
What is a ‘Good’ Periocular Region for Recognition?

Jonathon M. Smereka and B.V.K. Vijaya Kumar

Abstract

In challenging image acquisition settings where the per-
formance of iris recognition algorithms degrades due to
poor segmentation of the iris, image blur, specular reflec-
tions, and occlusions from eye lids and eye lashes, the pe-
riocular region has been shown to offer better recognition
rates. However, the definition of a periocular region is
subject to interpretation. This paper investigates the ques-
tion of what is the best periocular region for recognition
by identifying sub-regions of the ocular image when using
near-infrared (NIR) or visible light (VL) sensors. To deter-
mine the best periocular region, we test two fundamentally
different algorithms on challenging periocular datasets of
contrasting build on four different periocular regions. Our
results indicate that system performance does not necessar-
ily improve as the ocular region becomes larger. Rather in
NIR images the eye shape is more important than the brow
or cheek as the image has little to no skin texture (leading
to a smaller accepted region), while in VL images the brow
is very important (requiring a larger region).

1. Introduction

Iris recognition is well known to provide high recogni-

tion rates in controlled acquisition conditions. However, in

instances where the iris is occluded (by eye lashes, eye lids,

non-frontal gaze, etc.) or where segmentation fails due to

impairments such as harsh illumination, low image resolu-

tion, specular reflections, and/or blur from motion or defo-

cus, the performance of the iris recognition algorithms can

degrade considerably.

One potential solution is to use the ocular region of the

face, sometimes referred to as periocular biometrics. Ocu-

lar modality benefits include avoiding iris segmentation [2]

and an increased resistance to the effects of aging [4]. In ad-

dition, it has been shown that the periocular region can offer

better recognition accuracy than face recognition at a great

amount of deterioration [7]. This is due to the limited dis-

tortion that occurs within the periocular region compared to

large deformation that accompanies a change in facial ex-

pression. Some examples of where the use of the ocular

region can be beneficial are shown in Figure 1.

Figure 1: Examples of where periocular recognition can

be beneficial (harsh illumination, occlusion, low resolution,

etc) when attempting iris and/or face recognition.

One definition of the ocular region is the area of the face

that includes the eyelids, eyelashes, eyebrow and the skin

surrounding the eye. A few methods [19, 4] perform recog-

nition using the bi-ocular region which include both eyes

within a single image, however most ocular recognition ap-

proaches separate the left region from the right region where

matching is performed individually. A survey of techniques

for performing ocular recognition can be found in Ambika

et al. [1].

To the authors’ best knowledge, there is no commonly

accepted definition of what exactly constitutes the best oc-

ular region. Towards the goal of shedding further light on

the effect of the ocular region on ocular recognition per-

formance, this paper investigates the question of what is

the best periocular region for recognition. As can be seen

in Figure 2, the definition of a periocular region can cor-

respond to several interpretations of how much informa-

tion is available around (note that ‘peri’ is a Greek root

for ‘around’ or ‘surrounding’) the eye. As we will show,

recognition performance does not necessarily improve as

more area around the eye becomes available in near-infrared

(NIR) and visible light (VL) images. Specifically, the work

presented identifies a distinct region of interest that provides

the most support in matching for each sensor.

In determining the best periocular region, we test two

fundamentally different algorithms on challenging periocu-

lar datasets of contrasting build. The two databases investi-

gated are the Face and Ocular Challenge Series (FOCS) [8]
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(a) Region 1 (b) Region 2 (c) Region 3 (d) Region 4

Figure 2: Examples of the normalized periocular regions for

near-infrared (top) and visible light (bottom) images.

database captured in near-infrared (NIR) light from mov-

ing subjects in an unconstrained environment, and the Uni-

versity of Beira Interior Periocular (UBIPr) [11] database

which is composed of visible light (VL) images of varying

scale, pose, and illumination. The images from each dataset

have had their eye corners labeled; we use the prepackaged

labelings included with the UBIPr set and hand label the

FOCS set as none are inherently included, to perform exper-

iments over varying periocular regions. Figure 2 displays

the differing regions of interest that are tested. The perioc-

ular region ranges from the case where the eye corners are

at the edge of each image (referred to as ‘Region 4’) with

very little cheek or brow information, to images (‘Region

1’) showing the complete area around the eye available in

both datasets. In each region we refrain from masking the

iris and/or eye itself as masking has been shown to be detri-

mental to system performance [12].

The two techniques we use for recognition are Proba-

bilistic Deformation Models (PDM) [2] and m-SIFT [13] as

they perform matching in intrinsically different ways. PDM

is based on building a graphical model to account for any

relative distortion, or structured change, between a probe

and gallery image, while m-SIFT imposes constraints on

locations of matching keypoints to improve the authentica-

tion. In both cases sub-region scores over each of the peri-

ocular regions are examined to find which areas consistently

provide the most support in matching, with equal error rate

(EER) as a measure of overall system performance.

The rest of the paper is organized as follows. An

overview of related work is provided in §2. The methods of

recognition used in this work are briefly described in §3.1

and §3.2. Experimental details concerning dataset informa-

tion and model parameters are provided in §4, followed by

empirical results and observations in §5. Finally, §6 pro-

vides a summary along with concluding remarks.

2. Background

Though still in its infancy as a biometric modality, some

effort has been devoted to the area of periocular recognition.

Park et al. [12] were the first in exploring this task, mak-

ing several fundamental recommendations. Their results

demonstrate that masking the iris and/or eye, such as was

done in early works [17, 18], will degrade system perfor-

mance, and that it is preferable to include eyebrows (with-

out any alterations). Merkow et al. [6] extended this result

to soft-biometrics, using periocular data from Flickr images

to determine gender, finding that the brow and eyes carry

valuable information for discrimination. Oh et al. [10] also

show that masking the eye/iris will degrade performance

while the cheek region in visible light (VL) images does

not contain significant discriminative textural information.

Hollingsworth et al. [3] analyzed human verification per-

formance on periocular images under different lighting con-

ditions. Results suggest that in NIR images, humans use the

eyelashes, eyelid, tear duct, and eye shape as discriminating

features when performing recognition, whereas in VL im-

ages, blood vessels and skin were slightly more helpful than

eye shape and eyelashes. The authors suggest that perioc-

ular biometrics should focus on using VL images for best

system performance. Miller et al. [7] show that only using

the green channel in color images can increase performance.

Padole and Proenca [11] observed that the recognition

performance is dependent on the camera distance at which

the sample was captured (recommending a camera distance

of ~7m) while also reporting the benefits of using eye cor-

ners as reference points to normalize the region. Uzair et al.

[15] use this type of normalization to build image sets when

doing recognition on the MBGC [9] dataset.

The goal of this research effort is to determine the best

periocular region by identifying sub-regions of the ocular

image that provide the best recognition performance. Previ-

ous efforts evaluated general system design decisions (e.g.,

whether masking the eye/iris is effective or not), and gener-

ally provide some evidence of how to improve performance

(e.g., in VL images the eyebrow is effective while the cheek

may not be), but overlook the effects of differing periocular

regions in NIR and VL images at a sub-region level. The

work presented identifies a region that consistently appears

to be more useful in recognition tasks when matching VL

and NIR images. We are able to identify the effective ar-

eas by examining the match scores over sub-regions of the

ocular image. Testing is performed over 4 different defini-

tions of the periocular region (Figure 2) with two different

matching methods.

3. Recognition Models

The implementation details for each matching scheme

tested are discussed in this section. They include methods
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Figure 3: The red boxes are the size of each region of the

probe that is individually compared against the gallery. The

configuration of the boxes is based on the lateral shift re-

quired to center the patch over the area of best match.

of measuring the match score at a detailed level to see which

sub-regions of the ocular region are more useful for recog-

nition. By testing two different methods (namely PDM and

m-SIFT), we ensure that our observations about the sub-

regions are not unique to a particular matching method.

PDM cuts the images into patches, measuring similarity at

a sub-region level as illustrated in Figure 3, while m-SIFT

selects similar interest points based on their locations as

shown in Figure 4.

3.1. PDM

A technique proposed by Thornton et al. [14] to si-

multaneously estimate the non-linear deformation in the

iris from the expansion and contraction of the pupil and

match iris images using a Markov Random Field (MRF)

showed a marked improvement in recognition rates in iris

images where distortion was present. A similar method was

adapted for ocular recognition in [2] and demonstrated the

benefits of using the ocular region in environments where

iris recognition can fail. This technique divides both the

probe and gallery images into patches and the correspond-

ing probe and gallery patches are correlated with each other

to produce a set of correlation output arrays. For an au-

thentic pair, the correlation output from a patch compar-

ison from the probe and gallery images, should exhibit a

peak at the location of the best match providing informa-

tion about the (x, y) shift between the probe and gallery

patches, while also providing a metric of similarity as peak

height. A MRF is then built based on the shifts of neigh-

boring image patches to compensate for the distortion that

occurs between similar images. More details on PDM can

be found within [2].

Figure 4: A set of matching interest points is identified with

extra constraints applied to further reduce the number of

keypoints used for score computation.

3.2. m-SIFT

The Modified SIFT (m-SIFT) method described in [13],

is a good method for basic point-to-point matching. Imple-

mentation involves the use of the Scale Invariant Feature

Transform (SIFT) technique [5] (we used an open source

implementation from the VLFeat library [16]) with addi-

tional matching constraints dependent on the location of

similar keypoints, added to reduce the number of SIFT de-

scriptors that need to be compared. The first constraint is

looking at the angle of the matching keypoints between a

query image and the template, while the second constraint

involves calculating the distance. For a keypoint, p, lo-

cated at a pixel location (x1, y1) in the query and (x2, y2)
in the template, the magnitude of the angle (in degrees) and

Euclidean distance are calculated between the two coordi-

nates. In the original implementation of m-SIFT, to deter-

mine a match score, M , the number of matching keypoints

are counted; however, we found a slight decrease in error

rate by doing the following:

M =

{−mode[E]
k k > 0

ε k = 0

where ε is some large negative number, k is the number of

matching keypoints (after applying the additional matching

constraints), and E is a vector of the squared Euclidean dis-

tance between the the remaining keypoints (after applying

the additional matching constraints). More details on m-

SIFT can be found within [13].

4. Experiments
We investigate four different periocular regions as seen

in Figure 2, referred to as ‘Region 1’, ‘Region 2’, ‘Re-

gion 3’, and ‘Region 4’. Experiments over these regions
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(a) UBIPr pose variation (b) FOCS inter-class

(c) off angle gaze (d) Movement (e) Harsh illumination (f) Occlusion (g) Gaze deviation

Figure 5: Examples of images from the UBIPr (color VL images) and FOCS (gray-scale NIR images) data sets.

allows for the results to be different from each other with

respect to the amount of periocular information available

while also considering the level of granularity in determin-

ing an appropriate periocular region for recognition. In each

of the tests presented we use equal error rate (EER) as a

measure of overall system performance displaying receiver

operating characteristic (ROC) curves as well as cumula-

tive match characteristic (CMC) curves for accuracy rates.

Sub-regions effects are derived from the average score of

each patch from PDM tests and the average of the weighted

locations from m-SIFT tests. Due to space considerations

sub-regions are only examined from authentic comparisons

detailing the specific areas of the ocular image that are most

important within an authentic match.

4.1. Challenging Ocular Images

As shown in Figure 5, the FOCS and UBIPr images are

challenging for both iris and ocular recognition. As a chal-

lenging data set for iris recognition, the FOCS images were

captured from moving subjects (5d) with a near-infrared

(NIR) sensor in an unconstrained environment showing

drastic variations in sensor noise, illumination (5e), gaze

(5g), and occlusion (5f). The UBIPr images captured with a

visible light (VL) sensor, vary in pose (5a), gaze (5c), stand-

off distance, and illumination. Pose variation images, which

include frontal and both side views, can be seen in Figure

5a. The stand-off distance varies from 8 meters to 4 meters

with varying resolution: 501×401 pixels for 8m, 561×541

pixels for 7m, 651×501 pixels for 6m, 801×651 pixels for

5m, and 1001×801 pixels for 4m.

An example of inter-class images found in the FOCS

database, Figure 5b, shows that even at a resolution of

600×750 pixels, the small iris regions are difficult to ex-

tract from images for matching. Other issues such as spec-

ular reflections and out of focus blurring of the iris region

seen in both the FOCS and UBIPr datasets favor the use of

periocular recognition in each environment.

In total 19833 images are collected, 9581 (4792 left,

4789 right) from the FOCS set of 136 subjects and 10252

(5126 left, 5126 right) from the UBIPr set of 259 subjects.

The number of samples per subject within the FOCS set

vary between 2 ~ 236 samples/subject (however, most have

at least 10 samples), while the UBIPr set is consistent with

30 samples/subject (with exception of two subjects which

only have 29 samples and 27 samples total).

4.2. Experimental Setup

The method of evaluation is set up such that each im-

age is independently compared against another (left vs left

and right vs right) to generate two score matrices for the

left (4792×4792 for FOCS and 5126×5126 for UBIPr) and

right (4789×4789 for FOCS and 5126×5126 for UBIPr)

ocular images for each region selection respectively. Thus,

when using a correlation filter for determining deformation

and/or measuring the similarity between a probe and gallery

with PDM, only a single gallery image is used with no other

authentic or impostor images included. Furthermore, all

ocular images are re-sized to 128×128 pixels for compu-

tation purposes. Though to preserve quality and address the

slightly varying size of the eye within each image (which is

measured from corner to corner), computing the normalized

regions shown in Figure 2 requires down-sampling each im-

age such that the region choice (‘Region 1’, etc.) is present

when cropped (from the center of the image) at 128×128
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Figure 6: ROC and CMC curves for left and right ocular regions on the FOCS dataset.

pixels. Additionally, to perform a basic normalization for

illumination each image’s histogram is equalized.

Since training is required for PDM, each test takes a ran-

domly chosen set consisting of half of the left (2396 FOCS

and 2563 UBIPr) and right (2394 FOCS and 2563 UBIPr)

ocular images to perform authentic comparisons for param-

eter estimation. Empirical testing with PDM has led to

dividing the region into 36 non-overlapping patches (6×6

rectangular configuration), and based on the recommenda-

tion from [13] we set m-SIFT angle constraints to 20◦ and

distance constraints to 35% of the image height.

Visualization of effective periocular regions for match-

ing is done for both PDM and m-SIFT experiments. For

PDM results we examine average patch scores over the ocu-

lar region, while with m-SIFT we look at the sum of the key-

point locations weighted by their individual match score.

In each of the tests presented we use equal error rate

(EER) as a measure of overall system performance. Within

the FOCS database, each test on the left ocular region com-

putes 22,963,264 comparisons and each test on the right

ocular region computes 22,934,521 comparisons; of which

267,392 left (1.16%) and 267,273 right (1.17%) are authen-

tic (262,600 left and 262,484 right, if not including self

comparison). Thus, when moving along the diagonal of

the receiver operating characteristic (ROC) curve (assuming

an evenly ‘bowed’ ROC), a decrease in EER by 0.01% ac-

counts to ~26 additional correctly classified authentic com-

parisons for both left and right regions, and ~2270 addi-

tional left and ~2267 right additional correctly classified im-

postor comparisons.

The UBIPr database on the both ocular regions each have

26,275,876 comparisons; of which 76,840 (0.29%) from

each side are authentic (71,714, if not including self com-

parisons). Similarly, when moving along the diagonal of the

ROC curve (assuming an evenly ‘bowed’ ROC), a decrease

in EER by 0.01% accounts to ~8 additional correctly classi-

fied authentic comparisons, and ~2620 additional correctly

classified impostor comparisons for both left and right re-

gions. Note that the labeled right periocular images found

in the FOCS dataset are an equivalent user point of view to

the images labeled as the left periocular region in the UBIPr

dataset and vice-versa.

5. Results

The results from each test are in Table 1 as equal error

rates (EER), while Figures 6 and 7 show the ROC and CMC

curves on the FOCS and UBIPr datasets respectively. The

average patch scores from PDM and normalized remaining

keypoints (weighted at their respective locations) from each

authentic comparison are displayed in Figure 8. Note that

each set of sub-region scores for the FOCS dataset (Figure

8a) are scaled such that the minimum value is 0 (shown as

dark blue regions, with black as 0) and the maximum value

(dark red) is 0.001 and 0.032 for m-SIFT and PDM respec-

tively. The scaling for the UBIPr database (Figure 8b) is

set such that the minimum value is 0 (again shown as dark
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Figure 7: ROC and CMC curves for left and right ocular regions on the UBIPr dataset.

blue, with black as 0), and the maximum value (dark red) is

0.002 and 0.0245 for m-SIFT and PDM respectively. This

adjusted scale setup allows for an easier visual comparison

between neighboring regions. Next to each sub-region score

distribution from each experiment is the average periocular

region that was tested with the respective sub-region scores

overlayed.

FOCS UBIPr

m-SIFT PDM m-SIFT PDM

Region 1
Right 25.90% 23.95% 14.03% 6.43%

Left 27.45% 24.23% 18.44% 7.62%

Region 2
Right 24.64% 21.24% 13.63% 6.43%

Left 26.18% 21.93% 18.95% 8.09%

Region 3
Right 24.67% 18.85% 29.37% 9.57%

Left 26.64% 19.57% 21.66% 11.62%

Region 4
Right 26.85% 26.60% 20.87% 14.31%

Left 28.40% 27.55% 24.67% 16.89%

Table 1: EER for each tests on the FOCS and UBIPr

datasets using m-SIFT and PDM methods.

The EERs for the FOCS dataset using m-SIFT are rela-

tively close across all periocular regions, varying by ~1-2%

EER, with the best found at Region 2 (though Region 3 is

within ~0.03-0.46% EER). PDM shows its best EERs at Re-

gion 3 with significantly more variation between the other

regions. Referring to the sub-region scores for the FOCS

database in Figure 8a, both left and right ocular images for

the PDM method shows the highest scores across the eye it-

self with consistently smaller scores on the cheek and brow

areas when present. The m-SIFT keypoint weights reflect

a similar result with scores being much larger on the eye

itself than in surrounding areas. Specifically in both sub-

region results the area near the inner tear duct of the eye

and lower boundary between the eye and cheek appear to

contribute the most to the final match scores; which may

help explain why Region 3 outperforms Region 4 in NIR

images. Region 4 appears to cut off part of the inner tear

duct while also completely removing any possible brow in-

formation, which while scoring low, does contribute to the

final match score more than any skin texture.

Based on high sub-region score locations and the EER

performance of the regions tested the best cropping for NIR

images requires a tight cut around the eye itself with a small

amount area just outside of eye corners. Including some

brow information has shown to help, though cheek and skin

texture may not be necessary.

The results on the UBIPr dataset of VL images show a

large degradation in recognition performance for both m-

SIFT and PDM as the amount of area surrounding the eye

decreases. From the EERs found in Table 1, we see that for

both methods Region 1 and Region 2 are roughly equiva-

lent, while there is a decrease in performance from using

Region 3 or Region 4. Referring to Figure 8b, the sub-

region scores for both methods are able to display and help

explain the value of using the surrounding skin texture when
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Figure 8: Average authentic patch scores from PDM and keypoint weights (at their respective locations) from m-SIFT on the

FOCS (a) and UBIPr (b) datasets. Note that the labeled right periocular images found in the FOCS dataset are an equivalent

user point of view to the images labeled as the left periocular region in the UBIPr dataset and vice-versa.

performing periocular recognition with VL images. View-

ing the m-SIFT sub-region scores we see that the largely

weighted keypoints are not only centered on the eye itself

but are also abundantly spread outside of the eye. This

is distinctly different than what is shown in the results on

the FOCS dataset in Figure 8a where the larger keypoint

weights are located very close to the eye boundaries with

little noticeable clustering throughout the area around the

eye. In addition, the UBIPr sub-region scores from PDM

favor the eyebrow/brow region of the periocular image with

consistently larger patch scores in areas where the brow is

present. Comparatively higher PDM patch scores are also

seen in on the skin/cheek areas under the eye (which are

largest in Regions 1 & 2) as opposed to at the boundaries or

tear ducts.

Based on high sub-region score locations and the EER

performance of the regions tested the best cropping for VL

images requires a large cut around the eye including the

eyebrow and surrounding skin texture (cheek) for necessary

discrimininative information.
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6. Conclusion

In this paper we examined the question of what is the

best periocular region for recognition when using near-

infrared (NIR) or visible light (VL) sensors. Two funda-

mentally different algorithms were tested on challenging

periocular datasets of contrasting build and with the effects

of each evaluated at a sub-region level. Our results for VL

images indicate a slight contradiction to previous work [10],

where we found that the cheek region can be beneficial to

recognition performance, however the eyebrow/brow region

is the most discriminative, with eye shape having the small-

est contribution. This suggests using a larger area surround-

ing the eye (Region 1) for periocular recognition with VL

images. While the opposite was seen with NIR images;

finding that the shape of the eye is more important, specif-

ically the inner tear duct and lower boundary between the

eye and cheek, with the brow contributing the least. This

allows for better recognition performance with a smaller pe-

riocular region (Region 3) when using NIR images.
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