¬safe}.
For every x ∈ X , P (x | Zt) is given by Equation 3:

P (x | Zt) = P (zt | x)× e
(u−t)×ln 2

k × P (x | Zu) (3)

where u is the time of the last observation before t, zu.

The system is assumed to be safe at the login time, so

P (safe | Z0) = 1 and P (¬safe | Z0) = 0. P (safe | zi)
and P (¬safe | zi) are respectively given by intraclass

and interclass cumulative distribution functions (CDF), pre-

sented in Equations 4 and 5.

P (zi | safe) = 1− 1

2

[
1 + erf

(
score− μsafe

σsafe

√
2

)]
(4)

P (zi | ¬safe) = 1

2

[
1 + erf

(
score− μ¬safe

σ¬safe

√
2

)]
(5)

The parameters (μsafe, σsafe, μ¬safe, σ¬safe) were

obtained for each ROI, and the resulting CDFs are

shown in Figure 6. An exhaustive search was per-

formed to obtain the set of parameters that minimizes

the error in our experiments. The respective values

of (μsafe, σsafe, μ¬safe, σ¬safe) for the left ROI, the

nose ROI and the right ROI are (89.0, 14.5, 128.3, 17.8),
(82.5, 13.2, 122.4, 16.2), and (88.8, 12.9, 129.2, 17.4).
Since only one ROI is used per frame, only its repective

CDFs are used in Equation 3.

Figure 6. CDFs for the three ROIs employed in this work: left

ROI, nose ROI and right ROI.

Our changes in Sim et al.’s formulation eliminate the

need for keeping a history of observations and also avoids a

continuous decrease in the Psafe value in the first k seconds

after login.

3. Experimental results
For our experiments, we use four 40 minutes long videos

acquired by a Kinect sensor. In these videos, the user ap-

pears in the scene, logs in the system, uses the computer for

approximately 40 minutes and then leaves the scene. The

videos were cut so that the first frame shows the user enter-

ing the scene and the last picture shows the user leaving the

scene. No restrictions were imposed on how the user should

use the computer and how the user should behave in front of

the computer, but users were not allowed to leave the com-

puter before 40 minutes have passed. Each video sequence

has more than 70,000 frames and contains faces with differ-

ent artifacts that may affect the authentication performance:

facial expressions, occlusions, pose and noise. Some exam-

ples of these artifacts are shown in Figure 7.

(a) (b) (c) (d)

Figure 7. Examples of artifacts present in Kinect videos: (a) facial

expressions, (b)-(c) occlusions and (d) pose.

Each video was used as input for the proposed continu-

ous authentication system, and the results are shown as solid

lines in Figure 8. About 2 hours and 40 minutes of autho-

rized access were analyzed, and the system was able to keep

the users with high Psafe values (i.e. above 0.8 in 95% of

the frames). After that, we concatenated each video to the
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Figure 8. Each plot presents the results for the proposed continuous authentication system for a different subject. The solid line represents

the authorized user accessing the computer in the initial 40 minutes, and the dashed lines represent the attacks by other subjects starting

around 2500s time interval.

end of the remaining videos to simulate attacks and make

sure the proposed system is able to detect intruders right

after the authorized user leaves the scene. The 12 attacks

were then performed (i.e. three for each video), and the re-

sults are also shown in Figure 8 as dashed lines. A total of 8

hours of intruder trying to get access were considered, and,

as may be observed, the Psafe value for the authorized user

is constantly higher than the Psafe value for intruders. This

result is corroborated by the receiver operating characteris-

tic (ROC) curve of the Psafe values shown in Figure 9, in

which an equal error rate (EER) of 0.8% is achieved.

Figure 9. ROC curve of the Psafe values obtained by our continu-

ous authentication system (see Figure 8).

Finally, we present an intuitive way to analyze the poten-

tial of the system to detect intruders. We consider the initial

frame of each video that was concatenated to another video

as the beginning of the attack. Then, for a given threshold

value, we can see how long the system takes to identify the

threat (i.e. how many seconds Psafe takes to go below the

threshold) as presented in Figure 10. The solid line was ob-

tained using the EER threshold, which is equal to 0.715. In

this experiment, 75% of the attacks are detected in the first

second. However, in one cases the system takes 19 seconds

to detect the intruder. This time can be reduced by increas-

ing the threshold, at the cost of increasing the FRR. Fig-

ure 10 shows in dashed lines an example of the results for a

higher threshold (0.758). Although 91.7% of the attacks are

detected in the first second and the worst case only takes 8

seconds to be detected, the EER grows from 0.8% to 2%.

Our experiments were performed at a frame rate of 1 fps

in an Intel Core i3 processor, and the remaining frames were

discarded by the system. No parallelism was employed to

achieve real-time continuous authentication.

4. Conclusion

At the best of our knowledge, this is the first continuous

authentication system that uses 3D face images to monitor

and ensure that the accessing user is the allowed one. The

acquisition was performed by a Kinect sensor, but the sys-

tem can be used with other RGB-D cameras. The proposed
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Figure 10. Intruder detection rate versus time to detect an intruder:

as the time to detect increases, so does the intruder detection rate.

approach automatically detects, normalizes, describes and

matches depth images in real-time. Although depth images

are invariant to pose, such variations may cause holes and

noise due to facial self-occlusions. To solve this problem, in

this work we match different regions of the face depending

on which facial parts are clearly visible. In the fusion stage,

we present an updated version of Sim et al.’s Temporal-First

integration [19] that does not require to keep a history of ob-

servations and better controls Psafe in the initial part of the

continuous authentication process.

More than 2 hours and 40 minutes of genuine accesses

and over 8 hours of impostors trying to get access to the sys-

tem were evaluated in our experiments. The proposed ap-

proach obtained a 0.8% EER and was able to detect most of

the intruders within a one-second window. We also present

a more intuitive way to evaluate the security of the system

(see Figure 10) by plotting the intruder detection rate along

time for different FRR/FAR values.

As a future work, we intend to combine both color and

depth images in a way that it does not decrease the perfor-

mance of the system when the color image is being affected

by changes in illumination and/or pose. We also intend to

replace the CDFs in the fusion stage with a more robust

classification method, such as Support Vector Machines [7].
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